Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
4cdf6dd5
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4cdf6dd5
编写于
3月 06, 2020
作者:
G
guru4elephant
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add benchmark scripts for imdb
上级
5fe3587f
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
57 addition
and
115 deletion
+57
-115
python/examples/imdb/benchmark.py
python/examples/imdb/benchmark.py
+35
-45
python/examples/imdb/test_client.py
python/examples/imdb/test_client.py
+22
-4
python/examples/imdb/test_client_multithread.py
python/examples/imdb/test_client_multithread.py
+0
-66
未找到文件。
python/examples/imdb/benchmark.py
浏览文件 @
4cdf6dd5
...
...
@@ -13,55 +13,45 @@
# limitations under the License.
import
sys
import
time
import
requests
from
imdb_reader
import
IMDBDataset
from
paddle_serving_client
import
Client
from
paddle_serving_client.metric
import
auc
from
paddle_serving_client.utils
import
MultiThreadRunner
import
time
from
paddle_serving_client.utils
import
benchmark_args
args
=
benchmark_args
()
def
predict
(
thr_id
,
resource
):
client
=
Client
()
client
.
load_client_config
(
resource
[
"conf_file"
])
client
.
connect
(
resource
[
"server_endpoint"
])
thread_num
=
resource
[
"thread_num"
]
file_list
=
resource
[
"filelist"
]
line_id
=
0
prob
=
[]
label_list
=
[]
dataset
=
[]
for
fn
in
file_list
:
fin
=
open
(
fn
)
for
line
in
fin
:
if
line_id
%
thread_num
==
thr_id
-
1
:
group
=
line
.
strip
().
split
()
words
=
[
int
(
x
)
for
x
in
group
[
1
:
int
(
group
[
0
])]]
label
=
[
int
(
group
[
-
1
])]
feed
=
{
"words"
:
words
,
"label"
:
label
}
dataset
.
append
(
feed
)
line_id
+=
1
fin
.
close
()
def
single_func
(
idx
,
resource
):
imdb_dataset
=
IMDBDataset
()
imdb_dataset
.
load_resource
(
args
.
vocab
)
filelist_fn
=
args
.
filelist
filelist
=
[]
start
=
time
.
time
()
fetch
=
[
"acc"
,
"cost"
,
"prediction"
]
for
inst
in
dataset
:
fetch_map
=
client
.
predict
(
feed
=
inst
,
fetch
=
fetch
)
prob
.
append
(
fetch_map
[
"prediction"
][
1
])
label_list
.
append
(
label
[
0
])
with
open
(
filelist_fn
)
as
fin
:
for
line
in
fin
:
filelist
.
append
(
line
.
strip
())
filelist
=
filelist
[
idx
::
args
.
thread
]
if
args
.
request
==
"rpc"
:
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
([
args
.
endpoint
])
for
fn
in
filelist
:
fin
=
open
(
fn
)
for
line
in
fin
:
word_ids
,
label
=
imdb_dataset
.
get_words_and_label
(
line
)
fetch_map
=
client
.
predict
(
feed
=
{
"words"
:
word_ids
},
fetch
=
[
"prediction"
])
elif
args
.
request
==
"http"
:
for
fn
in
filelist
:
fin
=
open
(
fn
)
for
line
in
fin
:
word_ids
,
label
=
imdb_dataset
.
get_words_and_label
(
line
)
r
=
requests
.
post
(
"http://{}/imdb/prediction"
.
format
(
args
.
endpoint
),
data
=
{
"words"
:
word_ids
})
end
=
time
.
time
()
client
.
release
()
return
[
prob
,
label_list
,
[
end
-
start
]]
if
__name__
==
'__main__'
:
conf_file
=
sys
.
argv
[
1
]
data_file
=
sys
.
argv
[
2
]
resource
=
{}
resource
[
"conf_file"
]
=
conf_file
resource
[
"server_endpoint"
]
=
[
"127.0.0.1:9293"
]
resource
[
"filelist"
]
=
[
data_file
]
resource
[
"thread_num"
]
=
int
(
sys
.
argv
[
3
])
thread_runner
=
MultiThreadRunner
()
result
=
thread_runner
.
run
(
predict
,
int
(
sys
.
argv
[
3
]),
resource
)
return
[[
end
-
start
]]
print
(
"total time {} s"
.
format
(
sum
(
result
[
-
1
])
/
len
(
result
[
-
1
])))
multi_thread_runner
=
MultiThreadRunner
()
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{})
print
(
result
)
python/examples/imdb/test_client.py
浏览文件 @
4cdf6dd5
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_client
import
Client
from
imdb_reader
import
IMDBDataset
import
sys
client
=
Client
()
client
.
load_client_config
(
sys
.
argv
[
1
])
client
.
connect
([
"127.0.0.1:9393"
])
# you can define any english sentence or dataset here
# This example reuses imdb reader in training, you
# can define your own data preprocessing easily.
imdb_dataset
=
IMDBDataset
()
imdb_dataset
.
load_resource
(
sys
.
argv
[
2
])
for
line
in
sys
.
stdin
:
group
=
line
.
strip
().
split
()
words
=
[
int
(
x
)
for
x
in
group
[
1
:
int
(
group
[
0
])
+
1
]]
label
=
[
int
(
group
[
-
1
])]
feed
=
{
"words"
:
words
,
"label"
:
label
}
word_ids
,
label
=
imdb_dataset
.
get_words_and_label
(
line
)
feed
=
{
"words"
:
word_ids
,
"label"
:
label
}
fetch
=
[
"acc"
,
"cost"
,
"prediction"
]
fetch_map
=
client
.
predict
(
feed
=
feed
,
fetch
=
fetch
)
print
(
"{} {}"
.
format
(
fetch_map
[
"prediction"
][
1
],
label
[
0
]))
...
...
python/examples/imdb/test_client_multithread.py
已删除
100644 → 0
浏览文件 @
5fe3587f
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_client
import
Client
import
sys
import
subprocess
from
multiprocessing
import
Pool
import
time
def
predict
(
p_id
,
p_size
,
data_list
):
client
=
Client
()
client
.
load_client_config
(
conf_file
)
client
.
connect
([
"127.0.0.1:8010"
])
result
=
[]
for
line
in
data_list
:
group
=
line
.
strip
().
split
()
words
=
[
int
(
x
)
for
x
in
group
[
1
:
int
(
group
[
0
])]]
label
=
[
int
(
group
[
-
1
])]
feed
=
{
"words"
:
words
,
"label"
:
label
}
fetch
=
[
"acc"
,
"cost"
,
"prediction"
]
fetch_map
=
client
.
predict
(
feed
=
feed
,
fetch
=
fetch
)
#print("{} {}".format(fetch_map["prediction"][1], label[0]))
result
.
append
([
fetch_map
[
"prediction"
][
1
],
label
[
0
]])
return
result
def
predict_multi_thread
(
p_num
):
data_list
=
[]
with
open
(
data_file
)
as
f
:
for
line
in
f
.
readlines
():
data_list
.
append
(
line
)
start
=
time
.
time
()
p
=
Pool
(
p_num
)
p_size
=
len
(
data_list
)
/
p_num
result_list
=
[]
for
i
in
range
(
p_num
):
result_list
.
append
(
p
.
apply_async
(
predict
,
[
i
,
p_size
,
data_list
[
i
*
p_size
:(
i
+
1
)
*
p_size
]]))
p
.
close
()
p
.
join
()
for
i
in
range
(
p_num
):
result
=
result_list
[
i
].
get
()
for
j
in
result
:
print
(
"{} {}"
.
format
(
j
[
0
],
j
[
1
]))
cost
=
time
.
time
()
-
start
print
(
"{} threads cost {}"
.
format
(
p_num
,
cost
))
if
__name__
==
'__main__'
:
conf_file
=
sys
.
argv
[
1
]
data_file
=
sys
.
argv
[
2
]
p_num
=
int
(
sys
.
argv
[
3
])
predict_multi_thread
(
p_num
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录