web_service.py 4.4 KB
Newer Older
B
barriery 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
try:
W
wangjiawei04 已提交
15
    from paddle_serving_server.web_service import WebService, Op
B
barriery 已提交
16
except ImportError:
17
    from paddle_serving_server_gpu.web_service import WebService, Op
B
barriery 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
import logging
import numpy as np
import cv2
import base64
from paddle_serving_app.reader import OCRReader
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes

_LOGGER = logging.getLogger()


class DetOp(Op):
    def init_op(self):
        self.det_preprocess = Sequential([
            ResizeByFactor(32, 960), Div(255),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
                (2, 0, 1))
        ])
        self.filter_func = FilterBoxes(10, 10)
        self.post_func = DBPostProcess({
            "thresh": 0.3,
            "box_thresh": 0.5,
            "max_candidates": 1000,
            "unclip_ratio": 1.5,
            "min_size": 3
        })

46
    def preprocess(self, input_dicts, data_id, log_id):
B
barriery 已提交
47 48 49 50 51 52 53 54
        (_, input_dict), = input_dicts.items()
        data = base64.b64decode(input_dict["image"].encode('utf8'))
        data = np.fromstring(data, np.uint8)
        # Note: class variables(self.var) can only be used in process op mode
        self.im = cv2.imdecode(data, cv2.IMREAD_COLOR)
        self.ori_h, self.ori_w, _ = self.im.shape
        det_img = self.det_preprocess(self.im)
        _, self.new_h, self.new_w = det_img.shape
55
        return {"image": det_img[np.newaxis, :].copy()}, False, None, ""
B
barriery 已提交
56

57
    def postprocess(self, input_dicts, fetch_dict, log_id):
B
barriery 已提交
58 59 60 61 62 63 64
        det_out = fetch_dict["concat_1.tmp_0"]
        ratio_list = [
            float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
        ]
        dt_boxes_list = self.post_func(det_out, [ratio_list])
        dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
        out_dict = {"dt_boxes": dt_boxes, "image": self.im}
W
wangjiawei04 已提交
65
        print("out dict", out_dict)
66
        return out_dict, None, ""
B
barriery 已提交
67 68 69 70 71 72 73 74


class RecOp(Op):
    def init_op(self):
        self.ocr_reader = OCRReader()
        self.get_rotate_crop_image = GetRotateCropImage()
        self.sorted_boxes = SortedBoxes()

75
    def preprocess(self, input_dicts, data_id, log_id):
B
barriery 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88
        (_, input_dict), = input_dicts.items()
        im = input_dict["image"]
        dt_boxes = input_dict["dt_boxes"]
        dt_boxes = self.sorted_boxes(dt_boxes)
        feed_list = []
        img_list = []
        max_wh_ratio = 0
        for i, dtbox in enumerate(dt_boxes):
            boximg = self.get_rotate_crop_image(im, dt_boxes[i])
            img_list.append(boximg)
            h, w = boximg.shape[0:2]
            wh_ratio = w * 1.0 / h
            max_wh_ratio = max(max_wh_ratio, wh_ratio)
W
wangjiawei04 已提交
89 90 91 92
        _, w, h = self.ocr_reader.resize_norm_img(img_list[0],
                                                  max_wh_ratio).shape
        imgs = np.zeros((len(img_list), 3, w, h)).astype('float32')
        for id, img in enumerate(img_list):
B
barriery 已提交
93
            norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
W
wangjiawei04 已提交
94 95
            imgs[id] = norm_img
        feed = {"image": imgs.copy()}
96
        return feed, False, None, ""
B
barriery 已提交
97

98
    def postprocess(self, input_dicts, fetch_dict, log_id):
B
barriery 已提交
99 100 101 102 103
        rec_res = self.ocr_reader.postprocess(fetch_dict, with_score=True)
        res_lst = []
        for res in rec_res:
            res_lst.append(res[0])
        res = {"res": str(res_lst)}
104
        return res, None, ""
B
barriery 已提交
105 106 107 108 109 110 111 112 113 114


class OcrService(WebService):
    def get_pipeline_response(self, read_op):
        det_op = DetOp(name="det", input_ops=[read_op])
        rec_op = RecOp(name="rec", input_ops=[det_op])
        return rec_op


uci_service = OcrService(name="ocr")
115
uci_service.prepare_pipeline_config("config.yml")
B
barriery 已提交
116
uci_service.run_service()