benchmark.py 2.7 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
B
barrierye 已提交
14
# pylint: disable=doc-string-missing
G
guru4elephant 已提交
15 16

import sys
G
guru4elephant 已提交
17 18
import time
import requests
M
MRXLT 已提交
19
from paddle_serving_app.reader import IMDBDataset
G
guru4elephant 已提交
20 21
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
G
guru4elephant 已提交
22
from paddle_serving_client.utils import benchmark_args
G
guru4elephant 已提交
23

G
guru4elephant 已提交
24
args = benchmark_args()
M
MRXLT 已提交
25

B
barrierye 已提交
26

G
guru4elephant 已提交
27 28
def single_func(idx, resource):
    imdb_dataset = IMDBDataset()
M
MRXLT 已提交
29 30 31
    imdb_dataset.load_resource("./imdb.vocab")
    dataset = []
    with open("./test_data/part-0") as fin:
G
guru4elephant 已提交
32
        for line in fin:
M
MRXLT 已提交
33 34
            dataset.append(line.strip())
    start = time.time()
G
guru4elephant 已提交
35 36 37 38
    if args.request == "rpc":
        client = Client()
        client.load_client_config(args.model)
        client.connect([args.endpoint])
M
MRXLT 已提交
39
        for i in range(1000):
M
MRXLT 已提交
40 41 42 43 44 45 46 47 48
            if args.batch_size >= 1:
                feed_batch = []
                for bi in range(args.batch_size):
                    word_ids, label = imdb_dataset.get_words_and_label(dataset[
                        bi])
                    feed_batch.append({"words": word_ids})
                result = client.predict(feed=feed_batch, fetch=["prediction"])
                if result is None:
                    raise ("predict failed.")
M
MRXLT 已提交
49 50 51
            else:
                print("unsupport batch size {}".format(args.batch_size))

G
guru4elephant 已提交
52
    elif args.request == "http":
M
MRXLT 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65
        if args.batch_size >= 1:
            feed_batch = []
            for bi in range(args.batch_size):
                feed_batch.append({"words": dataset[bi]})
            r = requests.post(
                "http://{}/imdb/prediction".format(args.endpoint),
                json={"feed": feed_batch,
                      "fetch": ["prediction"]})
            if r.status_code != 200:
                print('HTTP status code -ne 200')
                raise ("predict failed.")
        else:
            print("unsupport batch size {}".format(args.batch_size))
G
guru4elephant 已提交
66
    end = time.time()
G
guru4elephant 已提交
67
    return [[end - start]]
G
guru4elephant 已提交
68

B
barrierye 已提交
69

G
guru4elephant 已提交
70 71
multi_thread_runner = MultiThreadRunner()
result = multi_thread_runner.run(single_func, args.thread, {})
M
MRXLT 已提交
72 73 74 75
avg_cost = 0
for cost in result[0]:
    avg_cost += cost
print("total cost {} s of each thread".format(avg_cost / args.thread))