lib.py 8.2 KB
Newer Older
J
Jeff Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2017 VisualDL Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =======================================================================

O
Oraoto 已提交
16
from __future__ import absolute_import
Y
Yan Chunwei 已提交
17
import sys
18
import time
S
superjom 已提交
19
import numpy as np
20
from visualdl.server.log import logger
走神的阿圆's avatar
走神的阿圆 已提交
21
from visualdl.io import bfile
22
from visualdl.utils.string_util import encode_tag, decode_tag
23

S
superjom 已提交
24

25
def get_components(log_reader):
26 27 28
    components = log_reader.components(update=True)
    components.add('graph')
    return list(components)
S
superjom 已提交
29

S
superjom 已提交
30

31
def get_runs(log_reader):
走神的阿圆's avatar
走神的阿圆 已提交
32 33 34 35 36 37 38
    runs = []
    for item in log_reader.runs():
        if item in log_reader.tags2name:
            runs.append(log_reader.tags2name[item])
        else:
            runs.append(item)
    return runs
39 40


41 42
def get_tags(log_reader):
    return log_reader.tags()
S
superjom 已提交
43 44


45 46 47 48 49 50 51 52 53
def get_logs(log_reader, component):
    all_tag = log_reader.data_manager.get_reservoir(component).keys
    tags = {}
    for item in all_tag:
        index = item.rfind('/')
        run = item[0:index]
        tag = encode_tag(item[index + 1:])
        if run in tags.keys():
            tags[run].append(tag)
54
        else:
55
            tags[run] = [tag]
走神的阿圆's avatar
走神的阿圆 已提交
56 57 58 59 60 61 62 63 64
    fake_tags = {}
    for key, value in tags.items():

        if key in log_reader.tags2name:
            fake_tags[log_reader.tags2name[key]] = value
        else:
            fake_tags[key] = value

    return fake_tags
65 66


67 68
def get_scalar_tags(log_reader):
    return get_logs(log_reader, "scalar")
69 70


71
def get_scalar(log_reader, run, tag):
走神的阿圆's avatar
走神的阿圆 已提交
72
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
73 74 75 76 77
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("scalar").get_items(
        run, decode_tag(tag))
    results = [[item.timestamp, item.id, item.value] for item in records]
    return results
78 79


80 81
def get_image_tags(log_reader):
    return get_logs(log_reader, "image")
82 83


84
def get_image_tag_steps(log_reader, run, tag):
走神的阿圆's avatar
走神的阿圆 已提交
85
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
86 87 88 89 90 91 92 93
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("image").get_items(
        run, decode_tag(tag))
    result = [{
        "step": item.id,
        "wallTime": item.timestamp
    } for item in records]
    return result
94 95


96
def get_individual_image(log_reader, run, tag, step_index):
走神的阿圆's avatar
走神的阿圆 已提交
97
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
98 99 100 101
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("image").get_items(
        run, decode_tag(tag))
    return records[step_index].image.encoded_image_string
102 103


104 105
def get_audio_tags(log_reader):
    return get_logs(log_reader, "audio")
106 107


108
def get_audio_tag_steps(log_reader, run, tag):
走神的阿圆's avatar
走神的阿圆 已提交
109
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
110 111 112 113 114 115 116 117
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("audio").get_items(
        run, decode_tag(tag))
    result = [{
        "step": item.id,
        "wallTime": item.timestamp
    } for item in records]
    return result
118 119


120
def get_individual_audio(log_reader, run, tag, step_index):
走神的阿圆's avatar
走神的阿圆 已提交
121
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
122 123 124
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("audio").get_items(
        run, decode_tag(tag))
P
Peter Pan 已提交
125
    result = records[step_index].audio.encoded_audio_string
126
    return result
127 128


129 130 131 132
def get_embeddings_tags(log_reader):
    return get_logs(log_reader, "embeddings")


133 134 135 136
def get_histogram_tags(log_reader):
    return get_logs(log_reader, "histogram")


走神的阿圆's avatar
走神的阿圆 已提交
137 138 139 140 141
def get_pr_curve_tags(log_reader):
    return get_logs(log_reader, "pr_curve")


def get_pr_curve(log_reader, run, tag):
走神的阿圆's avatar
走神的阿圆 已提交
142
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
走神的阿圆's avatar
走神的阿圆 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("pr_curve").get_items(
        run, decode_tag(tag))
    results = []
    for item in records:
        pr_curve = item.pr_curve
        length = len(pr_curve.precision)
        num_thresholds = [float(v) / length for v in range(1, length + 1)]
        results.append([item.timestamp,
                        item.id,
                        list(pr_curve.precision),
                        list(pr_curve.recall),
                        list(pr_curve.TP),
                        list(pr_curve.FP),
                        list(pr_curve.TN),
                        list(pr_curve.FN),
                        num_thresholds])
    return results


def get_pr_curve_step(log_reader, run, tag=None):
走神的阿圆's avatar
走神的阿圆 已提交
164
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
走神的阿圆's avatar
走神的阿圆 已提交
165 166 167 168 169 170 171 172
    tag = get_pr_curve_tags(log_reader)[run][0] if tag is None else tag
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("pr_curve").get_items(
        run, decode_tag(tag))
    results = [[item.timestamp, item.id] for item in records]
    return results


173
def get_embeddings(log_reader, run, tag, reduction, dimension=2):
走神的阿圆's avatar
走神的阿圆 已提交
174
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
175 176 177
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("embeddings").get_items(
        run, decode_tag(tag))
178

179 180 181 182 183 184
    labels = []
    vectors = []
    for item in records[0].embeddings.embeddings:
        labels.append(item.label)
        vectors.append(item.vectors)
    vectors = np.array(vectors)
185

186 187 188 189
    if reduction == 'tsne':
        import visualdl.server.tsne as tsne
        low_dim_embs = tsne.tsne(
            vectors, dimension, initial_dims=50, perplexity=30.0)
190

191 192
    elif reduction == 'pca':
        low_dim_embs = simple_pca(vectors, dimension)
193

194
    return {"embedding": low_dim_embs.tolist(), "labels": labels}
195 196


197
def get_histogram(log_reader, run, tag):
走神的阿圆's avatar
走神的阿圆 已提交
198
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("histogram").get_items(
        run, decode_tag(tag))

    results = []
    for item in records:
        histogram = item.histogram
        hist = histogram.hist
        bin_edges = histogram.bin_edges
        histogram_data = []
        for index in range(len(hist)):
            histogram_data.append([bin_edges[index], bin_edges[index+1], hist[index]])
        results.append([item.timestamp, item.id, histogram_data])

    return results


216 217 218
def get_graph(log_reader):
    result = b""
    if log_reader.model:
走神的阿圆's avatar
走神的阿圆 已提交
219 220
        with bfile.BFile(log_reader.model, 'rb') as bfp:
            result = bfp.read_file(log_reader.model)
221 222 223
    return result


224 225 226 227 228
def retry(ntimes, function, time2sleep, *args, **kwargs):
    '''
    try to execute `function` `ntimes`, if exception catched, the thread will
    sleep `time2sleep` seconds.
    '''
O
Oraoto 已提交
229
    for i in range(ntimes):
230 231
        try:
            return function(*args, **kwargs)
T
Thuan Nguyen 已提交
232
        except Exception:
Y
Yan Chunwei 已提交
233 234
            error_info = '\n'.join(map(str, sys.exc_info()))
            logger.error("Unexpected error: %s" % error_info)
235
            time.sleep(time2sleep)
236

T
Thuan Nguyen 已提交
237

238 239 240 241 242 243 244 245 246
def cache_get(cache):
    def _handler(key, func, *args, **kwargs):
        data = cache.get(key)
        if data is None:
            logger.warning('update cache %s' % key)
            data = func(*args, **kwargs)
            cache.set(key, data)
            return data
        return data
T
Thuan Nguyen 已提交
247

248
    return _handler
J
Jeff Wang 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271


def simple_pca(x, dimension):
    """
    A simple PCA implementation to do the dimension reduction.
    """

    # Center the data.
    x -= np.mean(x, axis=0)

    # Computing the Covariance Matrix
    cov = np.cov(x, rowvar=False)

    # Get eigenvectors and eigenvalues from the covariance matrix
    eigvals, eigvecs = np.linalg.eig(cov)

    # Sort the eigvals from high to low
    order = np.argsort(eigvals)[::-1]

    # Drop the eigenvectors with low eigenvalues
    eigvecs = eigvecs[:, order[:dimension]]

    return np.dot(x, eigvecs)