web_service.py 8.6 KB
Newer Older
B
barriery 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from paddle_serving_server.web_service import WebService, Op
B
barriery 已提交
15 16 17 18 19 20 21 22 23 24
import logging
import numpy as np
import cv2
import base64
from paddle_serving_app.reader import OCRReader
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes

_LOGGER = logging.getLogger()
J
Jiawei Wang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
import yaml
from argparse import ArgumentParser,RawDescriptionHelpFormatter
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.conf_dict = self._parse_opt(args.opt, args.config)
        return args

    def _parse_helper(self, v):
        if v.isnumeric():
            if "." in v:
                v = float(v)
            else:
                v = int(v)
        elif v == "True" or v == "False":
            v = (v == "True")
        return v

    def _parse_opt(self, opts, conf_path):
        f = open(conf_path)
        config = yaml.load(f, Loader=yaml.Loader)
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            v = self._parse_helper(v)
            print(k,v, type(v))
            cur = config
            parent = cur
            for kk in k.split("."):
                if kk not in cur:
                     cur[kk] = {}
                     parent = cur
                     cur = cur[kk]
                else:
                     parent = cur
                     cur = cur[kk]
            parent[k.split(".")[-1]] = v
        return config
B
barriery 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

class DetOp(Op):
    def init_op(self):
        self.det_preprocess = Sequential([
            ResizeByFactor(32, 960), Div(255),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
                (2, 0, 1))
        ])
        self.filter_func = FilterBoxes(10, 10)
        self.post_func = DBPostProcess({
            "thresh": 0.3,
            "box_thresh": 0.5,
            "max_candidates": 1000,
            "unclip_ratio": 1.5,
            "min_size": 3
        })

91
    def preprocess(self, input_dicts, data_id, log_id):
B
barriery 已提交
92
        (_, input_dict), = input_dicts.items()
W
wangjiawei04 已提交
93 94 95
        imgs = []
        for key in input_dict.keys():
            data = base64.b64decode(input_dict[key].encode('utf8'))
96
            self.raw_im = data
97
            data = np.frombuffer(data, np.uint8)
W
wangjiawei04 已提交
98 99 100 101 102 103
            self.im = cv2.imdecode(data, cv2.IMREAD_COLOR)
            self.ori_h, self.ori_w, _ = self.im.shape
            det_img = self.det_preprocess(self.im)
            _, self.new_h, self.new_w = det_img.shape
            imgs.append(det_img[np.newaxis, :].copy())
        return {"image": np.concatenate(imgs, axis=0)}, False, None, ""
B
barriery 已提交
104

105
    def postprocess(self, input_dicts, fetch_dict, log_id):
106
        #        print(fetch_dict)
B
barriery 已提交
107 108 109 110 111 112
        det_out = fetch_dict["concat_1.tmp_0"]
        ratio_list = [
            float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
        ]
        dt_boxes_list = self.post_func(det_out, [ratio_list])
        dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
113
        out_dict = {"dt_boxes": dt_boxes, "image": self.raw_im}
114
        return out_dict, None, ""
B
barriery 已提交
115 116 117 118 119 120 121 122


class RecOp(Op):
    def init_op(self):
        self.ocr_reader = OCRReader()
        self.get_rotate_crop_image = GetRotateCropImage()
        self.sorted_boxes = SortedBoxes()

123
    def preprocess(self, input_dicts, data_id, log_id):
B
barriery 已提交
124
        (_, input_dict), = input_dicts.items()
125 126 127
        raw_im = input_dict["image"]
        data = np.frombuffer(raw_im, np.uint8)
        im = cv2.imdecode(data, cv2.IMREAD_COLOR)
B
barriery 已提交
128 129 130 131 132
        dt_boxes = input_dict["dt_boxes"]
        dt_boxes = self.sorted_boxes(dt_boxes)
        feed_list = []
        img_list = []
        max_wh_ratio = 0
T
TeslaZhao 已提交
133 134 135

        ## One batch, the type of feed_data is dict.
        """ 
B
barriery 已提交
136 137 138 139 140 141
        for i, dtbox in enumerate(dt_boxes):
            boximg = self.get_rotate_crop_image(im, dt_boxes[i])
            img_list.append(boximg)
            h, w = boximg.shape[0:2]
            wh_ratio = w * 1.0 / h
            max_wh_ratio = max(max_wh_ratio, wh_ratio)
W
wangjiawei04 已提交
142 143 144 145
        _, w, h = self.ocr_reader.resize_norm_img(img_list[0],
                                                  max_wh_ratio).shape
        imgs = np.zeros((len(img_list), 3, w, h)).astype('float32')
        for id, img in enumerate(img_list):
B
barriery 已提交
146
            norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
W
wangjiawei04 已提交
147 148
            imgs[id] = norm_img
        feed = {"image": imgs.copy()}
B
barriery 已提交
149

T
TeslaZhao 已提交
150 151 152
        """

        ## Many mini-batchs, the type of feed_data is list.
153
        max_batch_size = len(dt_boxes)
T
TeslaZhao 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

        # If max_batch_size is 0, skipping predict stage
        if max_batch_size == 0:
            return {}, True, None, ""
        boxes_size = len(dt_boxes)
        batch_size = boxes_size // max_batch_size
        rem = boxes_size % max_batch_size
        #_LOGGER.info("max_batch_len:{}, batch_size:{}, rem:{}, boxes_size:{}".format(max_batch_size, batch_size, rem, boxes_size))
        for bt_idx in range(0, batch_size + 1):
            imgs = None
            boxes_num_in_one_batch = 0
            if bt_idx == batch_size:
                if rem == 0:
                    continue
                else:
                    boxes_num_in_one_batch = rem
            elif bt_idx < batch_size:
                boxes_num_in_one_batch = max_batch_size
            else:
                _LOGGER.error("batch_size error, bt_idx={}, batch_size={}".
                              format(bt_idx, batch_size))
                break

            start = bt_idx * max_batch_size
            end = start + boxes_num_in_one_batch
            img_list = []
            for box_idx in range(start, end):
                boximg = self.get_rotate_crop_image(im, dt_boxes[box_idx])
                img_list.append(boximg)
                h, w = boximg.shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            _, w, h = self.ocr_reader.resize_norm_img(img_list[0],
                                                      max_wh_ratio).shape
            #_LOGGER.info("---- idx:{}, w:{}, h:{}".format(bt_idx, w, h))

            imgs = np.zeros((boxes_num_in_one_batch, 3, w, h)).astype('float32')
            for id, img in enumerate(img_list):
                norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
                imgs[id] = norm_img
            feed = {"image": imgs.copy()}
            feed_list.append(feed)
        #_LOGGER.info("feed_list : {}".format(feed_list))

        return feed_list, False, None, ""

    def postprocess(self, input_dicts, fetch_data, log_id):
        res_list = []
        if isinstance(fetch_data, dict):
            if len(fetch_data) > 0:
                rec_batch_res = self.ocr_reader.postprocess(
                    fetch_data, with_score=True)
                for res in rec_batch_res:
                    res_list.append(res[0])
        elif isinstance(fetch_data, list):
            for one_batch in fetch_data:
                one_batch_res = self.ocr_reader.postprocess(
                    one_batch, with_score=True)
                for res in one_batch_res:
                    res_list.append(res[0])

        res = {"res": str(res_list)}
216
        return res, None, ""
B
barriery 已提交
217 218 219 220 221 222 223 224 225


class OcrService(WebService):
    def get_pipeline_response(self, read_op):
        det_op = DetOp(name="det", input_ops=[read_op])
        rec_op = RecOp(name="rec", input_ops=[det_op])
        return rec_op


226
ocr_service = OcrService(name="ocr")
J
Jiawei Wang 已提交
227 228
FLAGS = ArgsParser().parse_args()
ocr_service.prepare_pipeline_config(yml_dict=FLAGS.conf_dict)
229
ocr_service.run_service()