general_response_op.cpp 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

M
MRXLT 已提交
15
#include "core/general-server/op/general_response_op.h"
16 17
#include <algorithm>
#include <iostream>
M
MRXLT 已提交
18
#include <map>
19 20
#include <memory>
#include <sstream>
M
MRXLT 已提交
21
#include <utility>
22
#include "core/general-server/op/general_infer_helper.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FetchInst;
B
barrierye 已提交
38
using baidu::paddle_serving::predictor::general_model::ModelOutput;
39 40 41
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;

42
int GeneralResponseOp::inference() {
B
barrierye 已提交
43 44
  const std::vector<std::string> pre_node_names = pre_names();
  VLOG(2) << "pre node names size: " << pre_node_names.size();
B
barrierye 已提交
45

46
  const Request *req = dynamic_cast<const Request *>(get_request_message());
B
barrierye 已提交
47 48
  // response inst with only fetch_var_names
  Response *res = mutable_data<Response>();
49

G
guru4elephant 已提交
50
  Timer timeline;
B
barrierye 已提交
51
  // double response_time = 0.0;
G
guru4elephant 已提交
52 53 54
  // timeline.Start();
  int64_t start = timeline.TimeStampUS();

55 56 57
  VLOG(2) << "start to call load general model_conf op";
  baidu::paddle_serving::predictor::Resource &resource =
      baidu::paddle_serving::predictor::Resource::instance();
M
MRXLT 已提交
58

59 60 61 62
  VLOG(2) << "get resource pointer done.";
  std::shared_ptr<PaddleGeneralModelConfig> model_config =
      resource.get_general_model_config();

M
bug fix  
MRXLT 已提交
63 64
  VLOG(2) << "max body size : " << brpc::fLU64::FLAGS_max_body_size;

65 66 67 68 69 70
  std::vector<int> fetch_index;
  fetch_index.resize(req->fetch_var_names_size());
  for (int i = 0; i < req->fetch_var_names_size(); ++i) {
    fetch_index[i] =
        model_config->_fetch_alias_name_to_index[req->fetch_var_names(i)];
  }
M
MRXLT 已提交
71

B
barrierye 已提交
72
  const GeneralBlob *input_blob;
B
barrierye 已提交
73
  for (uint32_t pi = 0; pi < pre_node_names.size(); ++pi) {
B
barrierye 已提交
74 75
    const std::string &pre_name = pre_node_names[pi];
    VLOG(2) << "pre names[" << pi << "]: " << pre_name << " ("
B
barrierye 已提交
76
            << pre_node_names.size() << ")";
B
barrierye 已提交
77 78 79
    input_blob = get_depend_argument<GeneralBlob>(pre_name);
    // fprintf(stderr, "input(%s) blob address %x\n", pre_names.c_str(),
    // input_blob);
B
barrierye 已提交
80
    if (!input_blob) {
B
barrierye 已提交
81
      LOG(ERROR) << "Failed mutable depended argument, op: " << pre_name;
B
barrierye 已提交
82 83
      return -1;
    }
84

B
barrierye 已提交
85 86 87
    const TensorVector *in = &input_blob->tensor_vector;

    ModelOutput *output = res->add_outputs();
B
barrierye 已提交
88 89 90
    // To get the order of model return values
    output->set_engine_name(pre_name);
    FetchInst *fetch_inst = output->add_insts();
M
MRXLT 已提交
91 92 93 94 95 96 97

    std::map<std::string, int> fetch_index_map;
    for (int i = 0; i < in->size(); ++i) {
      VLOG(2) << "index " << i << " var " << in->at(i).name;
      fetch_index_map.insert(std::pair<std::string, int>(in->at(i).name, i));
    }

B
barrierye 已提交
98 99 100
    for (auto &idx : fetch_index) {
      Tensor *tensor = fetch_inst->add_tensor_array();
      tensor->set_elem_type(1);
M
MRXLT 已提交
101
      int true_idx = fetch_index_map[model_config->_fetch_name[idx]];
102
      if (model_config->_is_lod_fetch[idx]) {
M
MRXLT 已提交
103 104 105
        VLOG(2) << "out[" << idx << "] " << model_config->_fetch_name[idx]
                << " is lod_tensor";
        for (int k = 0; k < in->at(true_idx).shape.size(); ++k) {
B
barrierye 已提交
106
          VLOG(2) << "shape[" << k << "]: " << in->at(idx).shape[k];
M
MRXLT 已提交
107
          tensor->add_shape(in->at(true_idx).shape[k]);
108 109
        }
      } else {
M
MRXLT 已提交
110 111 112 113 114
        VLOG(2) << "out[" << idx << "] " << model_config->_fetch_name[idx]
                << " is tensor";
        for (int k = 0; k < in->at(true_idx).shape.size(); ++k) {
          VLOG(2) << "shape[" << k << "]: " << in->at(true_idx).shape[k];
          tensor->add_shape(in->at(true_idx).shape[k]);
115 116 117 118
        }
      }
    }

B
barrierye 已提交
119 120
    int var_idx = 0;
    for (auto &idx : fetch_index) {
M
MRXLT 已提交
121
      int true_idx = fetch_index_map[model_config->_fetch_name[idx]];
B
barrierye 已提交
122
      int cap = 1;
M
MRXLT 已提交
123 124
      for (int j = 0; j < in->at(true_idx).shape.size(); ++j) {
        cap *= in->at(true_idx).shape[j];
B
barrierye 已提交
125
      }
M
MRXLT 已提交
126 127 128 129 130
      if (in->at(true_idx).dtype == paddle::PaddleDType::INT64) {
        VLOG(2) << "Prepare float var [" << model_config->_fetch_name[idx]
                << "].";
        int64_t *data_ptr =
            static_cast<int64_t *>(in->at(true_idx).data.data());
B
barrierye 已提交
131
        if (model_config->_is_lod_fetch[idx]) {
B
barrierye 已提交
132
          FetchInst *fetch_p = output->mutable_insts(0);
M
MRXLT 已提交
133
          for (int j = 0; j < in->at(true_idx).lod[0].size(); ++j) {
B
barrierye 已提交
134
            fetch_p->mutable_tensor_array(var_idx)->add_lod(
M
MRXLT 已提交
135
                in->at(true_idx).lod[0][j]);
B
barrierye 已提交
136 137 138
          }
          for (int j = 0; j < cap; ++j) {
            fetch_p->mutable_tensor_array(var_idx)->add_int64_data(data_ptr[j]);
139 140
          }
        } else {
B
barrierye 已提交
141 142
          FetchInst *fetch_p = output->mutable_insts(0);
          for (int j = 0; j < cap; ++j) {
B
barrierye 已提交
143
            fetch_p->mutable_tensor_array(var_idx)->add_int64_data(data_ptr[j]);
M
MRXLT 已提交
144 145
          }
        }
M
MRXLT 已提交
146
        VLOG(2) << "fetch var [" << model_config->_fetch_name[idx] << "] ready";
B
barrierye 已提交
147
        var_idx++;
M
MRXLT 已提交
148 149 150 151
      } else if (in->at(true_idx).dtype == paddle::PaddleDType::FLOAT32) {
        VLOG(2) << "Prepare float var [" << model_config->_fetch_name[idx]
                << "].";
        float *data_ptr = static_cast<float *>(in->at(true_idx).data.data());
B
barrierye 已提交
152
        if (model_config->_is_lod_fetch[idx]) {
B
barrierye 已提交
153
          FetchInst *fetch_p = output->mutable_insts(0);
M
MRXLT 已提交
154
          for (int j = 0; j < in->at(true_idx).lod[0].size(); ++j) {
B
barrierye 已提交
155
            fetch_p->mutable_tensor_array(var_idx)->add_lod(
M
MRXLT 已提交
156
                in->at(true_idx).lod[0][j]);
B
barrierye 已提交
157 158 159
          }
          for (int j = 0; j < cap; ++j) {
            fetch_p->mutable_tensor_array(var_idx)->add_float_data(data_ptr[j]);
160 161
          }
        } else {
B
barrierye 已提交
162 163 164
          FetchInst *fetch_p = output->mutable_insts(0);
          for (int j = 0; j < cap; ++j) {
            fetch_p->mutable_tensor_array(var_idx)->add_float_data(data_ptr[j]);
165
          }
166
        }
M
MRXLT 已提交
167
        VLOG(2) << "fetch var [" << model_config->_fetch_name[idx] << "] ready";
B
barrierye 已提交
168
        var_idx++;
169 170 171
      }
    }
  }
G
guru4elephant 已提交
172

173 174
  if (req->profile_server()) {
    int64_t end = timeline.TimeStampUS();
175 176 177 178 179 180
    // TODO(barriery): multi-model profile_time.
    // At present, only the response_op is multi-input, so here we get
    // the profile_time by hard coding. It needs to be replaced with
    // a more elegant way.
    for (uint32_t pi = 0; pi < pre_node_names.size(); ++pi) {
      input_blob = get_depend_argument<GeneralBlob>(pre_node_names[pi]);
B
barrierye 已提交
181
      VLOG(2) << "p size for input blob: " << input_blob->p_size;
182 183 184 185 186 187 188 189
      int profile_time_idx = -1;
      if (pi == 0) {
        profile_time_idx = 0;
      } else {
        profile_time_idx = input_blob->p_size - 2;
      }
      for (; profile_time_idx < input_blob->p_size; ++profile_time_idx) {
        res->add_profile_time(input_blob->time_stamp[profile_time_idx]);
B
barrierye 已提交
190
      }
191 192 193 194
    }
    // TODO(guru4elephant): find more elegant way to do this
    res->add_profile_time(start);
    res->add_profile_time(end);
G
guru4elephant 已提交
195 196
  }

197 198
  return 0;
}
199 200

DEFINE_OP(GeneralResponseOp);
201 202 203 204

}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu