未验证 提交 d56ed61e 编写于 作者: 走神的阿圆's avatar 走神的阿圆 提交者: GitHub

Add data manager to accumulate sampling rate. (#594)

Fix backend data transfer perf issues
上级 a9980dcc
......@@ -154,11 +154,12 @@ PYBIND11_MODULE(core, m) {
});
//------------------- components --------------------
#define ADD_SCALAR_READER(T) \
py::class_<cp::ScalarReader<T>>(m, "ScalarReader__" #T) \
.def("records", &cp::ScalarReader<T>::records) \
.def("timestamps", &cp::ScalarReader<T>::timestamps) \
.def("ids", &cp::ScalarReader<T>::ids) \
#define ADD_SCALAR_READER(T) \
py::class_<cp::ScalarReader<T>>(m, "ScalarReader__" #T) \
.def("records", &cp::ScalarReader<T>::records, py::arg("start_index") = 0) \
.def("timestamps", &cp::ScalarReader<T>::timestamps, py::arg("start_index") = 0) \
.def("ids", &cp::ScalarReader<T>::ids, py::arg("start_index") = 0) \
.def("size", &cp::ScalarReader<T>::size) \
.def("caption", &cp::ScalarReader<T>::caption);
ADD_SCALAR_READER(int);
ADD_SCALAR_READER(float);
......@@ -390,9 +391,11 @@ PYBIND11_MODULE(core, m) {
ADD_FULL_TYPE_IMPL(ADD_HISTOGRAM_RECORD)
#undef ADD_HISTOGRAM_RECORD
#define ADD_HISTOGRAM_READER(T) \
py::class_<cp::HistogramReader<T>>(m, "HistogramReader__" #T) \
.def("num_records", &cp::HistogramReader<T>::num_records) \
#define ADD_HISTOGRAM_READER(T) \
py::class_<cp::HistogramReader<T>>(m, "HistogramReader__" #T) \
.def("num_records", &cp::HistogramReader<T>::num_records) \
.def("records", &cp::HistogramReader<T>::records, py::arg("start_index") = 0) \
.def("size", &cp::HistogramReader<T>::size) \
.def("record", &cp::HistogramReader<T>::record);
ADD_FULL_TYPE_IMPL(ADD_HISTOGRAM_READER)
#undef ADD_HISTOGRAM_READER
......
......@@ -108,27 +108,27 @@ bool LogReader::TagMatchMode(const std::string& tag, const std::string& mode) {
namespace components {
template <typename T>
std::vector<T> ScalarReader<T>::records() const {
std::vector<T> ScalarReader<T>::records(size_t start_index) const {
std::vector<T> res;
for (int i = 0; i < total_records(); i++) {
for (size_t i = start_index; i < total_records(); ++i) {
res.push_back(reader_.record(i).data(0).template Get<T>());
}
return res;
}
template <typename T>
std::vector<int> ScalarReader<T>::ids() const {
std::vector<int> res;
for (int i = 0; i < reader_.total_records(); i++) {
std::vector<int> ScalarReader<T>::ids(size_t start_index) const {
std::vector<int> res;
for (size_t i = start_index; i < reader_.total_records(); ++i) {
res.push_back(reader_.record(i).id());
}
return res;
}
template <typename T>
std::vector<time_t> ScalarReader<T>::timestamps() const {
std::vector<time_t> ScalarReader<T>::timestamps(size_t start_index) const {
std::vector<time_t> res;
for (int i = 0; i < reader_.total_records(); i++) {
for (size_t i = start_index; i < reader_.total_records(); ++i) {
res.push_back(reader_.record(i).timestamp());
}
return res;
......@@ -297,7 +297,7 @@ void Histogram<T>::AddRecord(int step, const std::vector<T>& data) {
}
template <typename T>
HistogramRecord<T> HistogramReader<T>::record(int i) {
HistogramRecord<T> HistogramReader<T>::record(int i) const {
CHECK_LT(i, num_records());
auto r = reader_.record(i);
auto d = r.data(0);
......@@ -313,6 +313,22 @@ HistogramRecord<T> HistogramReader<T>::record(int i) {
return HistogramRecord<T>(timestamp, step, left, right, std::move(frequency));
}
template <typename T>
std::vector<HistogramRecord<T>> HistogramReader<T>::records(size_t start_index) const {
std::vector<HistogramRecord<T>> res;
for (size_t i = start_index; i < reader_.total_records(); ++i) {
res.push_back(record(i));
}
return res;
}
template <typename T>
size_t HistogramReader<T>::size() const {
return reader_.total_records();
}
DECL_BASIC_TYPES_CLASS_IMPL(class, ScalarReader)
DECL_BASIC_TYPES_CLASS_IMPL(struct, Histogram)
DECL_BASIC_TYPES_CLASS_IMPL(struct, HistogramReader)
......
......@@ -122,9 +122,9 @@ template <typename T>
struct ScalarReader {
ScalarReader(TabletReader&& reader) : reader_(reader) {}
std::vector<T> records() const;
std::vector<int> ids() const;
std::vector<time_t> timestamps() const;
std::vector<T> records(size_t start_index = 0) const;
std::vector<int> ids(size_t start_index = 0) const;
std::vector<time_t> timestamps(size_t start_index = 0) const;
std::string caption() const;
size_t total_records() const { return reader_.total_records(); }
size_t size() const;
......@@ -279,9 +279,13 @@ template <typename T>
struct HistogramReader {
HistogramReader(TabletReader tablet) : reader_(tablet) {}
size_t num_records() { return reader_.total_records() - 1; }
size_t num_records() const { return reader_.total_records(); }
std::vector<HistogramRecord<T>> records(size_t start_index = 0) const;
HistogramRecord<T> record(int i);
HistogramRecord<T> record(int i) const;
size_t size() const;
private:
TabletReader reader_;
......
# Copyright (c) 2020 VisualDL Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =======================================================================
from __future__ import absolute_import
import threading
import random
import collections
DEFAULT_PLUGIN_MAXSIZE = {
"scalar": 300,
"image": 10,
"histogram": 100
}
class Reservoir(object):
"""A map-to-arrays dict, with deterministic Reservoir Sampling.
Store each reservoir bucket by key, and each bucket is a list sampling
with reservoir algorithm.
"""
def __init__(self, max_size, seed=0):
"""Creates a new reservoir.
Args:
max_size: The number of values to keep in the reservoir for each tag,
if max_size is zero, all values will be kept in bucket.
seed: The seed to initialize a random.Random().
num_item_index: The index of data to add.
Raises:
ValueError: If max_size is not a nonnegative integer.
"""
if max_size < 0 or max_size != round(max_size):
raise ValueError("Max_size must be nonnegative integer.")
self._max_size = max_size
self._buckets = collections.defaultdict(
lambda : _ReservoirBucket(max_size=self._max_size,
random_instance=random.Random(seed))
)
self._mutex = threading.Lock()
@property
def keys(self):
"""Return all keys in self._buckets.
Returns:
All keys in reservoir buckets.
:return:
"""
with self._mutex:
return list(self._buckets.keys())
def _exist_in_keys(self, key):
"""Determine if key exists.
Args:
key: Key to determine if exists.
Returns:
True if key exists in buckets.keys, otherwise False.
"""
return True if key in self._buckets.keys() else False
def exist_in_keys(self, mode, tag):
"""Determine if mode_tag exists.
For usage habits of VisualDL, actually call self._exist_in_keys()
Args:
mode: Identity of one tablet.
tag: Identity of one record in tablet.
Returns:
True if mode_tag exists in buckets.keys, otherwise False.
"""
key = mode + "_" + tag
return self._exist_in_keys(key)
def _get_num_items_index(self, key):
keys = self.keys
if key not in keys:
raise KeyError("Key %s not in buckets.keys()" % key)
return self._buckets[key].num_items_index
def get_num_items_index(self, mode, tag):
key = mode + "_" + tag
return self._get_num_items_index(key)
def _get_items(self, key):
"""Get items with tag "key"
Args:
key: Key to finding bucket in reservoir buckets.
Returns:
One bucket in reservoir buckets by key.
"""
keys = self.keys
with self._mutex:
if key not in keys:
raise KeyError("Key %s not in buckets.keys()" % key)
return self._buckets[key].items
def get_items(self, mode, tag):
"""Get items with tag 'mode_tag'
For usage habits of VisualDL, actually call self._get_items()
Args:
mode: Identity of one tablet.
tag: Identity of one record in tablet.
Returns:
One bucket in reservoir buckets by mode and tag.
"""
key = mode + "_" + tag
return self._get_items(key)
def _add_item(self, key, item):
"""Add a new item to reservoir buckets with given tag as key.
If bucket with key has not yet reached full size, each item will be
added.
If bucket with key is full, each item will be added with same
probability.
Add new item to buckets will always valid because self._buckets is a
collection.defaultdict.
Args:
key: Tag of one bucket to add new item.
item: New item to add to bucket.
"""
with self._mutex:
self._buckets[key].add_item(item)
def add_item(self, mode, tag, item):
"""Add a new item to reservoir buckets with given tag as key.
For usage habits of VisualDL, actually call self._add_items()
Args:
mode: Identity of one tablet.
tag: Identity of one record in tablet.
item: New item to add to bucket.
"""
key = mode + "_" + tag
self._add_item(key, item)
class _ReservoirBucket(object):
"""Data manager for sampling data, use reservoir sampling.
"""
def __init__(self, max_size, random_instance=None):
"""Create a _ReservoirBucket instance.
Args:
max_size: The maximum size of reservoir bucket. If max_size is
zero, the bucket has unbounded size.
random_instance: The random number generator. If not specified,
default to random.Random(0)
num_item_index: The index of data to add.
Raises:
ValueError: If args max_size is not a nonnegative integer.
"""
if max_size < 0 or max_size != round(max_size):
raise ValueError("Max_size must be nonnegative integer.")
self._max_size = max_size
self._random = random_instance if random_instance is not None else \
random.Random(0)
self._items = []
self._mutex = threading.Lock()
self._num_items_index = 0
def add_item(self, item):
""" Add an item to bucket, replacing an old item with probability.
Use reservoir sampling to add a new item to sampling bucket,
each item in a steam has same probability stay in the bucket.
Args:
item: The item to add to reservoir bucket.
"""
with self._mutex:
if len(self._items) < self._max_size or self._max_size == 0:
self._items.append(item)
else:
r = self._random.randint(0, self._num_items_index)
if r < self._max_size:
self._items.pop(r)
self._items.append(item)
self._num_items_index += 1
@property
def items(self):
"""Get self._items
Returns:
All items.
"""
with self._mutex:
return self._items
@property
def num_items_index(self):
with self._mutex:
return self._num_items_index
class DataManager(object):
"""Data manager for all plugin.
"""
def __init__(self):
"""Create a data manager for all plugin.
All kinds of plugin has own reservoir, stored in a dict with plugin
name as key.
"""
self._scalar_reservoir = Reservoir(max_size=DEFAULT_PLUGIN_MAXSIZE["scalar"])
self._histogram_reservoir = Reservoir(max_size=DEFAULT_PLUGIN_MAXSIZE["histogram"])
self._image_reservoir = Reservoir(max_size=DEFAULT_PLUGIN_MAXSIZE["image"])
self._reservoirs = {"scalar": self._scalar_reservoir,
"histogram": self._histogram_reservoir,
"image": self._image_reservoir}
self._mutex = threading.Lock()
def get_reservoir(self, plugin):
"""Get reservoir by plugin as key.
Args:
plugin: Key to get one reservoir bucket for one specified plugin.
Returns:
Reservoir bucket for plugin.
"""
with self._mutex:
if plugin not in self._reservoirs.keys():
raise KeyError("Key %s not in reservoirs." % plugin)
return self._reservoirs[plugin]
def add_item(self, plugin, mode, tag, item):
"""Add item to one plugin reservoir bucket.
Use 'mode', 'tag' for usage habits of VisualDL.
Args:
plugin: Key to get one reservoir bucket.
mode: Each tablet has different 'mode'.
tag: Tag will be used to generate paths of tablets.
item: The item to add to reservoir bucket.
"""
with self._mutex:
self._reservoirs[plugin].add_item(mode, tag, item)
def get_keys(self):
"""Get all plugin buckets name.
Returns:
All plugin keys.
"""
with self._mutex:
return self._reservoirs.keys()
default_data_manager = DataManager()
if __name__ == '__main__':
d = DataManager()
d.add_item("scalar", "train", "loss", 3)
d.add_item("scalar", "train", "loss", 4)
d.add_item("scalar", "train", "loss", 5)
d.add_item("scalar", "train", "accu", 5)
d.add_item("scalar", "train", "accu", 6)
d.add_item("scalar", "train", "accu", 7)
d.add_item("scalar", "train", "accu", 8)
a = d.get_keys()
print(a)
b = d.get_reservoir("scalar").get_items("train", "loss")
print(b)
c = d.get_reservoir("scalar").get_num_items_index("train", "loss")
print(c)
print("***")
b = d.get_reservoir("scalar").get_items("train", "accu")
print(b)
print(d.get_reservoir("scalar").get_num_items_index("train", "accu"))
d.add_item("scalar", "train", "loss", 3)
d.add_item("scalar", "train", "loss", 4)
d.add_item("scalar", "train", "loss", 5)
c = d.get_reservoir("scalar").get_num_items_index("train", "loss")
print(c)
print(d.get_reservoir("scalar").exist_in_keys("train", "loss"))
print(d.get_reservoir("scalar").exist_in_keys("train", "loss2"))
\ No newline at end of file
......@@ -22,6 +22,7 @@ import numpy as np
from PIL import Image
from .log import logger
import wave
from .data_manager import default_data_manager
try:
from urllib.parse import urlencode
......@@ -48,38 +49,31 @@ def get_scalar_tags(storage):
def get_scalar(storage, mode, tag, num_records=300):
assert num_records > 1
with storage.mode(mode) as reader:
scalar = reader.scalar(tag)
records = scalar.records()
ids = scalar.ids()
timestamps = scalar.timestamps()
data_reservoir = default_data_manager.get_reservoir("scalar")
if not data_reservoir.exist_in_keys(mode=mode, tag=tag):
records = scalar.records()
ids = scalar.ids()
timestamps = scalar.timestamps()
data = list(zip(timestamps, ids, records))
data_size = len(data)
data = list(zip(timestamps, ids, records))
if data_size <= num_records:
return data
for index in range(len(data)):
data_reservoir.add_item(mode=mode, tag=tag, item=data[index])
else:
num_items_index = data_reservoir.get_num_items_index(mode, tag)
if num_items_index != scalar.size():
records = scalar.records(num_items_index)
ids = scalar.ids(num_items_index)
timestamps = scalar.timestamps(num_items_index)
span = float(data_size) / (num_records - 1)
span_offset = 0
data = list(zip(timestamps, ids, records))
data_idx = int(span_offset * span)
sampled_data = []
while data_idx < data_size:
sampled_data.append(data[data_size - data_idx - 1])
span_offset += 1
data_idx = int(span_offset * span)
sampled_data.append(data[0])
res = sampled_data[::-1]
# TODO(Superjomn) some bug here, sometimes there are zero here.
if res[-1] == 0.:
res = res[:-1]
return res
for index in range(len(data)):
data_reservoir.add_item(mode=mode, tag=tag, item=data[index])
return data_reservoir.get_items(mode, tag)
def get_image_tags(storage):
......@@ -111,15 +105,27 @@ def get_image_tag_steps(storage, mode, tag):
image = reader.image(tag)
res = []
for step_index in range(image.num_records()):
record = image.record(step_index, sample_index)
try:
image_num_records = image.num_records()
num_samples = 10
if image_num_records <= num_samples:
for step_index in range(image_num_records):
record = image.record(step_index, sample_index)
res.append({
'step': record.step_id(),
'wallTime': image.timestamp(step_index),
'wallTime': image.timestamp(step_index)
})
else:
span = float(image_num_records) / num_samples
for index in range(num_samples):
step_index = round(span * index)
record = image.record(step_index, sample_index)
res.append({
'step': record.step_id(),
'wallTime': image.timestamp(step_index)
})
except Exception:
logger.error("image sample out of range")
return res
......@@ -291,45 +297,30 @@ def get_embeddings(storage, mode, reduction, dimension=2, num_records=5000):
def get_histogram(storage, mode, tag):
with storage.mode(mode) as reader:
histogram = reader.histogram(tag)
res = []
for i in range(histogram.num_records()):
try:
# some bug with protobuf, some times may overflow
record = histogram.record(i)
except Exception:
continue
res.append([])
py_record = res[-1]
py_record.append(record.timestamp())
py_record.append(record.step())
py_record.append([])
data = py_record[-1]
for j in range(record.num_instances()):
instance = record.instance(j)
data.append(
[instance.left(), instance.right(), instance.frequency()])
# num_samples: We will only return 100 samples.
num_samples = 100
if len(res) < num_samples:
return res
# sample some steps
span = float(len(res)) / (num_samples - 1)
span_offset = 0
data_idx = 0
sampled_data = []
data_size = len(res)
while data_idx < data_size:
sampled_data.append(res[data_size - data_idx - 1])
span_offset += 1
data_idx = int(span_offset * span)
sampled_data.append(res[0])
return sampled_data[::-1]
data_reservoir = default_data_manager.get_reservoir("histogram")
if not data_reservoir.exist_in_keys(mode=mode, tag=tag):
records = histogram.records()
for record in records:
data = []
for j in range(record.num_instances()):
instance = record.instance(j)
data.append(
[instance.left(), instance.right(), instance.frequency()])
data_reservoir.add_item(mode, tag, [record.timestamp(), record.step(), data])
else:
num_items_index = data_reservoir.get_num_items_index(mode, tag)
if num_items_index != histogram.size():
records = histogram.records(num_items_index)
for record in records:
data = []
for j in range(record.num_instances()):
instance = record.instance(j)
data.append(
[instance.left(), instance.right(), instance.frequency()])
data_reservoir.add_item(mode, tag, [record.timestamp(), record.step(), data])
return data_reservoir.get_items(mode, tag)
def retry(ntimes, function, time2sleep, *args, **kwargs):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册