base_component.py 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 VisualDL Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =======================================================================
P
Peter Pan 已提交
15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
from visualdl.proto.record_pb2 import Record
import numpy as np
from PIL import Image


def scalar(tag, value, step, walltime=None):
    """Package data to one scalar.

    Args:
        tag (string): Data identifier
        value (float): Value of scalar
        step (int): Step of scalar
        walltime (int): Wall time of scalar

    Return:
        Package with format of record_pb2.Record
    """
    value = float(value)
    return Record(values=[
        Record.Value(id=step, tag=tag, timestamp=walltime, value=value)
    ])


走神的阿圆's avatar
走神的阿圆 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
def meta_data(tag='meta_data_tag', display_name="", step=0, walltime=None):
    """Package data to one meta_data.

    Meta data is info for one record file, include `display_name` etc.

    Args:
        tag (string): Data identifier
        display_name (string): Replace
        step (int): Step of scalar
        walltime (int): Wall time of scalar

    Return:
        Package with format of record_pb2.Record
    """
    meta = Record.MetaData(display_name=display_name)
    return Record(values=[
        Record.Value(id=step, tag=tag, timestamp=walltime,
                     meta_data=meta)
    ])


60 61 62 63
def imgarray2bytes(np_array):
    """Convert image ndarray to bytes.

    Args:
64
        np_array (np.ndarray): Array to converte.
65 66 67 68

    Returns:
        Binary bytes of np_array.
    """
69 70 71 72 73 74 75 76 77 78 79 80
    try:
        import cv2

        np_array = cv2.cvtColor(np_array, cv2.COLOR_BGR2RGB)
        ret, buf = cv2.imencode(".png", np_array)
        img_bin = Image.fromarray(np.uint8(buf)).tobytes("raw")
    except ImportError:
        import io
        im = Image.fromarray(np_array)
        with io.BytesIO() as fp:
            im.save(fp, format='png')
            img_bin = fp.getvalue()
81 82 83
    return img_bin


P
Peter Pan 已提交
84
def make_grid(I, ncols=8):  # noqa: E741
走神的阿圆's avatar
走神的阿圆 已提交
85 86 87
    assert isinstance(
        I, np.ndarray), 'plugin error, should pass numpy array here'
    if I.shape[1] == 1:
P
Peter Pan 已提交
88
        I = np.concatenate([I, I, I], 1)  # noqa: E741
走神的阿圆's avatar
走神的阿圆 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    assert I.ndim == 4 and I.shape[1] == 3 or I.shape[1] == 4
    nimg = I.shape[0]
    H = I.shape[2]
    W = I.shape[3]
    ncols = min(nimg, ncols)
    nrows = int(np.ceil(float(nimg) / ncols))
    canvas = np.zeros((I.shape[1], H * nrows, W * ncols), dtype=I.dtype)
    i = 0
    for y in range(nrows):
        for x in range(ncols):
            if i >= nimg:
                break
            canvas[:, y * H:(y + 1) * H, x * W:(x + 1) * W] = I[i]
            i = i + 1
    return canvas


def convert_to_HWC(tensor, input_format):
    """Convert `NCHW`, `HWC`, `HW` to `HWC`

    Args:
110
        tensor (np.ndarray): Value of image
走神的阿圆's avatar
走神的阿圆 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        input_format (string): Format of image

    Return:
        Image of format `HWC`.
    """
    assert(len(set(input_format)) == len(input_format)), "You can not use the same dimension shordhand twice. \
        input_format: {}".format(input_format)
    assert(len(tensor.shape) == len(input_format)), "size of input tensor and input format are different. \
        tensor shape: {}, input_format: {}".format(tensor.shape, input_format)
    input_format = input_format.upper()

    if len(input_format) == 4:
        index = [input_format.find(c) for c in 'NCHW']
        tensor_NCHW = tensor.transpose(index)
        tensor_CHW = make_grid(tensor_NCHW)
        return tensor_CHW.transpose(1, 2, 0)

    if len(input_format) == 3:
        index = [input_format.find(c) for c in 'HWC']
        tensor_HWC = tensor.transpose(index)
        if tensor_HWC.shape[2] == 1:
            tensor_HWC = np.concatenate([tensor_HWC, tensor_HWC, tensor_HWC], 2)
        return tensor_HWC

    if len(input_format) == 2:
        index = [input_format.find(c) for c in 'HW']
        tensor = tensor.transpose(index)
        tensor = np.stack([tensor, tensor, tensor], 2)
        return tensor


142 143 144 145 146 147 148 149 150 151 152 153 154 155
def denormalization(image_array):
    """Renormalise ndarray matrix.

    Args:
        image_array(np.ndarray): Value of image

    Return:
        Matrix after renormalising.
    """
    if image_array.max() <= 1 and image_array.min() >= 0:
        image_array *= 255
    return image_array.astype(np.uint8)


走神的阿圆's avatar
走神的阿圆 已提交
156
def image(tag, image_array, step, walltime=None, dataformats="HWC"):
157 158 159 160
    """Package data to one image.

    Args:
        tag (string): Data identifier
161
        image_array (np.ndarray): Value of image
162 163
        step (int): Step of image
        walltime (int): Wall time of image
164
        dataformats (string): Format of image
165 166 167 168

    Return:
        Package with format of record_pb2.Record
    """
169
    image_array = denormalization(image_array)
走神的阿圆's avatar
走神的阿圆 已提交
170
    image_array = convert_to_HWC(image_array, dataformats)
171 172 173 174 175 176 177
    image_bytes = imgarray2bytes(image_array)
    image = Record.Image(encoded_image_string=image_bytes)
    return Record(values=[
        Record.Value(id=step, tag=tag, timestamp=walltime, image=image)
    ])


178
def embedding(tag, labels, hot_vectors, step, labels_meta=None, walltime=None):
179 180 181 182
    """Package data to one embedding.

    Args:
        tag (string): Data identifier
183
        labels (list): A list of labels.
184
        hot_vectors (np.array or list): A matrix which each row is
185 186 187 188 189 190 191 192 193
            feature of labels.
        step (int): Step of embeddings.
        walltime (int): Wall time of embeddings.

    Return:
        Package with format of record_pb2.Record
    """
    embeddings = Record.Embeddings()

194 195 196 197 198 199 200 201 202 203 204 205
    if labels_meta:
        embeddings.label_meta.extend(labels_meta)

    if isinstance(labels[0], list):
        temp = []
        for index in range(len(labels[0])):
            temp.append([label[index] for label in labels])
        labels = temp
    for label, hot_vector in zip(labels, hot_vectors):
        if not isinstance(label, list):
            label = [label]
        embeddings.embeddings.append(Record.Embedding(label=label, vectors=hot_vector))
206 207 208 209 210 211 212 213 214 215 216 217

    return Record(values=[
        Record.Value(
            id=step, tag=tag, timestamp=walltime, embeddings=embeddings)
    ])


def audio(tag, audio_array, sample_rate, step, walltime):
    """Package data to one audio.

    Args:
        tag (string): Data identifier
218
        audio_array (np.ndarray or list): audio represented by a np.array
219 220 221 222 223 224 225
        sample_rate (int): Sample rate of audio
        step (int): Step of audio
        walltime (int): Wall time of audio

    Return:
        Package with format of record_pb2.Record
    """
走神的阿圆's avatar
走神的阿圆 已提交
226 227 228 229 230 231 232 233
    audio_array = audio_array.squeeze()
    if abs(audio_array).max() > 1:
        print('warning: audio amplitude out of range, auto clipped.')
        audio_array = audio_array.clip(-1, 1)
    assert (audio_array.ndim == 1), 'input tensor should be 1 dimensional.'

    audio_array = [int(32767.0 * x) for x in audio_array]

234 235
    import io
    import wave
走神的阿圆's avatar
走神的阿圆 已提交
236
    import struct
237 238 239 240 241 242

    fio = io.BytesIO()
    wave_writer = wave.open(fio, 'wb')
    wave_writer.setnchannels(1)
    wave_writer.setsampwidth(2)
    wave_writer.setframerate(sample_rate)
走神的阿圆's avatar
走神的阿圆 已提交
243 244 245
    audio_enc = b''
    audio_enc += struct.pack("<" + "h" * len(audio_array), *audio_array)
    wave_writer.writeframes(audio_enc)
246 247 248 249 250 251 252 253 254 255 256 257
    wave_writer.close()
    audio_string = fio.getvalue()
    fio.close()
    audio_data = Record.Audio(
        sample_rate=sample_rate,
        num_channels=1,
        length_frames=len(audio_array),
        encoded_audio_string=audio_string,
        content_type='audio/wav')
    return Record(values=[
        Record.Value(id=step, tag=tag, timestamp=walltime, audio=audio_data)
    ])
258 259


走神的阿圆's avatar
走神的阿圆 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
def text(tag, text_string, step, walltime=None):
    """Package data to one image.
    Args:
        tag (string): Data identifier
        text_string (string): Value of text
        step (int): Step of text
        walltime (int): Wall time of text
    Return:
        Package with format of record_pb2.Record
    """
    _text = Record.Text(encoded_text_string=text_string)
    return Record(values=[
        Record.Value(id=step, tag=tag, timestamp=walltime, text=_text)
    ])


276
def histogram(tag, hist, bin_edges, step, walltime):
走神的阿圆's avatar
走神的阿圆 已提交
277 278 279 280
    """Package data to one histogram.

    Args:
        tag (string): Data identifier
281 282
        hist (np.ndarray or list): The values of the histogram
        bin_edges (np.ndarray or list): The bin edges
走神的阿圆's avatar
走神的阿圆 已提交
283 284 285 286 287 288
        step (int): Step of histogram
        walltime (int): Wall time of histogram

    Return:
        Package with format of record_pb2.Record
    """
289 290 291 292 293
    histogram = Record.Histogram(hist=hist, bin_edges=bin_edges)
    return Record(values=[
        Record.Value(
            id=step, tag=tag, timestamp=walltime, histogram=histogram)
    ])
走神的阿圆's avatar
走神的阿圆 已提交
294 295 296 297 298 299


def compute_curve(labels, predictions, num_thresholds=None, weights=None):
    """ Compute precision-recall curve data by labels and predictions.

    Args:
300 301
        labels (np.ndarray or list): Binary labels for each element.
        predictions (np.ndarray or list): The probability that an element be
走神的阿圆's avatar
走神的阿圆 已提交
302 303 304 305
            classified as true.
        num_thresholds (int): Number of thresholds used to draw the curve.
        weights (float): Multiple of data to display on the curve.
    """
306 307 308 309
    if isinstance(labels, list):
        labels = np.array(labels)
    if isinstance(predictions, list):
        predictions = np.array(predictions)
走神的阿圆's avatar
走神的阿圆 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    _MINIMUM_COUNT = 1e-7

    if weights is None:
        weights = 1.0

    bucket_indices = np.int32(np.floor(predictions * (num_thresholds - 1)))
    float_labels = labels.astype(np.float)
    histogram_range = (0, num_thresholds - 1)
    tp_buckets, _ = np.histogram(
        bucket_indices,
        bins=num_thresholds,
        range=histogram_range,
        weights=float_labels * weights)
    fp_buckets, _ = np.histogram(
        bucket_indices,
        bins=num_thresholds,
        range=histogram_range,
        weights=(1.0 - float_labels) * weights)

    # Obtain the reverse cumulative sum.
    tp = np.cumsum(tp_buckets[::-1])[::-1]
    fp = np.cumsum(fp_buckets[::-1])[::-1]
    tn = fp[0] - fp
    fn = tp[0] - tp
    precision = tp / np.maximum(_MINIMUM_COUNT, tp + fp)
    recall = tp / np.maximum(_MINIMUM_COUNT, tp + fn)
    data = {
        'tp': tp.astype(int).tolist(),
        'fp': fp.astype(int).tolist(),
        'tn': tn.astype(int).tolist(),
        'fn': fn.astype(int).tolist(),
        'precision': precision.astype(float).tolist(),
        'recall': recall.astype(float).tolist()
    }
    return data


def pr_curve(tag, labels, predictions, step, walltime, num_thresholds=127,
             weights=None):
    """Package data to one pr_curve.

    Args:
        tag (string): Data identifier
353 354
        labels (np.ndarray or list): Binary labels for each element.
        predictions (np.ndarray or list): The probability that an element be
走神的阿圆's avatar
走神的阿圆 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
            classified as true.
        step (int): Step of pr_curve
        walltime (int): Wall time of pr_curve
        num_thresholds (int): Number of thresholds used to draw the curve.
        weights (float): Multiple of data to display on the curve.

    Return:
        Package with format of record_pb2.Record
    """
    num_thresholds = min(num_thresholds, 127)
    prcurve_map = compute_curve(labels, predictions, num_thresholds, weights)

    return pr_curve_raw(tag=tag,
                        tp=prcurve_map['tp'],
                        fp=prcurve_map['fp'],
                        tn=prcurve_map['tn'],
                        fn=prcurve_map['fn'],
                        precision=prcurve_map['precision'],
                        recall=prcurve_map['recall'],
                        step=step,
                        walltime=walltime)


def pr_curve_raw(tag, tp, fp, tn, fn, precision, recall, step, walltime):
    """Package raw data to one pr_curve.

    Args:
        tag (string): Data identifier
        tp (list): True Positive.
        fp (list): False Positive.
        tn (list): True Negative.
        fn (list): False Negative.
        precision (list): The fraction of retrieved documents that are relevant
            to the query:
        recall (list): The fraction of the relevant documents that are
            successfully retrieved.
        step (int): Step of pr_curve
        walltime (int): Wall time of pr_curve
        num_thresholds (int): Number of thresholds used to draw the curve.
        weights (float): Multiple of data to display on the curve.

    Return:
        Package with format of record_pb2.Record
    """

    """
    if isinstance(tp, np.ndarray):
        tp = tp.astype(int).tolist()
    if isinstance(fp, np.ndarray):
        fp = fp.astype(int).tolist()
    if isinstance(tn, np.ndarray):
        tn = tn.astype(int).tolist()
    if isinstance(fn, np.ndarray):
        fn = fn.astype(int).tolist()
    if isinstance(precision, np.ndarray):
        precision = precision.astype(int).tolist()
    if isinstance(recall, np.ndarray):
        recall = recall.astype(int).tolist()
    """
    prcurve = Record.PRCurve(TP=tp,
                             FP=fp,
                             TN=tn,
                             FN=fn,
                             precision=precision,
                             recall=recall)
    return Record(values=[
        Record.Value(
            id=step, tag=tag, timestamp=walltime, pr_curve=prcurve)
    ])
P
Peter Pan 已提交
424 425


P
Peter Pan 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
def compute_roc_curve(labels, predictions, num_thresholds=None, weights=None):
    """ Compute ROC curve data by labels and predictions.
    Args:
        labels (numpy.ndarray or list): Binary labels for each element.
        predictions (numpy.ndarray or list): The probability that an element be
            classified as true.
        num_thresholds (int): Number of thresholds used to draw the curve.
        weights (float): Multiple of data to display on the curve.
    """
    if isinstance(labels, list):
        labels = np.array(labels)
    if isinstance(predictions, list):
        predictions = np.array(predictions)
    _MINIMUM_COUNT = 1e-7

    if weights is None:
        weights = 1.0

    bucket_indices = np.int32(np.floor(predictions * (num_thresholds - 1)))
    float_labels = labels.astype(np.float)
    histogram_range = (0, num_thresholds - 1)
    tp_buckets, _ = np.histogram(
        bucket_indices,
        bins=num_thresholds,
        range=histogram_range,
        weights=float_labels * weights)
    fp_buckets, _ = np.histogram(
        bucket_indices,
        bins=num_thresholds,
        range=histogram_range,
        weights=(1.0 - float_labels) * weights)

    # Obtain the reverse cumulative sum.
    tp = np.cumsum(tp_buckets[::-1])[::-1]
    fp = np.cumsum(fp_buckets[::-1])[::-1]
    tn = fp[0] - fp
    fn = tp[0] - tp
    tpr = tp / np.maximum(_MINIMUM_COUNT, tn + fp)
    fpr = fp / np.maximum(_MINIMUM_COUNT, tn + fp)
    data = {
        'tp': tp.astype(int).tolist(),
        'fp': fp.astype(int).tolist(),
        'tn': tn.astype(int).tolist(),
        'fn': fn.astype(int).tolist(),
        'tpr': tpr.astype(float).tolist(),
        'fpr': fpr.astype(float).tolist()
    }
    return data


P
Peter Pan 已提交
476
def roc_curve(tag, labels, predictions, step, walltime, num_thresholds=127, weights=None):
P
Peter Pan 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
    """Package data to one roc_curve.
    Args:
        tag (string): Data identifier
        labels (numpy.ndarray or list): Binary labels for each element.
        predictions (numpy.ndarray or list): The probability that an element be
            classified as true.
        step (int): Step of pr_curve
        walltime (int): Wall time of pr_curve
        num_thresholds (int): Number of thresholds used to draw the curve.
        weights (float): Multiple of data to display on the curve.
    Return:
        Package with format of record_pb2.Record
    """
    num_thresholds = min(num_thresholds, 127)
    roc_curve_map = compute_roc_curve(labels, predictions, num_thresholds, weights)

    return roc_curve_raw(tag=tag,
P
Peter Pan 已提交
494 495 496 497 498 499 500 501
                         tp=roc_curve_map['tp'],
                         fp=roc_curve_map['fp'],
                         tn=roc_curve_map['tn'],
                         fn=roc_curve_map['fn'],
                         tpr=roc_curve_map['tpr'],
                         fpr=roc_curve_map['fpr'],
                         step=step,
                         walltime=walltime)
P
Peter Pan 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536


def roc_curve_raw(tag, tp, fp, tn, fn, tpr, fpr, step, walltime):
    """Package raw data to one roc_curve.
    Args:
        tag (string): Data identifier
        tp (list): True Positive.
        fp (list): False Positive.
        tn (list): True Negative.
        fn (list): False Negative.
        tpr (list): true positive rate:
        fpr (list): false positive rate.
        step (int): Step of roc_curve
        walltime (int): Wall time of roc_curve
        num_thresholds (int): Number of thresholds used to draw the curve.
        weights (float): Multiple of data to display on the curve.
    Return:
        Package with format of record_pb2.Record
    """

    """
    if isinstance(tp, np.ndarray):
        tp = tp.astype(int).tolist()
    if isinstance(fp, np.ndarray):
        fp = fp.astype(int).tolist()
    if isinstance(tn, np.ndarray):
        tn = tn.astype(int).tolist()
    if isinstance(fn, np.ndarray):
        fn = fn.astype(int).tolist()
    if isinstance(tpr, np.ndarray):
        tpr = tpr.astype(int).tolist()
    if isinstance(fpr, np.ndarray):
        fpr = fpr.astype(int).tolist()
    """
    roc_curve = Record.ROC_Curve(TP=tp,
P
Peter Pan 已提交
537 538 539 540 541
                                 FP=fp,
                                 TN=tn,
                                 FN=fn,
                                 tpr=tpr,
                                 fpr=fpr)
P
Peter Pan 已提交
542 543 544 545
    return Record(values=[
        Record.Value(
            id=step, tag=tag, timestamp=walltime, roc_curve=roc_curve)
    ])