infer.h 20.6 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <pthread.h>
W
wangguibao 已提交
17
#include <sys/stat.h>
W
wangguibao 已提交
18
#include <sys/types.h>
W
wangguibao 已提交
19
#include <unistd.h>
H
HexToString 已提交
20
#include <functional>
21
#include <numeric>
W
wangguibao 已提交
22
#include <string>
M
MRXLT 已提交
23
#include <utility>
W
wangguibao 已提交
24
#include <vector>
G
guru4elephant 已提交
25
#include "core/predictor/common/inner_common.h"
H
HexToString 已提交
26
#include "core/predictor/framework/bsf.h"
G
guru4elephant 已提交
27 28
#include "core/predictor/framework/factory.h"
#include "core/predictor/framework/infer_data.h"
29
#include "core/predictor/framework/memory.h"
W
wangjiawei04 已提交
30
#include "paddle_inference_api.h"  // NOLINT
W
wangguibao 已提交
31 32 33 34
namespace baidu {
namespace paddle_serving {
namespace predictor {

W
wangguibao 已提交
35 36
using configure::ModelToolkitConf;

Z
zhangjun 已提交
37 38 39 40 41 42 43 44 45 46 47
class AutoLock {
 public:
  explicit AutoLock(pthread_mutex_t& mutex) : _mut(mutex) {
    pthread_mutex_lock(&mutex);
  }
  ~AutoLock() { pthread_mutex_unlock(&_mut); }

 private:
  pthread_mutex_t& _mut;
};

Z
update  
zhangjun 已提交
48
class GlobalCreateMutex {
Z
zhangjun 已提交
49 50 51 52
 public:
  pthread_mutex_t& mutex() { return _mut; }

  static pthread_mutex_t& instance() {
Z
update  
zhangjun 已提交
53
    static GlobalCreateMutex gmutex;
Z
zhangjun 已提交
54 55 56 57
    return gmutex.mutex();
  }

 private:
Z
update  
zhangjun 已提交
58
  GlobalCreateMutex() { pthread_mutex_init(&_mut, NULL); }
Z
zhangjun 已提交
59 60 61
  pthread_mutex_t _mut;
};

W
wangguibao 已提交
62
class InferEngine {
W
wangguibao 已提交
63 64 65 66 67 68 69 70 71 72
 public:
  virtual ~InferEngine() {}

  virtual int proc_initialize(const configure::EngineDesc& conf, bool version) {
    return proc_initialize_impl(conf, version);
  }
  virtual int proc_finalize() { return proc_finalize_impl(); }
  virtual int thrd_initialize() { return thrd_initialize_impl(); }
  virtual int thrd_clear() { return thrd_clear_impl(); }
  virtual int thrd_finalize() { return thrd_finalize_impl(); }
H
HexToString 已提交
73 74 75
  virtual int infer(const void* in, void* out, uint32_t batch_size = -1) {
    return infer_impl(in, out, batch_size);
  }
H
HexToString 已提交
76
  virtual void set_model_index(uint32_t index) { _model_index = index; }
W
wangguibao 已提交
77 78 79 80 81 82 83 84 85 86 87
  virtual int reload() = 0;

  virtual uint64_t version() const = 0;

  // begin: framework inner call
  virtual int proc_initialize_impl(const configure::EngineDesc& conf,
                                   bool version) = 0;
  virtual int thrd_initialize_impl() = 0;
  virtual int thrd_finalize_impl() = 0;
  virtual int thrd_clear_impl() = 0;
  virtual int proc_finalize_impl() = 0;
H
HexToString 已提交
88
  virtual int infer_impl(const void* in,
89 90
                         void* out,
                         uint32_t batch_size = -1) = 0;
91
  virtual int task_infer_impl(const void* in, void* out) = 0;  // NOLINT
H
HexToString 已提交
92

H
HexToString 已提交
93 94
 protected:
  uint32_t _model_index;
W
wangguibao 已提交
95 96
  // end: framework inner call
};
H
HexToString 已提交
97
typedef im::bsf::Task<paddle::PaddleTensor, paddle::PaddleTensor> TaskT;
W
wangguibao 已提交
98 99 100
class ReloadableInferEngine : public InferEngine {
 public:
  virtual ~ReloadableInferEngine() {}
W
wangguibao 已提交
101

102 103 104 105 106
  // Reloadable record
  union ReloadableRecord {
    time_t timestamp;
    uint64_t md5sum;
    uint64_t revision;
W
wangguibao 已提交
107
  };
W
wangguibao 已提交
108

Z
update  
zhangjun 已提交
109
  virtual int load(const configure::EngineDesc& conf) = 0;
W
wangguibao 已提交
110

111
  int proc_initialize_impl(const configure::EngineDesc& conf, bool version);
W
wangguibao 已提交
112

113
  int proc_initialize(const configure::EngineDesc& conf, bool version);
H
HexToString 已提交
114

115
  int infer(const void* in, void* out, uint32_t batch_size = -1);
W
wangguibao 已提交
116

117
  int thrd_initialize();
W
wangguibao 已提交
118

119
  int thrd_clear();
W
wangguibao 已提交
120

121
  int proc_finalize();
W
wangguibao 已提交
122

123
  int reload();
W
wangguibao 已提交
124 125 126

  uint64_t version() const { return _version; }
  uint32_t thread_num() const { return _infer_thread_num; }
W
wangguibao 已提交
127

W
wangguibao 已提交
128
 private:
129
  int parse_version_info(const configure::EngineDesc& config, bool version);
W
wangguibao 已提交
130

131
  bool check_need_reload();
W
wangguibao 已提交
132

133
  bool check_timestamp_ne();
W
wangguibao 已提交
134

135
  bool check_timestamp_gt();
W
wangguibao 已提交
136 137 138 139 140 141

  bool check_md5sum() { return false; }

  bool check_revision() { return false; }

 protected:
142 143 144 145
  // Model directory
  std::string _model_dir;

  // The description of inference engine
Z
update  
zhangjun 已提交
146
  configure::EngineDesc _conf;
W
wangguibao 已提交
147 148

 private:
149
  // Tag file of reloadable model
W
wangguibao 已提交
150
  std::string _reload_tag_file;
151 152 153 154 155 156 157 158

  // Type of reload, e.g. timestamp_ne, timestamp_gt, md5sum, reversion
  std::string _reload_type;

  // Record the last loading infermation
  ReloadableRecord _last_record;

  // Number of inference threads
W
wangguibao 已提交
159
  uint32_t _infer_thread_num;
160 161

  // Size of inference batch
W
wangguibao 已提交
162
  uint32_t _infer_batch_size;
163 164

  // Need to align batch_size in inferring
W
wangguibao 已提交
165
  bool _infer_batch_align;
166 167

  // model version
W
wangguibao 已提交
168 169
  uint64_t _version;
};
W
wangguibao 已提交
170

171
// Lock free switching two models
W
wangguibao 已提交
172 173 174 175 176 177 178 179 180 181 182 183
template <typename EngineCore>
struct ModelData {
  ModelData() : current_idx(1) {
    cores[0] = NULL;
    cores[1] = NULL;
  }

  ~ModelData() {
    delete cores[0];
    delete cores[1];
  }

184 185
  void* get() { return cores[current_idx]->get(); }

W
wangguibao 已提交
186 187 188 189 190 191 192 193 194 195 196 197
  EngineCore* cores[2];
  uint32_t current_idx;
};

template <typename EngineCore>
class DBReloadableInferEngine : public ReloadableInferEngine {
 public:
  virtual ~DBReloadableInferEngine() {}

  int proc_initialize(const configure::EngineDesc& conf, bool version) {
    THREAD_KEY_CREATE(&_skey, NULL);
    THREAD_MUTEX_INIT(&_mutex, NULL);
198
    gpu_index = 0;
W
wangguibao 已提交
199 200 201
    return ReloadableInferEngine::proc_initialize(conf, version);
  }

202 203 204 205 206
  // 进程初始化会调用load,但由于未执行线程初始化,所以_reload_vec为空,不再继续执行。
  // 热加载的话会调用load,由于线程已经初始化,_reload_vec不为空,所以继续执行load_data操作加载数据。
  // 线程初始化会执行load_data操作加载数据,然后将engine加入_reload_vec中。
  // 每个模型只有一个CloneDBReloadableInferEngine对象。
  // 但一个CloneDBReloadableInferEngine对象,可以包含N个EngineCore。
Z
update  
zhangjun 已提交
207
  virtual int load(const configure::EngineDesc& conf) {
W
wangguibao 已提交
208 209
    if (_reload_vec.empty()) {
      return 0;
W
wangguibao 已提交
210
    }
211
    gpu_index = 0;
W
wangguibao 已提交
212
    for (uint32_t ti = 0; ti < _reload_vec.size(); ++ti) {
Z
update  
zhangjun 已提交
213
      if (load_data(_reload_vec[ti], conf) != 0) {
W
wangguibao 已提交
214 215 216 217 218
        LOG(ERROR) << "Failed reload engine model: " << ti;
        return -1;
      }
    }

Z
update  
zhangjun 已提交
219
    LOG(WARNING) << "Succ load engine, path: " << conf.model_dir();
W
wangguibao 已提交
220 221
    return 0;
  }
W
wangguibao 已提交
222

223 224
  virtual int load_data(ModelData<EngineCore>* md,
                        const configure::EngineDesc& conf) {
W
wangguibao 已提交
225 226 227
    uint32_t next_idx = (md->current_idx + 1) % 2;
    if (md->cores[next_idx]) {
      delete md->cores[next_idx];
W
wangguibao 已提交
228 229
    }

W
wangguibao 已提交
230
    md->cores[next_idx] = new (std::nothrow) EngineCore;
231

H
HexToString 已提交
232
    // params.dump();
233 234 235 236 237 238 239 240
    size_t gpu_ids_num = conf.gpu_ids_size();
    im::bsf::AutoMutex lock(_mutex);
    int gpu_id = -1;
    if (gpu_ids_num > 0) {
      gpu_id = conf.gpu_ids(gpu_index % gpu_ids_num);
    }
    if (!md->cores[next_idx] ||
        md->cores[next_idx]->create(conf, gpu_id) != 0) {
Z
update  
zhangjun 已提交
241
      LOG(ERROR) << "Failed create model, path: " << conf.model_dir();
W
wangguibao 已提交
242
      return -1;
W
wangguibao 已提交
243
    }
244
    gpu_index++;
W
wangguibao 已提交
245 246 247
    md->current_idx = next_idx;
    return 0;
  }
W
wangguibao 已提交
248

W
wangguibao 已提交
249 250
  virtual int thrd_initialize_impl() {
    ModelData<EngineCore>* md = new (std::nothrow) ModelData<EngineCore>;
Z
update  
zhangjun 已提交
251
    if (!md || load_data(md, _conf) != 0) {
252
      LOG(ERROR) << "Failed create thread data from " << _conf.model_dir();
W
wangguibao 已提交
253
      return -1;
W
wangguibao 已提交
254 255
    }

W
wangguibao 已提交
256
    THREAD_SETSPECIFIC(_skey, md);
H
HexToString 已提交
257
    im::bsf::AutoMutex lock(_mutex);
W
wangguibao 已提交
258 259 260 261 262
    _reload_vec.push_back(md);
    return 0;
  }

  int thrd_clear_impl() {
263 264 265 266
    // actually, there are 2 kinds of multi-thread.
    // 1. brpc thread 2. bsf Task thread
    // each request is in 1-single brpc thread.
    // IF (bsf Task thread is not used)
H
HexToString 已提交
267 268 269 270 271 272 273 274 275 276
    // every single brpc thread corresponds to all the DBReloadableInferEngines.
    // each request runs all models in 1-single brpc thread.
    // every single brpc thread will create or clone N predictor.
    // N = the number of Model.
    // so if there are 2 models, and --thread 10.
    // each brpc thread will create predictor of Model-1 and Model-2.
    // there are totally 10 predictors of Model-1 and 10 predictors of Model-2
    // cause there are 10 brpc threads.

    // IF bsf Task thread is used。
277
    // there will be a ThreadPool called bsf TaskExecutor.
H
HexToString 已提交
278 279 280 281 282 283
    // TaskExecutorVector is the vector of TaskExecutor.
    // the number of TaskExecutor equals to the number of Model.
    // 1 TaskExecutor corresponding to 1 Model.
    // 1 TaskExecutor have N bsf threads.
    // 1 bsf thread corresponds to 1 predictor of
    // the Model corresponding to the TaskExecutor.
284 285 286 287 288 289
    // brpc thread only put the data into the task_queue(which is in
    // TaskExecutor)
    // EngineCore->infer() is running in bsf Task thread.

    // MempoolWrapper::instance() is actually a Thread-Local Mempool.
    // so it belongs to a single Thread.
W
wangguibao 已提交
290 291 292 293
    return 0;
  }

  int thrd_finalize_impl() { return 0; }
W
wangguibao 已提交
294

W
wangguibao 已提交
295 296 297 298 299
  int proc_finalize_impl() {
    THREAD_KEY_DELETE(_skey);
    THREAD_MUTEX_DESTROY(&_mutex);
    return 0;
  }
W
wangguibao 已提交
300

W
wangguibao 已提交
301 302 303 304 305 306
  EngineCore* get_core() {
    ModelData<EngineCore>* md =
        (ModelData<EngineCore>*)THREAD_GETSPECIFIC(_skey);
    if (!md) {
      LOG(ERROR) << "Failed get thread specific data";
      return NULL;
W
wangguibao 已提交
307
    }
W
wangguibao 已提交
308 309
    return md->cores[md->current_idx];
  }
W
wangguibao 已提交
310

W
wangguibao 已提交
311 312 313 314
 protected:
  THREAD_KEY_T _skey;
  THREAD_MUTEX_T _mutex;
  std::vector<ModelData<EngineCore>*> _reload_vec;
315
  int gpu_index = 0;
W
wangguibao 已提交
316
};
W
wangguibao 已提交
317

W
wangguibao 已提交
318 319 320 321 322 323 324
// 多个EngineCore共用同一份模型数据
template <typename EngineCore>
class CloneDBReloadableInferEngine
    : public DBReloadableInferEngine<EngineCore> {
 public:
  virtual ~CloneDBReloadableInferEngine() {}

325 326 327 328 329
  // 进程初始化会调用load,但由于未执行线程初始化,所以_reload_vec为空,不再继续执行。
  // 热加载的话会调用load,由于线程已经初始化,_reload_vec不为空,所以继续执行load_data操作加载数据。
  // 线程初始化会执行load_data操作加载数据,然后将engine加入_reload_vec中。
  // 每个模型只有一个CloneDBReloadableInferEngine对象。
  // 但一个CloneDBReloadableInferEngine对象,可以包含N个EngineCore。
W
wangguibao 已提交
330

331 332 333 334 335
  virtual int load_data(ModelData<EngineCore>* md,
                        const configure::EngineDesc& conf) {
    uint32_t next_idx = (md->current_idx + 1) % 2;
    if (md->cores[next_idx]) {
      delete md->cores[next_idx];
W
wangguibao 已提交
336
    }
337
    md->cores[next_idx] = new (std::nothrow) EngineCore;
W
wangguibao 已提交
338

339
    // params.dump();
H
HexToString 已提交
340 341 342 343 344
    // gpu_ids_num > 0 is always true.
    // if use CPU, gpu_ids = [-1].
    // if gpu_ids_num = 0, which means no gpuid is given.
    // so we should set gpu_ids_num = 1, and gpu_id = -1.
    // so that we can create at least 1 predictor.
345 346 347 348 349 350
    size_t gpu_ids_num = conf.gpu_ids_size();
    im::bsf::AutoMutex lock(DBReloadableInferEngine<EngineCore>::_mutex);
    int gpu_id = -1;
    if (gpu_ids_num > 0) {
      gpu_id = conf.gpu_ids(DBReloadableInferEngine<EngineCore>::gpu_index %
                            gpu_ids_num);
H
HexToString 已提交
351 352
    } else {
      gpu_ids_num = 1;
W
wangguibao 已提交
353
    }
354
    // gpu_index will be set to be 0, when load() or proc_initial() is called.
H
HexToString 已提交
355 356
    // gpu_index < gpu_ids_num, means there are predictors still not create
    // on some GPU card.
357 358 359 360 361 362 363
    // so we need to create the predictor.
    // gpu_index >= gpu_ids_num, means each GPU card has already create one.
    // so we need to clone the predictor.
    if (DBReloadableInferEngine<EngineCore>::gpu_index < gpu_ids_num) {
      if (!md->cores[next_idx] ||
          md->cores[next_idx]->create(conf, gpu_id) != 0) {
        LOG(ERROR) << "Failed create model, path: " << conf.model_dir();
W
wangguibao 已提交
364 365
        return -1;
      }
366 367 368 369 370 371 372 373 374
      DBReloadableInferEngine<EngineCore>::gpu_index++;
      md->current_idx = next_idx;
      if (_cloneTemplate.size() <
          DBReloadableInferEngine<EngineCore>::gpu_index) {
        _cloneTemplate.push_back(md);
      } else {
        _cloneTemplate[DBReloadableInferEngine<EngineCore>::gpu_index - 1] = md;
      }
    } else {
H
HexToString 已提交
375 376
      int template_index = DBReloadableInferEngine<EngineCore>::gpu_index %
                           _cloneTemplate.size();
377
      if (!md->cores[next_idx] ||
H
HexToString 已提交
378 379
          md->cores[next_idx]->clone(_cloneTemplate[template_index]->get()) !=
              0) {
380 381 382 383 384 385 386
        LOG(ERROR) << "Failed clone model from core";
        return -1;
      }
      DBReloadableInferEngine<EngineCore>::gpu_index++;
      md->current_idx = next_idx;
      LOG(WARNING) << "core clone model succ, cur_idx[" << md->current_idx
                   << "].";
W
wangguibao 已提交
387 388
    }

W
wangguibao 已提交
389 390
    return 0;
  }
W
wangguibao 已提交
391

W
wangguibao 已提交
392
 protected:
393
  // 模板EngineCore,如果已创建,则多个线程级EngineCore共用该对象的模型数据
H
HexToString 已提交
394
  std::vector<ModelData<EngineCore>*> _cloneTemplate;
W
wangguibao 已提交
395 396
};

H
HexToString 已提交
397
template <typename EngineCore>
M
bug fix  
MRXLT 已提交
398
#ifdef WITH_TRT
H
HexToString 已提交
399
class FluidInferEngine : public DBReloadableInferEngine<EngineCore> {
M
bug fix  
MRXLT 已提交
400
#else
H
HexToString 已提交
401
class FluidInferEngine : public CloneDBReloadableInferEngine<EngineCore> {
M
bug fix  
MRXLT 已提交
402 403
#endif
 public:  // NOLINT
W
wangguibao 已提交
404 405
  FluidInferEngine() {}
  ~FluidInferEngine() {}
H
HexToString 已提交
406
  typedef std::vector<paddle::PaddleTensor> TensorVector;
H
HexToString 已提交
407
  int infer_impl(const void* in, void* out, uint32_t batch_size = -1) {
H
HexToString 已提交
408 409 410
    // First of all, get the real core acording to the
    // Template parameter <EngineCore>.
    EngineCore* core = DBReloadableInferEngine<EngineCore>::get_core();
W
wangguibao 已提交
411 412 413
    if (!core || !core->get()) {
      LOG(ERROR) << "Failed get fluid core in infer_impl()";
      return -1;
W
wangguibao 已提交
414
    }
H
HexToString 已提交
415 416 417 418 419 420
    // We use the for loop to process the input data.
    // Inside each for loop, use the in[i]->name as inputName and call
    // 'core->GetInputHandle(inputName)' to get the pointer of InputData.
    // Set the lod and shape information of InputData first.
    // Then copy data from cpu to the core.
    const TensorVector* tensorVector_in_pointer =
421 422
        reinterpret_cast<const TensorVector*>(in);
    for (int i = 0; i < tensorVector_in_pointer->size(); ++i) {
H
HexToString 已提交
423
      auto lod_tensor_in =
424
          core->GetInputHandle((*tensorVector_in_pointer)[i].name);
H
HexToString 已提交
425 426 427
      lod_tensor_in->SetLoD((*tensorVector_in_pointer)[i].lod);
      lod_tensor_in->Reshape((*tensorVector_in_pointer)[i].shape);
      void* origin_data = (*tensorVector_in_pointer)[i].data.data();
H
HexToString 已提交
428 429 430 431
      // Because the core needs to determine the size of memory space
      // according to the data type passed in.
      // The pointer type of data must be one of
      // float *,int64_t*,int32_t* instead void*.
H
HexToString 已提交
432
      if ((*tensorVector_in_pointer)[i].dtype == paddle::PaddleDType::FLOAT32) {
H
HexToString 已提交
433
        float* data = static_cast<float*>(origin_data);
H
HexToString 已提交
434
        lod_tensor_in->CopyFromCpu(data);
H
HexToString 已提交
435
      } else if ((*tensorVector_in_pointer)[i].dtype ==
436
                 paddle::PaddleDType::INT64) {
H
HexToString 已提交
437
        int64_t* data = static_cast<int64_t*>(origin_data);
H
HexToString 已提交
438
        lod_tensor_in->CopyFromCpu(data);
H
HexToString 已提交
439
      } else if ((*tensorVector_in_pointer)[i].dtype ==
440
                 paddle::PaddleDType::INT32) {
H
HexToString 已提交
441
        int32_t* data = static_cast<int32_t*>(origin_data);
H
HexToString 已提交
442
        lod_tensor_in->CopyFromCpu(data);
H
HexToString 已提交
443
      }
W
wangjiawei04 已提交
444
    }
H
HexToString 已提交
445 446
    // After the input data is passed in,
    // call 'core->Run()' perform the prediction process.
W
wangjiawei04 已提交
447
    if (!core->Run()) {
448 449
      LOG(ERROR) << "Failed run fluid family core";
      return -1;
W
wangjiawei04 已提交
450
    }
H
HexToString 已提交
451 452 453 454
    // In order to get the results,
    // first, call the 'core->GetOutputNames()' to get the name of output
    // (which is a dict like {OutputName:pointer of OutputValue}).
    // Then, use for-loop to get OutputValue by calling 'core->GetOutputHandle'.
H
HexToString 已提交
455
    std::vector<std::string> outnames = core->GetOutputNames();
H
HexToString 已提交
456
    std::vector<int> output_shape;
H
HexToString 已提交
457 458
    int out_num = 0;
    int dataType = 0;
H
HexToString 已提交
459 460 461
    void* databuf_data = NULL;
    char* databuf_char = NULL;
    size_t databuf_size = 0;
H
HexToString 已提交
462
    TensorVector* tensorVector_out_pointer =
463
        reinterpret_cast<TensorVector*>(out);
H
HexToString 已提交
464
    if (!tensorVector_out_pointer) {
H
HexToString 已提交
465
      LOG(ERROR) << "tensorVector_out_pointer is nullptr,error";
W
wangguibao 已提交
466 467
      return -1;
    }
H
HexToString 已提交
468 469 470 471
    // Get the type and shape information of OutputData first.
    // then copy data to cpu from the core.
    // The pointer type of data_out must be one of
    // float *,int64_t*,int32_t* instead void*.
472
    for (int i = 0; i < outnames.size(); ++i) {
H
HexToString 已提交
473
      auto lod_tensor_out = core->GetOutputHandle(outnames[i]);
H
HexToString 已提交
474
      output_shape = lod_tensor_out->shape();
H
HexToString 已提交
475 476
      out_num = std::accumulate(
          output_shape.begin(), output_shape.end(), 1, std::multiplies<int>());
H
HexToString 已提交
477
      dataType = lod_tensor_out->type();
H
HexToString 已提交
478
      if (dataType == paddle::PaddleDType::FLOAT32) {
479
        databuf_size = out_num * sizeof(float);
H
HexToString 已提交
480
        databuf_data = MempoolWrapper::instance().malloc(databuf_size);
H
HexToString 已提交
481
        if (!databuf_data) {
482 483
          LOG(ERROR) << "Malloc failed, size: " << databuf_size;
          return -1;
H
HexToString 已提交
484 485
        }
        float* data_out = reinterpret_cast<float*>(databuf_data);
H
HexToString 已提交
486
        lod_tensor_out->CopyToCpu(data_out);
H
HexToString 已提交
487
        databuf_char = reinterpret_cast<char*>(data_out);
H
HexToString 已提交
488
      } else if (dataType == paddle::PaddleDType::INT64) {
489
        databuf_size = out_num * sizeof(int64_t);
H
HexToString 已提交
490
        databuf_data = MempoolWrapper::instance().malloc(databuf_size);
H
HexToString 已提交
491
        if (!databuf_data) {
492 493
          LOG(ERROR) << "Malloc failed, size: " << databuf_size;
          return -1;
H
HexToString 已提交
494
        }
H
HexToString 已提交
495
        int64_t* data_out = reinterpret_cast<int64_t*>(databuf_data);
H
HexToString 已提交
496
        lod_tensor_out->CopyToCpu(data_out);
H
HexToString 已提交
497
        databuf_char = reinterpret_cast<char*>(data_out);
H
HexToString 已提交
498
      } else if (dataType == paddle::PaddleDType::INT32) {
499
        databuf_size = out_num * sizeof(int32_t);
H
HexToString 已提交
500
        databuf_data = MempoolWrapper::instance().malloc(databuf_size);
H
HexToString 已提交
501
        if (!databuf_data) {
502 503
          LOG(ERROR) << "Malloc failed, size: " << databuf_size;
          return -1;
H
HexToString 已提交
504 505 506 507
        }
        int32_t* data_out = reinterpret_cast<int32_t*>(databuf_data);
        lod_tensor_out->CopyToCpu(data_out);
        databuf_char = reinterpret_cast<char*>(data_out);
H
HexToString 已提交
508
      }
H
HexToString 已提交
509 510 511 512 513
      // Because task scheduling requires OPs to use 'Channel'
      // (which is a data structure) to transfer data between OPs.
      // We need to copy the processed data to the 'Channel' for the next OP.
      // In this function, it means we should copy the 'databuf_char' to
      // 'void* out'.(which is also called ‘tensorVector_out_pointer’)
H
HexToString 已提交
514 515 516 517 518
      paddle::PaddleTensor tensor_out;
      tensor_out.name = outnames[i];
      tensor_out.dtype = paddle::PaddleDType(dataType);
      tensor_out.shape.assign(output_shape.begin(), output_shape.end());
      std::vector<std::vector<size_t>> out_lod = lod_tensor_out->lod();
519
      for (int li = 0; li < out_lod.size(); ++li) {
H
HexToString 已提交
520 521 522 523
        std::vector<size_t> lod_element;
        lod_element.assign(out_lod[li].begin(), out_lod[li].end());
        tensor_out.lod.push_back(lod_element);
      }
H
HexToString 已提交
524
      paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
H
HexToString 已提交
525 526
      tensor_out.data = paddleBuf;
      tensorVector_out_pointer->push_back(tensor_out);
H
HexToString 已提交
527
    }
W
wangguibao 已提交
528 529
    return 0;
  }
H
HexToString 已提交
530

531 532
  int task_infer_impl(const void* in, void* out) {  // NOLINT
    return infer_impl(in, out);
H
HexToString 已提交
533
  }
W
wangguibao 已提交
534 535
};

W
wangguibao 已提交
536 537 538 539 540 541 542
typedef FactoryPool<InferEngine> StaticInferFactory;

class VersionedInferEngine : public InferEngine {
 public:
  VersionedInferEngine() { _versions.clear(); }
  ~VersionedInferEngine() {}

543
  int proc_initialize(const configure::EngineDesc& conf);
W
wangguibao 已提交
544

545
  int proc_initialize(const configure::EngineDesc& conf, bool version);
W
wangguibao 已提交
546

547
  int proc_finalize();
W
wangguibao 已提交
548

549
  int thrd_initialize();
W
wangguibao 已提交
550

551
  int thrd_clear();
W
wangguibao 已提交
552

553
  int thrd_finalize();
W
wangguibao 已提交
554

555
  int reload();
W
wangguibao 已提交
556

557
  uint64_t version() const;
W
wangguibao 已提交
558 559

  // inference interface
560
  InferEngine* default_engine() const;
W
wangguibao 已提交
561

562
  int infer(const void* in, void* out, uint32_t batch_size);
W
wangguibao 已提交
563 564

  template <typename T>
565
  T* get_core();
W
wangguibao 已提交
566 567

  // versioned inference interface
568
  int infer(const void* in, void* out, uint32_t batch_size, uint64_t version);
W
wangguibao 已提交
569 570

  template <typename T>
571
  T* get_core(uint64_t version);
W
wangguibao 已提交
572

573
  int proc_initialize_impl(const configure::EngineDesc& conf, bool);
W
wangguibao 已提交
574

575 576 577 578 579 580 581 582 583 584
  int thrd_initialize_impl();

  int thrd_finalize_impl();

  int thrd_clear_impl();

  int proc_finalize_impl();

  int infer_impl(const void* in, void* out, uint32_t batch_size = -1);

585
  int task_infer_impl(const void* in, void* out);
W
wangguibao 已提交
586 587 588

 private:
  boost::unordered_map<uint64_t, InferEngine*> _versions;
W
wangguibao 已提交
589 590
};

W
wangguibao 已提交
591 592 593 594 595 596 597
class InferManager {
 public:
  static InferManager& instance() {
    static InferManager ins;
    return ins;
  }

598
  int proc_initialize(const char* path, const char* file);
W
wangguibao 已提交
599

600
  int thrd_initialize();
W
wangguibao 已提交
601

602
  int thrd_clear();
W
wangguibao 已提交
603

604
  int reload();
W
wangguibao 已提交
605

606
  int thrd_finalize();
W
wangguibao 已提交
607

608
  int proc_finalize();
W
wangguibao 已提交
609 610

  // Inference interface
H
HexToString 已提交
611 612 613
  int infer(const char* model_name,
            const void* in,
            void* out,
614
            uint32_t batch_size = -1);
W
wangguibao 已提交
615 616

  template <typename T>
617
  T* get_core(const char* model_name);
W
wangguibao 已提交
618 619

  // Versioned inference interface
H
HexToString 已提交
620
  int infer(const char* model_name,
H
HexToString 已提交
621 622 623
            const void* in,
            void* out,
            uint32_t batch_size,
624
            uint64_t version);
W
wangguibao 已提交
625 626

  template <typename T>
627
  T* get_core(const char* model_name, uint64_t version);
W
wangguibao 已提交
628

629
  int query_version(const std::string& model, uint64_t& version);
W
wangguibao 已提交
630 631 632 633

 private:
  boost::unordered_map<std::string, VersionedInferEngine*> _map;
};
W
wangguibao 已提交
634

W
wangguibao 已提交
635 636 637
}  // namespace predictor
}  // namespace paddle_serving
}  // namespace baidu