Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
VisualDL
提交
363a7bf3
V
VisualDL
项目概览
PaddlePaddle
/
VisualDL
1 年多 前同步成功
通知
88
Star
4655
Fork
642
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
10
列表
看板
标记
里程碑
合并请求
2
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
V
VisualDL
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
10
Issue
10
列表
看板
标记
里程碑
合并请求
2
合并请求
2
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
363a7bf3
编写于
12月 22, 2020
作者:
走神的阿圆
提交者:
GitHub
12月 22, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support multi-dimentional vectors api (#874)
上级
81240db7
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
96 addition
and
69 deletion
+96
-69
README.md
README.md
+0
-42
demo/components/high_dimensional_test.py
demo/components/high_dimensional_test.py
+19
-0
visualdl/component/base_component.py
visualdl/component/base_component.py
+14
-5
visualdl/proto/record.proto
visualdl/proto/record.proto
+2
-1
visualdl/proto/record_pb2.py
visualdl/proto/record_pb2.py
+22
-15
visualdl/server/lib.py
visualdl/server/lib.py
+5
-1
visualdl/writer/writer.py
visualdl/writer/writer.py
+34
-5
未找到文件。
README.md
浏览文件 @
363a7bf3
...
...
@@ -211,48 +211,6 @@ After launching the panel by one of the above methods, developers can see the vi
<img
src=
"https://user-images.githubusercontent.com/48054808/90868674-ba321f00-e3c9-11ea-83c1-f03c6dd19187.png"
width=
"70%"
/>
</p>
### 3. Read data in log files using LogReader
VisualDL also provide
`LogReader`
interface to read raw data from log files.
```
python
class
LogReader
(
logdir
=
None
,
file_name
=
''
)
```
#### interface parameters
| parameters | type | meaning |
| ---------- | ------ | ------------------------------------ |
| logdir | string | Path to the log directory. Required. |
| file_name | string | File name of the log file. Required. |
#### Example
Suppose there is a log file named
`vdlrecords.1605533348.log`
in directory
`./log`
. We can get scalar data in
`loss`
tag by
```
python
from
visualdl
import
LogReader
reader
=
LogReader
(
logdir
=
'./log'
,
file_name
=
'vdlrecords.1605533348.log'
)
data
=
reader
.
get_data
(
'scalar'
,
'loss'
)
print
(
data
)
```
The result is a list of
```
python
...
id
:
5
tag
:
"Metrics/Training(Step): loss"
timestamp
:
1605533356039
value
:
3.1297709941864014
...
```
For more information of
`LogReader`
, please refer to
[
LogReader
](
./docs/io/LogReader.md
)
.
## Function Preview
### Scalar
...
...
demo/components/high_dimensional_test.py
浏览文件 @
363a7bf3
...
...
@@ -29,3 +29,22 @@ if __name__ == '__main__':
writer
.
add_embeddings
(
tag
=
'default'
,
labels
=
labels
,
hot_vectors
=
hot_vectors
)
"""
# You can code as follow if use multi-dimensional labels.
hot_vectors = [
[1.3561076367500755, 1.3116267195134017, 1.6785401875616097],
[1.1039614644440658, 1.8891609992484688, 1.32030488587171],
[1.9924524852447711, 1.9358920727142739, 1.2124401279391606],
[1.4129542689796446, 1.7372166387197474, 1.7317806077076527],
[1.3913371800587777, 1.4684674577930312, 1.5214136352476377]]
labels = [["label_a_1", "label_a_2", "label_a_3", "label_a_4", "label_a_5"],
["label_b_1", "label_b_2", "label_b_3", "label_b_4", "label_b_5"]]
labels_meta = ["label_a", "label_b"]
with LogWriter(logdir="./log/high_dimensional_test/train") as writer:
writer.add_embeddings(tag='default',
labels=labels,
labels_meta=labels_meta,
hot_vectors=hot_vectors)
"""
visualdl/component/base_component.py
浏览文件 @
363a7bf3
...
...
@@ -159,12 +159,12 @@ def image(tag, image_array, step, walltime=None, dataformats="HWC"):
])
def
embedding
(
tag
,
labels
,
hot_vectors
,
step
,
walltime
=
None
):
def
embedding
(
tag
,
labels
,
hot_vectors
,
step
,
labels_meta
=
None
,
walltime
=
None
):
"""Package data to one embedding.
Args:
tag (string): Data identifier
labels (
numpy.array or
list): A list of labels.
labels (list): A list of labels.
hot_vectors (numpy.array or list): A matrix which each row is
feature of labels.
step (int): Step of embeddings.
...
...
@@ -175,9 +175,18 @@ def embedding(tag, labels, hot_vectors, step, walltime=None):
"""
embeddings
=
Record
.
Embeddings
()
for
index
in
range
(
len
(
hot_vectors
)):
embeddings
.
embeddings
.
append
(
Record
.
Embedding
(
label
=
labels
[
index
],
vectors
=
hot_vectors
[
index
]))
if
labels_meta
:
embeddings
.
label_meta
.
extend
(
labels_meta
)
if
isinstance
(
labels
[
0
],
list
):
temp
=
[]
for
index
in
range
(
len
(
labels
[
0
])):
temp
.
append
([
label
[
index
]
for
label
in
labels
])
labels
=
temp
for
label
,
hot_vector
in
zip
(
labels
,
hot_vectors
):
if
not
isinstance
(
label
,
list
):
label
=
[
label
]
embeddings
.
embeddings
.
append
(
Record
.
Embedding
(
label
=
label
,
vectors
=
hot_vector
))
return
Record
(
values
=
[
Record
.
Value
(
...
...
visualdl/proto/record.proto
浏览文件 @
363a7bf3
...
...
@@ -16,12 +16,13 @@ message Record {
}
message
Embedding
{
string
label
=
1
;
repeated
string
label
=
1
;
repeated
float
vectors
=
2
;
}
message
Embeddings
{
repeated
Embedding
embeddings
=
1
;
repeated
string
label_meta
=
2
;
}
message
bytes_embeddings
{
...
...
visualdl/proto/record_pb2.py
浏览文件 @
363a7bf3
...
...
@@ -18,7 +18,7 @@ DESCRIPTOR = _descriptor.FileDescriptor(
package
=
'visualdl'
,
syntax
=
'proto3'
,
serialized_options
=
None
,
serialized_pb
=
b
'
\n\x0c
record.proto
\x12\x08
visualdl
\"\x
b4\x07\n\x06
Record
\x12
&
\n\x06
values
\x18\x01
\x03
(
\x0b\x32\x16
.visualdl.Record.Value
\x1a
%
\n\x05
Image
\x12\x1c\n\x14\x65
ncoded_image_string
\x18\x04
\x01
(
\x0c\x1a
}
\n\x05\x41
udio
\x12\x13\n\x0b
sample_rate
\x18\x01
\x01
(
\x02\x12\x14\n\x0c
num_channels
\x18\x02
\x01
(
\x03\x12\x15\n\r
length_frames
\x18\x03
\x01
(
\x03\x12\x1c\n\x14\x65
ncoded_audio_string
\x18\x04
\x01
(
\x0c\x12\x14\n\x0c\x63
ontent_type
\x18\x05
\x01
(
\t\x1a
+
\n\t
Embedding
\x12\r\n\x05
label
\x18\x01
\x01
(
\t\x12\x0f\n\x07
vectors
\x18\x02
\x03
(
\x02\x1a
<
\n\n
Embeddings
\x12
.
\n\n
embeddings
\x18\x01
\x03
(
\x0b\x32\x1a
.visualdl.Record.Embedding
\x1a\x43\n\x10\x62
ytes_embeddings
\x12\x16\n\x0e\x65
ncoded_labels
\x18\x01
\x01
(
\x0c\x12\x17\n\x0f\x65
ncoded_vectors
\x18\x02
\x01
(
\x0c\x1a\x34\n\t
Histogram
\x12\x10\n\x04
hist
\x18\x01
\x03
(
\x01\x42\x02\x10\x01\x12\x15\n\t
bin_edges
\x18\x02
\x03
(
\x01\x42\x02\x10\x01\x1a
l
\n\x07
PRCurve
\x12\x0e\n\x02
TP
\x18\x01
\x03
(
\x03\x42\x02\x10\x01\x12\x0e\n\x02\x46
P
\x18\x02
\x03
(
\x03\x42\x02\x10\x01\x12\x0e\n\x02
TN
\x18\x03
\x03
(
\x03\x42\x02\x10\x01\x12\x0e\n\x02\x46
N
\x18\x04
\x03
(
\x03\x42\x02\x10\x01\x12\x11\n\t
precision
\x18\x05
\x03
(
\x01\x12\x0e\n\x06
recall
\x18\x06
\x03
(
\x01\x1a
\n\x08
MetaData
\x12\x14\n\x0c\x64
isplay_name
\x18\x01
\x01
(
\t\x1a\xe5\x02\n\x05
Value
\x12\n\n\x02
id
\x18\x01
\x01
(
\x03\x12\x0b\n\x03
tag
\x18\x02
\x01
(
\t\x12\x11\n\t
timestamp
\x18\x03
\x01
(
\x03\x12\x0f\n\x05
value
\x18\x04
\x01
(
\x02
H
\x00\x12\'\n\x05
image
\x18\x05
\x01
(
\x0b\x32\x16
.visualdl.Record.ImageH
\x00\x12\'\n\x05\x61
udio
\x18\x06
\x01
(
\x0b\x32\x16
.visualdl.Record.AudioH
\x00\x12\x31\n\n
embeddings
\x18\x07
\x01
(
\x0b\x32\x1b
.visualdl.Record.EmbeddingsH
\x00\x12
/
\n\t
histogram
\x18\x08
\x01
(
\x0b\x32\x1a
.visualdl.Record.HistogramH
\x00\x12
,
\n\x08
pr_curve
\x18\t
\x01
(
\x0b\x32\x18
.visualdl.Record.PRCurveH
\x00\x12
.
\n\t
meta_data
\x18\n
\x01
(
\x0b\x32\x19
.visualdl.Record.MetaDataH
\x00\x42\x0b\n\t
one_valueb
\x06
proto3'
serialized_pb
=
b
'
\n\x0c
record.proto
\x12\x08
visualdl
\"\x
c8\x07\n\x06
Record
\x12
&
\n\x06
values
\x18\x01
\x03
(
\x0b\x32\x16
.visualdl.Record.Value
\x1a
%
\n\x05
Image
\x12\x1c\n\x14\x65
ncoded_image_string
\x18\x04
\x01
(
\x0c\x1a
}
\n\x05\x41
udio
\x12\x13\n\x0b
sample_rate
\x18\x01
\x01
(
\x02\x12\x14\n\x0c
num_channels
\x18\x02
\x01
(
\x03\x12\x15\n\r
length_frames
\x18\x03
\x01
(
\x03\x12\x1c\n\x14\x65
ncoded_audio_string
\x18\x04
\x01
(
\x0c\x12\x14\n\x0c\x63
ontent_type
\x18\x05
\x01
(
\t\x1a
+
\n\t
Embedding
\x12\r\n\x05
label
\x18\x01
\x03
(
\t\x12\x0f\n\x07
vectors
\x18\x02
\x03
(
\x02\x1a
P
\n\n
Embeddings
\x12
.
\n\n
embeddings
\x18\x01
\x03
(
\x0b\x32\x1a
.visualdl.Record.Embedding
\x12\x12\n\n
label_meta
\x18\x02
\x03
(
\t
\x1a\x43\n\x10\x62
ytes_embeddings
\x12\x16\n\x0e\x65
ncoded_labels
\x18\x01
\x01
(
\x0c\x12\x17\n\x0f\x65
ncoded_vectors
\x18\x02
\x01
(
\x0c\x1a\x34\n\t
Histogram
\x12\x10\n\x04
hist
\x18\x01
\x03
(
\x01\x42\x02\x10\x01\x12\x15\n\t
bin_edges
\x18\x02
\x03
(
\x01\x42\x02\x10\x01\x1a
l
\n\x07
PRCurve
\x12\x0e\n\x02
TP
\x18\x01
\x03
(
\x03\x42\x02\x10\x01\x12\x0e\n\x02\x46
P
\x18\x02
\x03
(
\x03\x42\x02\x10\x01\x12\x0e\n\x02
TN
\x18\x03
\x03
(
\x03\x42\x02\x10\x01\x12\x0e\n\x02\x46
N
\x18\x04
\x03
(
\x03\x42\x02\x10\x01\x12\x11\n\t
precision
\x18\x05
\x03
(
\x01\x12\x0e\n\x06
recall
\x18\x06
\x03
(
\x01\x1a
\n\x08
MetaData
\x12\x14\n\x0c\x64
isplay_name
\x18\x01
\x01
(
\t\x1a\xe5\x02\n\x05
Value
\x12\n\n\x02
id
\x18\x01
\x01
(
\x03\x12\x0b\n\x03
tag
\x18\x02
\x01
(
\t\x12\x11\n\t
timestamp
\x18\x03
\x01
(
\x03\x12\x0f\n\x05
value
\x18\x04
\x01
(
\x02
H
\x00\x12\'\n\x05
image
\x18\x05
\x01
(
\x0b\x32\x16
.visualdl.Record.ImageH
\x00\x12\'\n\x05\x61
udio
\x18\x06
\x01
(
\x0b\x32\x16
.visualdl.Record.AudioH
\x00\x12\x31\n\n
embeddings
\x18\x07
\x01
(
\x0b\x32\x1b
.visualdl.Record.EmbeddingsH
\x00\x12
/
\n\t
histogram
\x18\x08
\x01
(
\x0b\x32\x1a
.visualdl.Record.HistogramH
\x00\x12
,
\n\x08
pr_curve
\x18\t
\x01
(
\x0b\x32\x18
.visualdl.Record.PRCurveH
\x00\x12
.
\n\t
meta_data
\x18\n
\x01
(
\x0b\x32\x19
.visualdl.Record.MetaDataH
\x00\x42\x0b\n\t
one_valueb
\x06
proto3'
)
...
...
@@ -121,8 +121,8 @@ _RECORD_EMBEDDING = _descriptor.Descriptor(
fields
=
[
_descriptor
.
FieldDescriptor
(
name
=
'label'
,
full_name
=
'visualdl.Record.Embedding.label'
,
index
=
0
,
number
=
1
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
b
""
.
decode
(
'utf-8'
)
,
number
=
1
,
type
=
9
,
cpp_type
=
9
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[]
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
...
...
@@ -163,6 +163,13 @@ _RECORD_EMBEDDINGS = _descriptor.Descriptor(
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
_descriptor
.
FieldDescriptor
(
name
=
'label_meta'
,
full_name
=
'visualdl.Record.Embeddings.label_meta'
,
index
=
1
,
number
=
2
,
type
=
9
,
cpp_type
=
9
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
serialized_options
=
None
,
file
=
DESCRIPTOR
),
],
extensions
=
[
],
...
...
@@ -176,7 +183,7 @@ _RECORD_EMBEDDINGS = _descriptor.Descriptor(
oneofs
=
[
],
serialized_start
=
288
,
serialized_end
=
3
4
8
,
serialized_end
=
3
6
8
,
)
_RECORD_BYTES_EMBEDDINGS
=
_descriptor
.
Descriptor
(
...
...
@@ -212,8 +219,8 @@ _RECORD_BYTES_EMBEDDINGS = _descriptor.Descriptor(
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
3
5
0
,
serialized_end
=
4
1
7
,
serialized_start
=
3
7
0
,
serialized_end
=
4
3
7
,
)
_RECORD_HISTOGRAM
=
_descriptor
.
Descriptor
(
...
...
@@ -249,8 +256,8 @@ _RECORD_HISTOGRAM = _descriptor.Descriptor(
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
4
1
9
,
serialized_end
=
4
7
1
,
serialized_start
=
4
3
9
,
serialized_end
=
4
9
1
,
)
_RECORD_PRCURVE
=
_descriptor
.
Descriptor
(
...
...
@@ -314,8 +321,8 @@ _RECORD_PRCURVE = _descriptor.Descriptor(
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
4
7
3
,
serialized_end
=
58
1
,
serialized_start
=
4
9
3
,
serialized_end
=
60
1
,
)
_RECORD_METADATA
=
_descriptor
.
Descriptor
(
...
...
@@ -344,8 +351,8 @@ _RECORD_METADATA = _descriptor.Descriptor(
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
58
3
,
serialized_end
=
6
1
5
,
serialized_start
=
60
3
,
serialized_end
=
6
3
5
,
)
_RECORD_VALUE
=
_descriptor
.
Descriptor
(
...
...
@@ -440,8 +447,8 @@ _RECORD_VALUE = _descriptor.Descriptor(
name
=
'one_value'
,
full_name
=
'visualdl.Record.Value.one_value'
,
index
=
0
,
containing_type
=
None
,
fields
=
[]),
],
serialized_start
=
6
1
8
,
serialized_end
=
9
7
5
,
serialized_start
=
6
3
8
,
serialized_end
=
9
9
5
,
)
_RECORD
=
_descriptor
.
Descriptor
(
...
...
@@ -471,7 +478,7 @@ _RECORD = _descriptor.Descriptor(
oneofs
=
[
],
serialized_start
=
27
,
serialized_end
=
9
7
5
,
serialized_end
=
9
9
5
,
)
_RECORD_IMAGE
.
containing_type
=
_RECORD
...
...
visualdl/server/lib.py
浏览文件 @
363a7bf3
...
...
@@ -226,7 +226,11 @@ def get_embedding_labels(log_reader, name):
run
,
decode_tag
(
tag
))
labels
=
[]
for
item
in
records
[
0
].
embeddings
.
embeddings
:
labels
.
append
([
item
.
label
])
labels
.
append
(
item
.
label
)
label_meta
=
records
[
0
].
embeddings
.
label_meta
if
label_meta
:
labels
=
[
label_meta
]
+
labels
with
io
.
StringIO
()
as
fp
:
csv_writer
=
csv
.
writer
(
fp
,
delimiter
=
'
\t
'
)
...
...
visualdl/writer/writer.py
浏览文件 @
363a7bf3
...
...
@@ -188,17 +188,18 @@ class LogWriter(object):
image
(
tag
=
tag
,
image_array
=
img
,
step
=
step
,
walltime
=
walltime
,
dataformats
=
dataformats
))
def
add_embeddings
(
self
,
tag
,
labels
,
hot_vectors
,
walltime
=
None
):
def
add_embeddings
(
self
,
tag
,
labels
,
hot_vectors
,
labels_meta
=
None
,
walltime
=
None
):
"""Add embeddings to vdl record file.
Args:
tag (string): Data identifier
labels (numpy.array or list): A
list of labels.
labels (numpy.array or list): A
1D or 2D matrix of labels
hot_vectors (numpy.array or list): A matrix which each row is
feature of labels.
labels_meta (numpy.array or list): Meta data of labels.
walltime (int): Wall time of embeddings.
Example:
Example
1
:
hot_vectors = [
[1.3561076367500755, 1.3116267195134017, 1.6785401875616097],
[1.1039614644440658, 1.8891609992484688, 1.32030488587171],
...
...
@@ -207,9 +208,32 @@ class LogWriter(object):
[1.3913371800587777, 1.4684674577930312, 1.5214136352476377]]
labels = ["label_1", "label_2", "label_3", "label_4", "label_5"]
# or like this
# labels = [["label_1", "label_2", "label_3", "label_4", "label_5"]]
writer.add_embeddings(tag='default',
labels=labels,
vectors=hot_vectors,
walltime=round(time.time() * 1000))
writer.add_embedding(labels=labels, vectors=hot_vectors,
walltime=round(time.time() * 1000))
Example 2:
hot_vectors = [
[1.3561076367500755, 1.3116267195134017, 1.6785401875616097],
[1.1039614644440658, 1.8891609992484688, 1.32030488587171],
[1.9924524852447711, 1.9358920727142739, 1.2124401279391606],
[1.4129542689796446, 1.7372166387197474, 1.7317806077076527],
[1.3913371800587777, 1.4684674577930312, 1.5214136352476377]]
labels = [["label_a_1", "label_a_2", "label_a_3", "label_a_4", "label_a_5"],
["label_b_1", "label_b_2", "label_b_3", "label_b_4", "label_b_5"]]
labels_meta = ["label_a", "label_2"]
writer.add_embeddings(tag='default',
labels=labels,
labels_meta=labels_meta,
vectors=hot_vectors,
walltime=round(time.time() * 1000))
"""
if
'%'
in
tag
:
raise
RuntimeError
(
"% can't appear in tag!"
)
...
...
@@ -217,12 +241,17 @@ class LogWriter(object):
hot_vectors
=
hot_vectors
.
tolist
()
if
isinstance
(
labels
,
np
.
ndarray
):
labels
=
labels
.
tolist
()
if
isinstance
(
labels
[
0
],
list
)
and
not
labels_meta
:
labels_meta
=
[
"label_%d"
%
i
for
i
in
range
(
len
(
labels
))]
step
=
0
walltime
=
round
(
time
.
time
()
*
1000
)
if
walltime
is
None
else
walltime
self
.
_get_file_writer
().
add_record
(
embedding
(
tag
=
tag
,
labels
=
labels
,
labels_meta
=
labels_meta
,
hot_vectors
=
hot_vectors
,
step
=
step
,
walltime
=
walltime
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录