general_response_op.cpp 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

M
MRXLT 已提交
15
#include "core/general-server/op/general_response_op.h"
16 17
#include <algorithm>
#include <iostream>
M
MRXLT 已提交
18
#include <map>
19 20
#include <memory>
#include <sstream>
M
MRXLT 已提交
21
#include <utility>
22
#include "core/general-server/op/general_infer_helper.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FetchInst;
B
barrierye 已提交
38
using baidu::paddle_serving::predictor::general_model::ModelOutput;
39 40 41
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;

42
int GeneralResponseOp::inference() {
B
barrierye 已提交
43 44
  const std::vector<std::string> pre_node_names = pre_names();
  VLOG(2) << "pre node names size: " << pre_node_names.size();
B
barriery 已提交
45 46 47
  const GeneralBlob *input_blob;
  uint64_t log_id =
      get_depend_argument<GeneralBlob>(pre_node_names[0])->GetLogId();
B
barrierye 已提交
48

49
  const Request *req = dynamic_cast<const Request *>(get_request_message());
B
barrierye 已提交
50 51
  // response inst with only fetch_var_names
  Response *res = mutable_data<Response>();
52

G
guru4elephant 已提交
53
  Timer timeline;
B
barrierye 已提交
54
  // double response_time = 0.0;
G
guru4elephant 已提交
55 56 57
  // timeline.Start();
  int64_t start = timeline.TimeStampUS();

B
barriery 已提交
58 59
  VLOG(2) << "(logid=" << log_id
          << ") start to call load general model_conf op";
60 61
  baidu::paddle_serving::predictor::Resource &resource =
      baidu::paddle_serving::predictor::Resource::instance();
M
MRXLT 已提交
62

B
barriery 已提交
63
  VLOG(2) << "(logid=" << log_id << ") get resource pointer done.";
64 65 66
  std::shared_ptr<PaddleGeneralModelConfig> model_config =
      resource.get_general_model_config();

B
barriery 已提交
67 68
  VLOG(2) << "(logid=" << log_id
          << ") max body size : " << brpc::fLU64::FLAGS_max_body_size;
M
bug fix  
MRXLT 已提交
69

70 71 72 73 74 75
  std::vector<int> fetch_index;
  fetch_index.resize(req->fetch_var_names_size());
  for (int i = 0; i < req->fetch_var_names_size(); ++i) {
    fetch_index[i] =
        model_config->_fetch_alias_name_to_index[req->fetch_var_names(i)];
  }
M
MRXLT 已提交
76

B
barrierye 已提交
77
  for (uint32_t pi = 0; pi < pre_node_names.size(); ++pi) {
B
barrierye 已提交
78
    const std::string &pre_name = pre_node_names[pi];
B
barriery 已提交
79 80
    VLOG(2) << "(logid=" << log_id << ") pre names[" << pi << "]: " << pre_name
            << " (" << pre_node_names.size() << ")";
B
barrierye 已提交
81 82 83
    input_blob = get_depend_argument<GeneralBlob>(pre_name);
    // fprintf(stderr, "input(%s) blob address %x\n", pre_names.c_str(),
    // input_blob);
B
barrierye 已提交
84
    if (!input_blob) {
B
barriery 已提交
85
      LOG(ERROR) << "(logid=" << log_id
B
barriery 已提交
86
                 << ") Failed mutable depended argument, op: " << pre_name;
B
barrierye 已提交
87 88
      return -1;
    }
89

B
barrierye 已提交
90 91 92
    const TensorVector *in = &input_blob->tensor_vector;

    ModelOutput *output = res->add_outputs();
B
barrierye 已提交
93 94 95
    // To get the order of model return values
    output->set_engine_name(pre_name);
    FetchInst *fetch_inst = output->add_insts();
M
MRXLT 已提交
96

B
barrierye 已提交
97 98
    for (auto &idx : fetch_index) {
      Tensor *tensor = fetch_inst->add_tensor_array();
99
      if (model_config->_is_lod_fetch[idx]) {
B
barriery 已提交
100
        VLOG(2) << "(logid=" << log_id << ") out[" << idx << "] "
B
barriery 已提交
101
                << model_config->_fetch_name[idx] << " is lod_tensor";
M
MRXLT 已提交
102
        for (int k = 0; k < in->at(idx).shape.size(); ++k) {
B
barriery 已提交
103
          VLOG(2) << "(logid=" << log_id << ") shape[" << k
B
barriery 已提交
104
                  << "]: " << in->at(idx).shape[k];
M
MRXLT 已提交
105
          tensor->add_shape(in->at(idx).shape[k]);
106 107
        }
      } else {
B
barriery 已提交
108
        VLOG(2) << "(logid=" << log_id << ") out[" << idx << "] "
B
barriery 已提交
109
                << model_config->_fetch_name[idx] << " is tensor";
M
MRXLT 已提交
110
        for (int k = 0; k < in->at(idx).shape.size(); ++k) {
B
barriery 已提交
111
          VLOG(2) << "(logid=" << log_id << ") shape[" << k
B
barriery 已提交
112
                  << "]: " << in->at(idx).shape[k];
M
MRXLT 已提交
113
          tensor->add_shape(in->at(idx).shape[k]);
114 115 116 117
        }
      }
    }

B
barrierye 已提交
118 119 120
    int var_idx = 0;
    for (auto &idx : fetch_index) {
      int cap = 1;
M
MRXLT 已提交
121 122
      for (int j = 0; j < in->at(idx).shape.size(); ++j) {
        cap *= in->at(idx).shape[j];
B
barrierye 已提交
123
      }
W
WangXi 已提交
124 125 126 127 128

      FetchInst *fetch_p = output->mutable_insts(0);
      auto dtype = in->at(idx).dtype;

      if (dtype == paddle::PaddleDType::INT64) {
B
barriery 已提交
129
        VLOG(2) << "(logid=" << log_id << ") Prepare int64 var ["
B
barriery 已提交
130
                << model_config->_fetch_name[idx] << "].";
M
MRXLT 已提交
131
        int64_t *data_ptr = static_cast<int64_t *>(in->at(idx).data.data());
W
WangXi 已提交
132 133 134 135 136 137 138 139
        // from
        // https://stackoverflow.com/questions/15499641/copy-a-stdvector-to-a-repeated-field-from-protobuf-with-memcpy
        // `Swap` method is faster than `{}` method.
        google::protobuf::RepeatedField<int64_t> tmp_data(data_ptr,
                                                          data_ptr + cap);
        fetch_p->mutable_tensor_array(var_idx)->mutable_int64_data()->Swap(
            &tmp_data);
      } else if (dtype == paddle::PaddleDType::FLOAT32) {
B
barriery 已提交
140
        VLOG(2) << "(logid=" << log_id << ") Prepare float var ["
B
barriery 已提交
141
                << model_config->_fetch_name[idx] << "].";
M
MRXLT 已提交
142
        float *data_ptr = static_cast<float *>(in->at(idx).data.data());
W
WangXi 已提交
143 144 145 146 147
        google::protobuf::RepeatedField<float> tmp_data(data_ptr,
                                                        data_ptr + cap);
        fetch_p->mutable_tensor_array(var_idx)->mutable_float_data()->Swap(
            &tmp_data);
      } else if (dtype == paddle::PaddleDType::INT32) {
B
barriery 已提交
148
        VLOG(2) << "(logid=" << log_id << ")Prepare int32 var ["
B
barriery 已提交
149
                << model_config->_fetch_name[idx] << "].";
M
MRXLT 已提交
150
        int32_t *data_ptr = static_cast<int32_t *>(in->at(idx).data.data());
W
WangXi 已提交
151 152 153 154 155 156 157
        google::protobuf::RepeatedField<int32_t> tmp_data(data_ptr,
                                                          data_ptr + cap);
        fetch_p->mutable_tensor_array(var_idx)->mutable_int_data()->Swap(
            &tmp_data);
      }

      if (model_config->_is_lod_fetch[idx]) {
W
wangjiawei04 已提交
158 159 160
        if (in->at(idx).lod.size() > 0) {
          for (int j = 0; j < in->at(idx).lod[0].size(); ++j) {
            fetch_p->mutable_tensor_array(var_idx)->add_lod(
J
Jiawei Wang 已提交
161
                in->at(idx).lod[0][j]);
W
wangjiawei04 已提交
162
          }
M
MRXLT 已提交
163
        }
164
      }
W
WangXi 已提交
165

B
barriery 已提交
166
      VLOG(2) << "(logid=" << log_id << ") fetch var ["
B
barriery 已提交
167
              << model_config->_fetch_name[idx] << "] ready";
W
WangXi 已提交
168
      var_idx++;
169 170
    }
  }
G
guru4elephant 已提交
171

172 173
  if (req->profile_server()) {
    int64_t end = timeline.TimeStampUS();
174 175 176 177 178 179
    // TODO(barriery): multi-model profile_time.
    // At present, only the response_op is multi-input, so here we get
    // the profile_time by hard coding. It needs to be replaced with
    // a more elegant way.
    for (uint32_t pi = 0; pi < pre_node_names.size(); ++pi) {
      input_blob = get_depend_argument<GeneralBlob>(pre_node_names[pi]);
B
barriery 已提交
180
      VLOG(2) << "(logid=" << log_id
B
barriery 已提交
181
              << ") p size for input blob: " << input_blob->p_size;
182 183 184 185 186 187 188 189
      int profile_time_idx = -1;
      if (pi == 0) {
        profile_time_idx = 0;
      } else {
        profile_time_idx = input_blob->p_size - 2;
      }
      for (; profile_time_idx < input_blob->p_size; ++profile_time_idx) {
        res->add_profile_time(input_blob->time_stamp[profile_time_idx]);
B
barrierye 已提交
190
      }
191 192 193 194
    }
    // TODO(guru4elephant): find more elegant way to do this
    res->add_profile_time(start);
    res->add_profile_time(end);
G
guru4elephant 已提交
195 196
  }

197 198
  return 0;
}
199 200

DEFINE_OP(GeneralResponseOp);
201 202 203 204

}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu