web_service.py 4.3 KB
Newer Older
B
barriery 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from paddle_serving_server.web_service import WebService, Op
B
barriery 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
import logging
import numpy as np
import cv2
import base64
from paddle_serving_app.reader import OCRReader
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes

_LOGGER = logging.getLogger()


class DetOp(Op):
    def init_op(self):
        self.det_preprocess = Sequential([
            ResizeByFactor(32, 960), Div(255),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
                (2, 0, 1))
        ])
        self.filter_func = FilterBoxes(10, 10)
        self.post_func = DBPostProcess({
            "thresh": 0.3,
            "box_thresh": 0.5,
            "max_candidates": 1000,
            "unclip_ratio": 1.5,
            "min_size": 3
        })

43
    def preprocess(self, input_dicts, data_id, log_id):
B
barriery 已提交
44
        (_, input_dict), = input_dicts.items()
W
wangjiawei04 已提交
45 46 47
        imgs = []
        for key in input_dict.keys():
            data = base64.b64decode(input_dict[key].encode('utf8'))
48
            data = np.frombuffer(data, np.uint8)
W
wangjiawei04 已提交
49 50 51 52 53 54
            self.im = cv2.imdecode(data, cv2.IMREAD_COLOR)
            self.ori_h, self.ori_w, _ = self.im.shape
            det_img = self.det_preprocess(self.im)
            _, self.new_h, self.new_w = det_img.shape
            imgs.append(det_img[np.newaxis, :].copy())
        return {"image": np.concatenate(imgs, axis=0)}, False, None, ""
B
barriery 已提交
55

56
    def postprocess(self, input_dicts, fetch_dict, log_id):
57
        #        print(fetch_dict)
B
barriery 已提交
58 59 60 61 62 63 64
        det_out = fetch_dict["concat_1.tmp_0"]
        ratio_list = [
            float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
        ]
        dt_boxes_list = self.post_func(det_out, [ratio_list])
        dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
        out_dict = {"dt_boxes": dt_boxes, "image": self.im}
65
        return out_dict, None, ""
B
barriery 已提交
66 67 68 69 70 71 72 73


class RecOp(Op):
    def init_op(self):
        self.ocr_reader = OCRReader()
        self.get_rotate_crop_image = GetRotateCropImage()
        self.sorted_boxes = SortedBoxes()

74
    def preprocess(self, input_dicts, data_id, log_id):
B
barriery 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87
        (_, input_dict), = input_dicts.items()
        im = input_dict["image"]
        dt_boxes = input_dict["dt_boxes"]
        dt_boxes = self.sorted_boxes(dt_boxes)
        feed_list = []
        img_list = []
        max_wh_ratio = 0
        for i, dtbox in enumerate(dt_boxes):
            boximg = self.get_rotate_crop_image(im, dt_boxes[i])
            img_list.append(boximg)
            h, w = boximg.shape[0:2]
            wh_ratio = w * 1.0 / h
            max_wh_ratio = max(max_wh_ratio, wh_ratio)
W
wangjiawei04 已提交
88 89 90 91
        _, w, h = self.ocr_reader.resize_norm_img(img_list[0],
                                                  max_wh_ratio).shape
        imgs = np.zeros((len(img_list), 3, w, h)).astype('float32')
        for id, img in enumerate(img_list):
B
barriery 已提交
92
            norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
W
wangjiawei04 已提交
93 94
            imgs[id] = norm_img
        feed = {"image": imgs.copy()}
95
        return feed, False, None, ""
B
barriery 已提交
96

97
    def postprocess(self, input_dicts, fetch_dict, log_id):
B
barriery 已提交
98 99 100 101 102
        rec_res = self.ocr_reader.postprocess(fetch_dict, with_score=True)
        res_lst = []
        for res in rec_res:
            res_lst.append(res[0])
        res = {"res": str(res_lst)}
103
        return res, None, ""
B
barriery 已提交
104 105 106 107 108 109 110 111 112 113


class OcrService(WebService):
    def get_pipeline_response(self, read_op):
        det_op = DetOp(name="det", input_ops=[read_op])
        rec_op = RecOp(name="rec", input_ops=[det_op])
        return rec_op


uci_service = OcrService(name="ocr")
114
uci_service.prepare_pipeline_config("config.yml")
B
barriery 已提交
115
uci_service.run_service()