Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
46498409
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
46498409
编写于
5月 13, 2020
作者:
M
MRXLT
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine imdb demo
上级
de96b47a
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
30 addition
and
153 deletion
+30
-153
python/examples/imdb/benchmark.py
python/examples/imdb/benchmark.py
+26
-13
python/examples/imdb/benchmark.sh
python/examples/imdb/benchmark.sh
+4
-1
python/examples/imdb/benchmark_batch.py
python/examples/imdb/benchmark_batch.py
+0
-75
python/examples/imdb/benchmark_batch.sh
python/examples/imdb/benchmark_batch.sh
+0
-12
python/examples/imdb/test_client_batch.py
python/examples/imdb/test_client_batch.py
+0
-52
未找到文件。
python/examples/imdb/benchmark.py
浏览文件 @
46498409
...
...
@@ -37,26 +37,39 @@ def single_func(idx, resource):
client
.
load_client_config
(
args
.
model
)
client
.
connect
([
args
.
endpoint
])
for
i
in
range
(
1000
):
if
args
.
batch_size
==
1
:
word_ids
,
label
=
imdb_dataset
.
get_words_and_label
(
line
)
fetch_map
=
client
.
predict
(
feed
=
{
"words"
:
word_ids
},
fetch
=
[
"prediction"
])
if
args
.
batch_size
>=
1
:
feed_batch
=
[]
for
bi
in
range
(
args
.
batch_size
):
word_ids
,
label
=
imdb_dataset
.
get_words_and_label
(
dataset
[
bi
])
feed_batch
.
append
({
"words"
:
word_ids
})
result
=
client
.
predict
(
feed
=
feed_batch
,
fetch
=
[
"prediction"
])
if
result
is
None
:
raise
(
"predict failed."
)
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
elif
args
.
request
==
"http"
:
for
fn
in
filelist
:
fin
=
open
(
fn
)
for
line
in
fin
:
word_ids
,
label
=
imdb_dataset
.
get_words_and_label
(
line
)
r
=
requests
.
post
(
"http://{}/imdb/prediction"
.
format
(
args
.
endpoint
),
data
=
{
"words"
:
word_ids
,
"fetch"
:
[
"prediction"
]})
if
args
.
batch_size
>=
1
:
feed_batch
=
[]
for
bi
in
range
(
args
.
batch_size
):
feed_batch
.
append
({
"words"
:
dataset
[
bi
]})
r
=
requests
.
post
(
"http://{}/imdb/prediction"
.
format
(
args
.
endpoint
),
json
=
{
"feed"
:
feed_batch
,
"fetch"
:
[
"prediction"
]})
if
r
.
status_code
!=
200
:
print
(
'HTTP status code -ne 200'
)
raise
(
"predict failed."
)
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
end
=
time
.
time
()
return
[[
end
-
start
]]
multi_thread_runner
=
MultiThreadRunner
()
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{})
print
(
result
)
avg_cost
=
0
for
cost
in
result
[
0
]:
avg_cost
+=
cost
print
(
"total cost {} s of each thread"
.
format
(
avg_cost
/
args
.
thread
))
python/examples/imdb/benchmark.sh
浏览文件 @
46498409
rm
profile_log
for
thread_num
in
1 2 4 8 16
do
$PYTHONROOT
/bin/python benchmark.py
--thread
$thread_num
--model
imdbo_bow_client_conf/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
for
batch_size
in
1 2 4 8 16 32 64 128 256 512
do
$PYTHONROOT
/bin/python benchmark.py
--thread
$thread_num
--batch_size
$batch_size
--model
imdb_bow_client_conf/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"========================================"
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
1 profile
>>
profile_log
done
done
python/examples/imdb/benchmark_batch.py
已删除
100644 → 0
浏览文件 @
de96b47a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import
sys
import
time
import
requests
from
imdb_reader
import
IMDBDataset
from
paddle_serving_client
import
Client
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
args
=
benchmark_args
()
def
single_func
(
idx
,
resource
):
imdb_dataset
=
IMDBDataset
()
imdb_dataset
.
load_resource
(
"./imdb.vocab"
)
dataset
=
[]
with
open
(
"./test_data/part-0"
)
as
fin
:
for
line
in
fin
:
dataset
.
append
(
line
.
strip
())
start
=
time
.
time
()
if
args
.
request
==
"rpc"
:
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
([
args
.
endpoint
])
for
i
in
range
(
1000
):
if
args
.
batch_size
>=
1
:
feed_batch
=
[]
for
bi
in
range
(
args
.
batch_size
):
word_ids
,
label
=
imdb_dataset
.
get_words_and_label
(
dataset
[
bi
])
feed_batch
.
append
({
"words"
:
word_ids
})
result
=
client
.
predict
(
feed
=
feed_batch
,
fetch
=
[
"prediction"
])
if
result
is
None
:
raise
(
"predict failed."
)
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
elif
args
.
request
==
"http"
:
if
args
.
batch_size
>=
1
:
feed_batch
=
[]
for
bi
in
range
(
args
.
batch_size
):
feed_batch
.
append
({
"words"
:
dataset
[
bi
]})
r
=
requests
.
post
(
"http://{}/imdb/prediction"
.
format
(
args
.
endpoint
),
json
=
{
"feed"
:
feed_batch
,
"fetch"
:
[
"prediction"
]})
if
r
.
status_code
!=
200
:
print
(
'HTTP status code -ne 200'
)
raise
(
"predict failed."
)
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
end
=
time
.
time
()
return
[[
end
-
start
]]
multi_thread_runner
=
MultiThreadRunner
()
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{})
avg_cost
=
0
for
cost
in
result
[
0
]:
avg_cost
+=
cost
print
(
"total cost {} s of each thread"
.
format
(
avg_cost
/
args
.
thread
))
python/examples/imdb/benchmark_batch.sh
已删除
100644 → 0
浏览文件 @
de96b47a
rm
profile_log
for
thread_num
in
1 2 4 8 16
do
for
batch_size
in
1 2 4 8 16 32 64 128 256 512
do
$PYTHONROOT
/bin/python benchmark_batch.py
--thread
$thread_num
--batch_size
$batch_size
--model
imdb_bow_client_conf/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"========================================"
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
1 profile
>>
profile_log
done
done
python/examples/imdb/test_client_batch.py
已删除
100644 → 0
浏览文件 @
de96b47a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from
paddle_serving_client
import
Client
import
sys
import
subprocess
from
multiprocessing
import
Pool
import
time
def
batch_predict
(
batch_size
=
4
):
client
=
Client
()
client
.
load_client_config
(
conf_file
)
client
.
connect
([
"127.0.0.1:9292"
])
fetch
=
[
"acc"
,
"cost"
,
"prediction"
]
feed_batch
=
[]
for
line
in
sys
.
stdin
:
group
=
line
.
strip
().
split
()
words
=
[
int
(
x
)
for
x
in
group
[
1
:
int
(
group
[
0
])]]
label
=
[
int
(
group
[
-
1
])]
feed
=
{
"words"
:
words
,
"label"
:
label
}
feed_batch
.
append
(
feed
)
if
len
(
feed_batch
)
==
batch_size
:
fetch_batch
=
client
.
batch_predict
(
feed_batch
=
feed_batch
,
fetch
=
fetch
)
for
i
in
range
(
batch_size
):
print
(
"{} {}"
.
format
(
fetch_batch
[
i
][
"prediction"
][
1
],
feed_batch
[
i
][
"label"
][
0
]))
feed_batch
=
[]
if
len
(
feed_batch
)
>
0
:
fetch_batch
=
client
.
batch_predict
(
feed_batch
=
feed_batch
,
fetch
=
fetch
)
for
i
in
range
(
len
(
feed_batch
)):
print
(
"{} {}"
.
format
(
fetch_batch
[
i
][
"prediction"
][
1
],
feed_batch
[
i
][
"label"
][
0
]))
if
__name__
==
'__main__'
:
conf_file
=
sys
.
argv
[
1
]
batch_size
=
int
(
sys
.
argv
[
2
])
batch_predict
(
batch_size
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录