lib.py 11.3 KB
Newer Older
J
Jeff Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2017 VisualDL Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =======================================================================

O
Oraoto 已提交
16
from __future__ import absolute_import
Y
Yan Chunwei 已提交
17
import sys
18
import time
走神的阿圆's avatar
走神的阿圆 已提交
19
import os
走神的阿圆's avatar
走神的阿圆 已提交
20 21
import io
import csv
走神的阿圆's avatar
走神的阿圆 已提交
22
from functools import partial
S
superjom 已提交
23
import numpy as np
24
from visualdl.server.log import logger
走神的阿圆's avatar
走神的阿圆 已提交
25
from visualdl.io import bfile
26
from visualdl.utils.string_util import encode_tag, decode_tag
走神的阿圆's avatar
走神的阿圆 已提交
27
from visualdl.component import components
28

S
superjom 已提交
29

走神的阿圆's avatar
走神的阿圆 已提交
30 31
MODIFY_PREFIX = {}
MODIFIED_RUNS = []
走神的阿圆's avatar
走神的阿圆 已提交
32 33
EMBEDDING_NAME = {}
embedding_names = []
走神的阿圆's avatar
走神的阿圆 已提交
34 35


走神的阿圆's avatar
走神的阿圆 已提交
36 37 38 39
def s2ms(timestamp):
    return timestamp * 1000 if timestamp < 2000000000 else timestamp


40
def get_components(log_reader):
41 42 43
    components = log_reader.components(update=True)
    components.add('graph')
    return list(components)
S
superjom 已提交
44

S
superjom 已提交
45

46
def get_runs(log_reader):
走神的阿圆's avatar
走神的阿圆 已提交
47 48 49 50 51 52 53
    runs = []
    for item in log_reader.runs():
        if item in log_reader.tags2name:
            runs.append(log_reader.tags2name[item])
        else:
            runs.append(item)
    return runs
54 55


56 57
def get_tags(log_reader):
    return log_reader.tags()
S
superjom 已提交
58 59


60 61 62 63 64 65 66 67 68
def get_logs(log_reader, component):
    all_tag = log_reader.data_manager.get_reservoir(component).keys
    tags = {}
    for item in all_tag:
        index = item.rfind('/')
        run = item[0:index]
        tag = encode_tag(item[index + 1:])
        if run in tags.keys():
            tags[run].append(tag)
69
        else:
70
            tags[run] = [tag]
走神的阿圆's avatar
走神的阿圆 已提交
71 72 73
        if run not in log_reader.tags2name.keys():
            log_reader.tags2name[run] = run
            log_reader.name2tags[run] = run
走神的阿圆's avatar
走神的阿圆 已提交
74 75 76 77 78 79 80
    fake_tags = {}
    for key, value in tags.items():
        if key in log_reader.tags2name:
            fake_tags[log_reader.tags2name[key]] = value
        else:
            fake_tags[key] = value

走神的阿圆's avatar
走神的阿圆 已提交
81 82 83 84 85
    run2tag = {'runs': [], 'tags': []}
    for run, tags in fake_tags.items():
        run2tag['runs'].append(run)
        run2tag['tags'].append(tags)

走神的阿圆's avatar
走神的阿圆 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    run_prefix = os.getenv('VISUALDL_RUN_PREFIX')
    global MODIFY_PREFIX, MODIFIED_RUNS
    if component not in MODIFY_PREFIX:
        MODIFY_PREFIX.update({component: False})
    if run_prefix and not MODIFY_PREFIX[component]:
        MODIFY_PREFIX[component] = True
        temp_name2tags = log_reader.name2tags.copy()
        for key, value in temp_name2tags.items():
            if key in MODIFIED_RUNS:
                continue
            index = key.find(run_prefix)
            if index != -1:
                temp_key = key[index+len(run_prefix):]

                log_reader.name2tags.pop(key)
                log_reader.name2tags.update({temp_key: value})

                log_reader.tags2name.pop(value)
                log_reader.tags2name.update({value: temp_key})

                run2tag['runs'][run2tag['runs'].index(key)] = temp_key
            else:
                temp_key = key

            MODIFIED_RUNS.append(temp_key)

走神的阿圆's avatar
走神的阿圆 已提交
112
    return run2tag
113 114


走神的阿圆's avatar
走神的阿圆 已提交
115 116
for name in components.keys():
    exec("get_%s_tags=partial(get_logs, component='%s')" % (name, name))
117 118


119
def get_scalar(log_reader, run, tag):
走神的阿圆's avatar
走神的阿圆 已提交
120
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
121 122 123
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("scalar").get_items(
        run, decode_tag(tag))
走神的阿圆's avatar
走神的阿圆 已提交
124
    results = [[s2ms(item.timestamp), item.id, item.value] for item in records]
125
    return results
126 127


128
def get_image_tag_steps(log_reader, run, tag):
走神的阿圆's avatar
走神的阿圆 已提交
129
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
130 131 132 133 134
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("image").get_items(
        run, decode_tag(tag))
    result = [{
        "step": item.id,
走神的阿圆's avatar
走神的阿圆 已提交
135
        "wallTime": s2ms(item.timestamp)
136 137
    } for item in records]
    return result
138 139


140
def get_individual_image(log_reader, run, tag, step_index):
走神的阿圆's avatar
走神的阿圆 已提交
141
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
142 143 144 145
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("image").get_items(
        run, decode_tag(tag))
    return records[step_index].image.encoded_image_string
146 147


148
def get_audio_tag_steps(log_reader, run, tag):
走神的阿圆's avatar
走神的阿圆 已提交
149
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
150 151 152 153 154
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("audio").get_items(
        run, decode_tag(tag))
    result = [{
        "step": item.id,
走神的阿圆's avatar
走神的阿圆 已提交
155
        "wallTime": s2ms(item.timestamp)
156 157
    } for item in records]
    return result
158 159


160
def get_individual_audio(log_reader, run, tag, step_index):
走神的阿圆's avatar
走神的阿圆 已提交
161
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
162 163 164
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("audio").get_items(
        run, decode_tag(tag))
P
Peter Pan 已提交
165
    result = records[step_index].audio.encoded_audio_string
166
    return result
167 168


走神的阿圆's avatar
走神的阿圆 已提交
169
def get_pr_curve(log_reader, run, tag):
走神的阿圆's avatar
走神的阿圆 已提交
170
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
走神的阿圆's avatar
走神的阿圆 已提交
171 172 173 174 175 176 177 178
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("pr_curve").get_items(
        run, decode_tag(tag))
    results = []
    for item in records:
        pr_curve = item.pr_curve
        length = len(pr_curve.precision)
        num_thresholds = [float(v) / length for v in range(1, length + 1)]
走神的阿圆's avatar
走神的阿圆 已提交
179
        results.append([s2ms(item.timestamp),
走神的阿圆's avatar
走神的阿圆 已提交
180 181 182 183 184 185 186 187 188 189 190 191
                        item.id,
                        list(pr_curve.precision),
                        list(pr_curve.recall),
                        list(pr_curve.TP),
                        list(pr_curve.FP),
                        list(pr_curve.TN),
                        list(pr_curve.FN),
                        num_thresholds])
    return results


def get_pr_curve_step(log_reader, run, tag=None):
走神的阿圆's avatar
走神的阿圆 已提交
192
    fake_run = run
走神的阿圆's avatar
走神的阿圆 已提交
193
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
走神的阿圆's avatar
走神的阿圆 已提交
194
    run2tag = get_pr_curve_tags(log_reader)
走神的阿圆's avatar
走神的阿圆 已提交
195
    tag = run2tag['tags'][run2tag['runs'].index(fake_run)][0]
走神的阿圆's avatar
走神的阿圆 已提交
196 197 198
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("pr_curve").get_items(
        run, decode_tag(tag))
走神的阿圆's avatar
走神的阿圆 已提交
199
    results = [[s2ms(item.timestamp), item.id] for item in records]
走神的阿圆's avatar
走神的阿圆 已提交
200 201 202
    return results


走神的阿圆's avatar
走神的阿圆 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
def get_embeddings_list(log_reader):
    run2tag = get_logs(log_reader, 'embeddings')

    for run, _tags in zip(run2tag['runs'], run2tag['tags']):
        for tag in _tags:
            name = path = os.path.join(run, tag)
            if name in EMBEDDING_NAME:
                return embedding_names
            EMBEDDING_NAME.update({name: {'run': run, 'tag': tag}})
            records = log_reader.data_manager.get_reservoir("embeddings").get_items(
                run, decode_tag(tag))
            row_len = len(records[0].embeddings.embeddings)
            col_len = len(records[0].embeddings.embeddings[0].vectors)
            shape = [row_len, col_len]
            embedding_names.append({'name': name, 'shape': shape, 'path': path})
    return embedding_names


def get_embedding_labels(log_reader, name):
    run = EMBEDDING_NAME[name]['run']
    tag = EMBEDDING_NAME[name]['tag']
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("embeddings").get_items(
        run, decode_tag(tag))
    labels = []
    for item in records[0].embeddings.embeddings:
        labels.append([item.label])

    with io.StringIO() as fp:
        csv_writer = csv.writer(fp, delimiter='\t')
        csv_writer.writerows(labels)
        labels = fp.getvalue()

    # labels = "\n".join(str(i) for i in labels)
    return labels


def get_embedding_tensors(log_reader, name):
    run = EMBEDDING_NAME[name]['run']
    tag = EMBEDDING_NAME[name]['tag']
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("embeddings").get_items(
        run, decode_tag(tag))
    vectors = []
    for item in records[0].embeddings.embeddings:
        vectors.append(item.vectors)
    vectors = np.array(vectors).flatten().astype(np.float32).tobytes()
    return vectors


253
def get_embeddings(log_reader, run, tag, reduction, dimension=2):
走神的阿圆's avatar
走神的阿圆 已提交
254
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
255 256 257
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("embeddings").get_items(
        run, decode_tag(tag))
258

259 260 261 262 263 264
    labels = []
    vectors = []
    for item in records[0].embeddings.embeddings:
        labels.append(item.label)
        vectors.append(item.vectors)
    vectors = np.array(vectors)
265

266 267 268 269
    if reduction == 'tsne':
        import visualdl.server.tsne as tsne
        low_dim_embs = tsne.tsne(
            vectors, dimension, initial_dims=50, perplexity=30.0)
270

271 272
    elif reduction == 'pca':
        low_dim_embs = simple_pca(vectors, dimension)
273

274
    return {"embedding": low_dim_embs.tolist(), "labels": labels}
275 276


277
def get_histogram(log_reader, run, tag):
走神的阿圆's avatar
走神的阿圆 已提交
278
    run = log_reader.name2tags[run] if run in log_reader.name2tags else run
279 280 281 282 283 284 285 286 287 288 289 290
    log_reader.load_new_data()
    records = log_reader.data_manager.get_reservoir("histogram").get_items(
        run, decode_tag(tag))

    results = []
    for item in records:
        histogram = item.histogram
        hist = histogram.hist
        bin_edges = histogram.bin_edges
        histogram_data = []
        for index in range(len(hist)):
            histogram_data.append([bin_edges[index], bin_edges[index+1], hist[index]])
走神的阿圆's avatar
走神的阿圆 已提交
291
        results.append([s2ms(item.timestamp), item.id, histogram_data])
292 293 294 295

    return results


296 297 298
def get_graph(log_reader):
    result = b""
    if log_reader.model:
走神的阿圆's avatar
走神的阿圆 已提交
299 300
        with bfile.BFile(log_reader.model, 'rb') as bfp:
            result = bfp.read_file(log_reader.model)
301 302 303
    return result


304
def retry(ntimes, function, time2sleep, *args, **kwargs):
305
    """
306 307
    try to execute `function` `ntimes`, if exception catched, the thread will
    sleep `time2sleep` seconds.
308
    """
O
Oraoto 已提交
309
    for i in range(ntimes):
310 311
        try:
            return function(*args, **kwargs)
T
Thuan Nguyen 已提交
312
        except Exception:
313 314 315 316 317 318 319
            if i < ntimes-1:
                error_info = '\n'.join(map(str, sys.exc_info()))
                logger.error("Unexpected error: %s" % error_info)
                time.sleep(time2sleep)
            else:
                import traceback
                traceback.print_exc()
320

T
Thuan Nguyen 已提交
321

322 323 324 325 326 327 328 329 330
def cache_get(cache):
    def _handler(key, func, *args, **kwargs):
        data = cache.get(key)
        if data is None:
            logger.warning('update cache %s' % key)
            data = func(*args, **kwargs)
            cache.set(key, data)
            return data
        return data
T
Thuan Nguyen 已提交
331

332
    return _handler
J
Jeff Wang 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355


def simple_pca(x, dimension):
    """
    A simple PCA implementation to do the dimension reduction.
    """

    # Center the data.
    x -= np.mean(x, axis=0)

    # Computing the Covariance Matrix
    cov = np.cov(x, rowvar=False)

    # Get eigenvectors and eigenvalues from the covariance matrix
    eigvals, eigvecs = np.linalg.eig(cov)

    # Sort the eigvals from high to low
    order = np.argsort(eigvals)[::-1]

    # Drop the eigenvectors with low eigenvalues
    eigvecs = eigvecs[:, order[:dimension]]

    return np.dot(x, eigvecs)