general_response_op.cpp 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

M
MRXLT 已提交
15
#include "core/general-server/op/general_response_op.h"
16 17 18 19
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
20
#include "core/general-server/op/general_infer_helper.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FetchInst;
B
barrierye 已提交
36
using baidu::paddle_serving::predictor::general_model::ModelOutput;
37 38 39
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;

40
int GeneralResponseOp::inference() {
B
barrierye 已提交
41 42
  const std::vector<std::string> pre_node_names = pre_names();
  VLOG(2) << "pre node names size: " << pre_node_names.size();
B
barrierye 已提交
43

44
  const Request *req = dynamic_cast<const Request *>(get_request_message());
B
barrierye 已提交
45 46
  // response inst with only fetch_var_names
  Response *res = mutable_data<Response>();
47

G
guru4elephant 已提交
48
  Timer timeline;
B
barrierye 已提交
49
  // double response_time = 0.0;
G
guru4elephant 已提交
50 51 52
  // timeline.Start();
  int64_t start = timeline.TimeStampUS();

53 54 55
  VLOG(2) << "start to call load general model_conf op";
  baidu::paddle_serving::predictor::Resource &resource =
      baidu::paddle_serving::predictor::Resource::instance();
M
MRXLT 已提交
56

57 58 59 60
  VLOG(2) << "get resource pointer done.";
  std::shared_ptr<PaddleGeneralModelConfig> model_config =
      resource.get_general_model_config();

M
bug fix  
MRXLT 已提交
61 62
  VLOG(2) << "max body size : " << brpc::fLU64::FLAGS_max_body_size;

63 64 65 66 67 68
  std::vector<int> fetch_index;
  fetch_index.resize(req->fetch_var_names_size());
  for (int i = 0; i < req->fetch_var_names_size(); ++i) {
    fetch_index[i] =
        model_config->_fetch_alias_name_to_index[req->fetch_var_names(i)];
  }
M
MRXLT 已提交
69

B
barrierye 已提交
70
  const GeneralBlob *input_blob;
B
barrierye 已提交
71
  for (uint32_t pi = 0; pi < pre_node_names.size(); ++pi) {
B
barrierye 已提交
72 73
    const std::string &pre_name = pre_node_names[pi];
    VLOG(2) << "pre names[" << pi << "]: " << pre_name << " ("
B
barrierye 已提交
74
            << pre_node_names.size() << ")";
B
barrierye 已提交
75 76 77
    input_blob = get_depend_argument<GeneralBlob>(pre_name);
    // fprintf(stderr, "input(%s) blob address %x\n", pre_names.c_str(),
    // input_blob);
B
barrierye 已提交
78
    if (!input_blob) {
B
barrierye 已提交
79
      LOG(ERROR) << "Failed mutable depended argument, op: " << pre_name;
B
barrierye 已提交
80 81
      return -1;
    }
82

B
barrierye 已提交
83 84 85
    const TensorVector *in = &input_blob->tensor_vector;

    ModelOutput *output = res->add_outputs();
B
barrierye 已提交
86 87 88 89 90 91
    // To get the order of model return values
    output->set_engine_name(pre_name);
    FetchInst *fetch_inst = output->add_insts();
    for (auto &idx : fetch_index) {
      Tensor *tensor = fetch_inst->add_tensor_array();
      tensor->set_elem_type(1);
92
      if (model_config->_is_lod_fetch[idx]) {
B
barrierye 已提交
93 94 95 96
        VLOG(2) << "out[" << idx << "] is lod_tensor";
        for (int k = 0; k < in->at(idx).shape.size(); ++k) {
          VLOG(2) << "shape[" << k << "]: " << in->at(idx).shape[k];
          tensor->add_shape(in->at(idx).shape[k]);
97 98
        }
      } else {
B
barrierye 已提交
99 100 101 102
        VLOG(2) << "out[" << idx << "] is tensor";
        for (int k = 0; k < in->at(idx).shape.size(); ++k) {
          VLOG(2) << "shape[" << k << "]: " << in->at(idx).shape[k];
          tensor->add_shape(in->at(idx).shape[k]);
103 104 105 106
        }
      }
    }

B
barrierye 已提交
107 108 109
    int var_idx = 0;
    for (auto &idx : fetch_index) {
      int cap = 1;
B
barrierye 已提交
110
      for (int j = 0; j < in->at(idx).shape.size(); ++j) {
B
barrierye 已提交
111 112 113 114 115
        cap *= in->at(idx).shape[j];
      }
      if (in->at(idx).dtype == paddle::PaddleDType::INT64) {
        int64_t *data_ptr = static_cast<int64_t *>(in->at(idx).data.data());
        if (model_config->_is_lod_fetch[idx]) {
B
barrierye 已提交
116 117 118 119 120 121 122
          FetchInst *fetch_p = output->mutable_insts(0);
          for (int j = 0; j < in->at(idx).lod[0].size(); ++j) {
            fetch_p->mutable_tensor_array(var_idx)->add_lod(
                in->at(idx).lod[0][j]);
          }
          for (int j = 0; j < cap; ++j) {
            fetch_p->mutable_tensor_array(var_idx)->add_int64_data(data_ptr[j]);
123 124
          }
        } else {
B
barrierye 已提交
125 126
          FetchInst *fetch_p = output->mutable_insts(0);
          for (int j = 0; j < cap; ++j) {
B
barrierye 已提交
127
            fetch_p->mutable_tensor_array(var_idx)->add_int64_data(data_ptr[j]);
M
MRXLT 已提交
128 129
          }
        }
B
barrierye 已提交
130 131 132 133
        var_idx++;
      } else if (in->at(idx).dtype == paddle::PaddleDType::FLOAT32) {
        float *data_ptr = static_cast<float *>(in->at(idx).data.data());
        if (model_config->_is_lod_fetch[idx]) {
B
barrierye 已提交
134 135 136 137 138 139 140
          FetchInst *fetch_p = output->mutable_insts(0);
          for (int j = 0; j < in->at(idx).lod[0].size(); ++j) {
            fetch_p->mutable_tensor_array(var_idx)->add_lod(
                in->at(idx).lod[0][j]);
          }
          for (int j = 0; j < cap; ++j) {
            fetch_p->mutable_tensor_array(var_idx)->add_float_data(data_ptr[j]);
141 142
          }
        } else {
B
barrierye 已提交
143 144 145
          FetchInst *fetch_p = output->mutable_insts(0);
          for (int j = 0; j < cap; ++j) {
            fetch_p->mutable_tensor_array(var_idx)->add_float_data(data_ptr[j]);
146
          }
147
        }
B
barrierye 已提交
148
        var_idx++;
149 150 151
      }
    }
  }
G
guru4elephant 已提交
152

153 154
  if (req->profile_server()) {
    int64_t end = timeline.TimeStampUS();
155 156 157 158 159 160
    // TODO(barriery): multi-model profile_time.
    // At present, only the response_op is multi-input, so here we get
    // the profile_time by hard coding. It needs to be replaced with
    // a more elegant way.
    for (uint32_t pi = 0; pi < pre_node_names.size(); ++pi) {
      input_blob = get_depend_argument<GeneralBlob>(pre_node_names[pi]);
B
barrierye 已提交
161
      VLOG(2) << "p size for input blob: " << input_blob->p_size;
162 163 164 165 166 167 168 169
      int profile_time_idx = -1;
      if (pi == 0) {
        profile_time_idx = 0;
      } else {
        profile_time_idx = input_blob->p_size - 2;
      }
      for (; profile_time_idx < input_blob->p_size; ++profile_time_idx) {
        res->add_profile_time(input_blob->time_stamp[profile_time_idx]);
B
barrierye 已提交
170
      }
171 172 173 174
    }
    // TODO(guru4elephant): find more elegant way to do this
    res->add_profile_time(start);
    res->add_profile_time(end);
G
guru4elephant 已提交
175 176
  }

177 178
  return 0;
}
179 180

DEFINE_OP(GeneralResponseOp);
181 182 183 184

}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu