infer.h 33.6 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
W
wangguibao 已提交
16
#include <sys/stat.h>
W
wangguibao 已提交
17
#include <sys/types.h>
W
wangguibao 已提交
18
#include <unistd.h>
W
wangguibao 已提交
19
#include <string>
M
MRXLT 已提交
20
#include <utility>
W
wangguibao 已提交
21
#include <vector>
H
HexToString 已提交
22
#include <numeric>
G
guru4elephant 已提交
23
#include "core/predictor/common/inner_common.h"
H
HexToString 已提交
24
#include "core/predictor/framework/bsf.h"
G
guru4elephant 已提交
25 26
#include "core/predictor/framework/factory.h"
#include "core/predictor/framework/infer_data.h"
H
HexToString 已提交
27
#include "paddle_inference_api.h"  // NOLINT
W
wangguibao 已提交
28 29 30 31
namespace baidu {
namespace paddle_serving {
namespace predictor {

W
wangguibao 已提交
32 33
using configure::ModelToolkitConf;

34 35 36 37 38
class InferEngineCreationParams {
 public:
  InferEngineCreationParams() {
    _path = "";
    _enable_memory_optimization = false;
M
MRXLT 已提交
39
    _enable_ir_optimization = false;
40 41
    _static_optimization = false;
    _force_update_static_cache = false;
M
MRXLT 已提交
42
    _use_trt = false;
Z
zhangjun 已提交
43 44 45
    _use_lite = false;
    _use_xpu = false;
  }
46 47 48 49 50 51 52

  void set_path(const std::string& path) { _path = path; }

  void set_enable_memory_optimization(bool enable_memory_optimization) {
    _enable_memory_optimization = enable_memory_optimization;
  }

M
MRXLT 已提交
53 54 55 56
  void set_enable_ir_optimization(bool enable_ir_optimization) {
    _enable_ir_optimization = enable_ir_optimization;
  }

M
MRXLT 已提交
57 58
  void set_use_trt(bool use_trt) { _use_trt = use_trt; }

Z
zhangjun 已提交
59 60 61 62
  void set_use_lite(bool use_lite) { _use_lite = use_lite; }

  void set_use_xpu(bool use_xpu) { _use_xpu = use_xpu; }

63 64 65 66
  bool enable_memory_optimization() const {
    return _enable_memory_optimization;
  }

M
MRXLT 已提交
67 68
  bool enable_ir_optimization() const { return _enable_ir_optimization; }

M
MRXLT 已提交
69 70
  bool use_trt() const { return _use_trt; }

Z
zhangjun 已提交
71 72 73 74
  bool use_lite() const { return _use_lite; }

  bool use_xpu() const { return _use_xpu; }

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  void set_static_optimization(bool static_optimization = false) {
    _static_optimization = static_optimization;
  }

  void set_force_update_static_cache(bool force_update_static_cache = false) {
    _force_update_static_cache = force_update_static_cache;
  }

  bool static_optimization() const { return _static_optimization; }

  bool force_update_static_cache() const { return _force_update_static_cache; }

  std::string get_path() const { return _path; }

  void dump() const {
    LOG(INFO) << "InferEngineCreationParams: "
              << "model_path = " << _path << ", "
              << "enable_memory_optimization = " << _enable_memory_optimization
              << ", "
Z
zhangjun 已提交
94 95 96
              << "enable_tensorrt = " << _use_trt << ", "
              << "enable_lite = " << _use_lite << ", "
              << "enable_xpu = " << _use_xpu << ", "
M
MRXLT 已提交
97
              << "enable_ir_optimization = " << _enable_ir_optimization << ", "
98 99 100 101 102 103 104
              << "static_optimization = " << _static_optimization << ", "
              << "force_update_static_cache = " << _force_update_static_cache;
  }

 private:
  std::string _path;
  bool _enable_memory_optimization;
M
MRXLT 已提交
105
  bool _enable_ir_optimization;
106 107
  bool _static_optimization;
  bool _force_update_static_cache;
M
MRXLT 已提交
108
  bool _use_trt;
Z
zhangjun 已提交
109 110
  bool _use_lite;
  bool _use_xpu;
111 112
};

W
wangguibao 已提交
113
class InferEngine {
W
wangguibao 已提交
114 115 116 117 118 119 120 121 122 123
 public:
  virtual ~InferEngine() {}

  virtual int proc_initialize(const configure::EngineDesc& conf, bool version) {
    return proc_initialize_impl(conf, version);
  }
  virtual int proc_finalize() { return proc_finalize_impl(); }
  virtual int thrd_initialize() { return thrd_initialize_impl(); }
  virtual int thrd_clear() { return thrd_clear_impl(); }
  virtual int thrd_finalize() { return thrd_finalize_impl(); }
H
HexToString 已提交
124
  virtual int infer(const void* in, void* out, uint32_t batch_size = -1) { return infer_impl(in, out, batch_size); }
W
wangguibao 已提交
125 126 127 128 129 130 131 132 133 134 135 136

  virtual int reload() = 0;

  virtual uint64_t version() const = 0;

  // begin: framework inner call
  virtual int proc_initialize_impl(const configure::EngineDesc& conf,
                                   bool version) = 0;
  virtual int thrd_initialize_impl() = 0;
  virtual int thrd_finalize_impl() = 0;
  virtual int thrd_clear_impl() = 0;
  virtual int proc_finalize_impl() = 0;
H
HexToString 已提交
137
  virtual int infer_impl(const void* in,
H
HexToString 已提交
138 139
                          void* out,
                          uint32_t batch_size = -1) = 0;
H
HexToString 已提交
140
  virtual int task_infer_impl(const BatchTensor& in,
H
HexToString 已提交
141 142
                          BatchTensor& out) = 0;  // NOLINT

W
wangguibao 已提交
143 144 145 146 147 148
  // end: framework inner call
};

class ReloadableInferEngine : public InferEngine {
 public:
  virtual ~ReloadableInferEngine() {}
W
wangguibao 已提交
149

W
wangguibao 已提交
150 151 152 153 154
  union last_check_status {
    time_t last_timestamp;
    uint64_t last_md5sum;
    uint64_t last_revision;
  };
W
wangguibao 已提交
155

H
HexToString 已提交
156 157
  typedef im::bsf::Task<Tensor, Tensor> TaskT;

158
  virtual int load(const InferEngineCreationParams& params) = 0;
W
wangguibao 已提交
159 160 161 162 163 164 165 166

  int proc_initialize_impl(const configure::EngineDesc& conf, bool version) {
    _reload_tag_file = conf.reloadable_meta();
    _reload_mode_tag = conf.reloadable_type();
    _model_data_path = conf.model_data_path();
    _infer_thread_num = conf.runtime_thread_num();
    _infer_batch_size = conf.batch_infer_size();
    _infer_batch_align = conf.enable_batch_align();
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

    bool enable_memory_optimization = false;
    if (conf.has_enable_memory_optimization()) {
      enable_memory_optimization = conf.enable_memory_optimization();
    }

    bool static_optimization = false;
    if (conf.has_static_optimization()) {
      static_optimization = conf.static_optimization();
    }

    bool force_update_static_cache = false;
    if (conf.has_force_update_static_cache()) {
      force_update_static_cache = conf.force_update_static_cache();
    }

M
MRXLT 已提交
183 184 185 186 187
    if (conf.has_enable_ir_optimization()) {
      _infer_engine_params.set_enable_ir_optimization(
          conf.enable_ir_optimization());
    }

188 189 190 191 192 193 194 195
    _infer_engine_params.set_path(_model_data_path);
    if (enable_memory_optimization) {
      _infer_engine_params.set_enable_memory_optimization(true);
      _infer_engine_params.set_static_optimization(static_optimization);
      _infer_engine_params.set_force_update_static_cache(
          force_update_static_cache);
    }

M
MRXLT 已提交
196 197 198 199
    if (conf.has_use_trt()) {
      _infer_engine_params.set_use_trt(conf.use_trt());
    }

Z
zhangjun 已提交
200 201 202 203
    if (conf.has_use_lite()) {
      _infer_engine_params.set_use_lite(conf.use_lite());
    }

Z
zhangjun 已提交
204
    if (conf.has_use_xpu()) {
Z
zhangjun 已提交
205 206 207
      _infer_engine_params.set_use_xpu(conf.use_xpu());
    }

208
    if (!check_need_reload() || load(_infer_engine_params) != 0) {
W
wangguibao 已提交
209 210
      LOG(ERROR) << "Failed load model_data_path" << _model_data_path;
      return -1;
W
wangguibao 已提交
211
    }
W
wangguibao 已提交
212 213 214 215

    if (parse_version_info(conf, version) != 0) {
      LOG(ERROR) << "Failed parse version info";
      return -1;
W
wangguibao 已提交
216
    }
W
wangguibao 已提交
217 218 219 220 221 222 223 224 225

    LOG(WARNING) << "Succ load model_data_path" << _model_data_path;
    return 0;
  }

  int proc_initialize(const configure::EngineDesc& conf, bool version) {
    if (proc_initialize_impl(conf, version) != 0) {
      LOG(ERROR) << "Failed proc initialize impl";
      return -1;
W
wangguibao 已提交
226
    }
H
HexToString 已提交
227 228 229 230 231 232 233 234 235 236 237 238

    // init bsf framework
    if (_infer_thread_num <= 0) {
      return 0;
    }

    // init bsf framework
    im::bsf::TaskExecutor<TaskT>::instance()->set_thread_init_fn(
        boost::bind(&InferEngine::thrd_initialize_impl, this));
    im::bsf::TaskExecutor<TaskT>::instance()->set_thread_reset_fn(
        boost::bind(&InferEngine::thrd_clear_impl, this));
    im::bsf::TaskExecutor<TaskT>::instance()->set_thread_callback_fn(
H
HexToString 已提交
239
        boost::bind(&InferEngine::task_infer_impl, this, _1, _2));
H
HexToString 已提交
240 241 242 243 244 245 246 247 248 249 250 251
    im::bsf::TaskExecutor<TaskT>::instance()->set_batch_size(_infer_batch_size);
    im::bsf::TaskExecutor<TaskT>::instance()->set_batch_align(
        _infer_batch_align);
    if (im::bsf::TaskExecutor<TaskT>::instance()->start(_infer_thread_num) !=
        0) {
      LOG(ERROR) << "Failed start bsf executor, threads:" << _infer_thread_num;
      return -1;
    }

    LOG(WARNING) << "Enable batch schedule framework, thread_num:"
                 << _infer_thread_num << ", batch_size:" << _infer_batch_size
                 << ", enable_batch_align:" << _infer_batch_align;
W
wangguibao 已提交
252 253
    return 0;
  }
W
wangguibao 已提交
254

H
HexToString 已提交
255 256
  int infer(const void* in, void* out, uint32_t batch_size = -1) {
    if (_infer_thread_num <= 0) {
H
HexToString 已提交
257
      return infer_impl(in, out, batch_size);
H
HexToString 已提交
258 259 260 261 262 263 264 265
    }

    im::bsf::TaskManager<Tensor, Tensor> task_manager;
    task_manager.schedule(*(reinterpret_cast<const BatchTensor*>(in)),
                          *(reinterpret_cast<BatchTensor*>(out)));
    task_manager.wait();
    return 0;
  }
W
wangguibao 已提交
266

W
wangguibao 已提交
267 268 269 270
  int thrd_initialize() {
    if (_infer_thread_num > 0) {
      return 0;
    }
W
wangguibao 已提交
271

W
wangguibao 已提交
272 273
    return thrd_initialize_impl();
  }
W
wangguibao 已提交
274

W
wangguibao 已提交
275 276 277 278
  int thrd_clear() {
    if (_infer_thread_num > 0) {
      return 0;
    }
W
wangguibao 已提交
279

W
wangguibao 已提交
280 281
    return thrd_clear_impl();
  }
W
wangguibao 已提交
282

W
wangguibao 已提交
283 284 285 286 287
  int proc_finalize() {
    if (proc_finalize_impl() != 0) {
      LOG(ERROR) << "Failed proc finalize impl";
      return -1;
    }
W
wangguibao 已提交
288

H
HexToString 已提交
289 290 291
    if (_infer_thread_num > 0) {
      im::bsf::TaskExecutor<TaskT>::instance()->stop();
    }
W
wangguibao 已提交
292 293
    return 0;
  }
W
wangguibao 已提交
294

W
wangguibao 已提交
295 296 297
  int reload() {
    if (check_need_reload()) {
      LOG(WARNING) << "begin reload model[" << _model_data_path << "].";
298
      return load(_infer_engine_params);
W
wangguibao 已提交
299 300 301 302 303 304 305
    }
    return 0;
  }

  uint64_t version() const { return _version; }

  uint32_t thread_num() const { return _infer_thread_num; }
W
wangguibao 已提交
306

W
wangguibao 已提交
307 308 309 310 311
 private:
  int parse_version_info(const configure::EngineDesc& config, bool version) {
    _version = uint64_t(-1);
    return 0;
  }
W
wangguibao 已提交
312

W
wangguibao 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
  bool check_need_reload() {
    if (_reload_mode_tag == "timestamp_ne") {
      return check_timestamp_ne();
    } else if (_reload_mode_tag == "timestamp_gt") {
      return check_timestamp_gt();
    } else if (_reload_mode_tag == "md5sum") {
      return check_md5sum();
    } else if (_reload_mode_tag == "revision") {
      return check_revision();
    } else if (_reload_mode_tag == "none") {
      return false;
    } else {
      LOG(ERROR) << "Not support check type: " << _reload_mode_tag;
      return false;
    }
  }

  bool check_timestamp_ne() {
    struct stat st;
    if (stat(_reload_tag_file.c_str(), &st) != 0) {
      LOG(ERROR) << "Failed stat config file:" << _reload_tag_file;
      return false;
    }
W
wangguibao 已提交
336

W
wangguibao 已提交
337 338 339
    if ((st.st_mode & S_IFREG) && st.st_mtime != _last_status.last_timestamp) {
      _last_status.last_timestamp = st.st_mtime;
      return true;
W
wangguibao 已提交
340 341
    }

W
wangguibao 已提交
342 343
    return false;
  }
W
wangguibao 已提交
344

W
wangguibao 已提交
345 346 347 348 349 350
  bool check_timestamp_gt() {
    struct stat st;
    if (stat(_reload_tag_file.c_str(), &st) != 0) {
      LOG(ERROR) << "Failed stat config file:" << _reload_tag_file;
      return false;
    }
W
wangguibao 已提交
351

W
wangguibao 已提交
352 353 354
    if ((st.st_mode & S_IFREG) && st.st_mtime > _last_status.last_timestamp) {
      _last_status.last_timestamp = st.st_mtime;
      return true;
W
wangguibao 已提交
355 356
    }

W
wangguibao 已提交
357 358 359 360 361 362 363 364 365
    return false;
  }

  bool check_md5sum() { return false; }

  bool check_revision() { return false; }

 protected:
  std::string _model_data_path;
366
  InferEngineCreationParams _infer_engine_params;
W
wangguibao 已提交
367 368 369 370 371 372 373 374 375 376

 private:
  std::string _reload_tag_file;
  std::string _reload_mode_tag;
  last_check_status _last_status;
  uint32_t _infer_thread_num;
  uint32_t _infer_batch_size;
  bool _infer_batch_align;
  uint64_t _version;
};
W
wangguibao 已提交
377

W
wangguibao 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
template <typename EngineCore>
struct ModelData {
  ModelData() : current_idx(1) {
    cores[0] = NULL;
    cores[1] = NULL;
  }

  ~ModelData() {
    delete cores[0];
    delete cores[1];
  }

  EngineCore* cores[2];
  uint32_t current_idx;
};

template <typename EngineCore>
class DBReloadableInferEngine : public ReloadableInferEngine {
 public:
  virtual ~DBReloadableInferEngine() {}

  int proc_initialize(const configure::EngineDesc& conf, bool version) {
    THREAD_KEY_CREATE(&_skey, NULL);
    THREAD_MUTEX_INIT(&_mutex, NULL);
    return ReloadableInferEngine::proc_initialize(conf, version);
  }

405
  virtual int load(const InferEngineCreationParams& params) {
W
wangguibao 已提交
406 407
    if (_reload_vec.empty()) {
      return 0;
W
wangguibao 已提交
408 409
    }

W
wangguibao 已提交
410
    for (uint32_t ti = 0; ti < _reload_vec.size(); ++ti) {
411
      if (load_data(_reload_vec[ti], params) != 0) {
W
wangguibao 已提交
412 413 414 415 416
        LOG(ERROR) << "Failed reload engine model: " << ti;
        return -1;
      }
    }

417
    LOG(WARNING) << "Succ load engine, path: " << params.get_path();
W
wangguibao 已提交
418

W
wangguibao 已提交
419 420
    return 0;
  }
W
wangguibao 已提交
421

422 423
  int load_data(ModelData<EngineCore>* md,
                const InferEngineCreationParams& params) {
W
wangguibao 已提交
424 425 426
    uint32_t next_idx = (md->current_idx + 1) % 2;
    if (md->cores[next_idx]) {
      delete md->cores[next_idx];
W
wangguibao 已提交
427 428
    }

W
wangguibao 已提交
429
    md->cores[next_idx] = new (std::nothrow) EngineCore;
430 431 432 433

    params.dump();
    if (!md->cores[next_idx] || md->cores[next_idx]->create(params) != 0) {
      LOG(ERROR) << "Failed create model, path: " << params.get_path();
W
wangguibao 已提交
434
      return -1;
W
wangguibao 已提交
435
    }
W
wangguibao 已提交
436 437 438
    md->current_idx = next_idx;
    return 0;
  }
W
wangguibao 已提交
439

W
wangguibao 已提交
440 441
  virtual int thrd_initialize_impl() {
    // memory pool to be inited in non-serving-threads
H
HexToString 已提交
442 443 444 445
    if (MempoolWrapper::instance().thread_initialize() != 0) {
      LOG(ERROR) << "Failed thread initialize mempool";
      return -1;
    }
W
wangguibao 已提交
446

W
wangguibao 已提交
447
    ModelData<EngineCore>* md = new (std::nothrow) ModelData<EngineCore>;
448 449 450
    if (!md || load_data(md, _infer_engine_params) != 0) {
      LOG(ERROR) << "Failed create thread data from "
                 << _infer_engine_params.get_path();
W
wangguibao 已提交
451
      return -1;
W
wangguibao 已提交
452 453
    }

W
wangguibao 已提交
454
    THREAD_SETSPECIFIC(_skey, md);
H
HexToString 已提交
455
    im::bsf::AutoMutex lock(_mutex);
W
wangguibao 已提交
456 457 458 459 460 461
    _reload_vec.push_back(md);
    return 0;
  }

  int thrd_clear_impl() {
    // for non-serving-threads
H
HexToString 已提交
462 463 464 465
    if (MempoolWrapper::instance().thread_clear() != 0) {
      LOG(ERROR) << "Failed thread clear mempool";
      return -1;
    }
W
wangguibao 已提交
466 467 468 469
    return 0;
  }

  int thrd_finalize_impl() { return 0; }
W
wangguibao 已提交
470

W
wangguibao 已提交
471 472 473 474 475
  int proc_finalize_impl() {
    THREAD_KEY_DELETE(_skey);
    THREAD_MUTEX_DESTROY(&_mutex);
    return 0;
  }
W
wangguibao 已提交
476

W
wangguibao 已提交
477 478 479 480 481 482
  EngineCore* get_core() {
    ModelData<EngineCore>* md =
        (ModelData<EngineCore>*)THREAD_GETSPECIFIC(_skey);
    if (!md) {
      LOG(ERROR) << "Failed get thread specific data";
      return NULL;
W
wangguibao 已提交
483
    }
W
wangguibao 已提交
484 485
    return md->cores[md->current_idx];
  }
W
wangguibao 已提交
486

W
wangguibao 已提交
487 488 489 490
 protected:
  THREAD_KEY_T _skey;
  THREAD_MUTEX_T _mutex;
  std::vector<ModelData<EngineCore>*> _reload_vec;
W
wangguibao 已提交
491

W
wangguibao 已提交
492 493
 private:
};
W
wangguibao 已提交
494

W
wangguibao 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
// 多个EngineCore共用同一份模型数据
template <typename EngineCore>
class CloneDBReloadableInferEngine
    : public DBReloadableInferEngine<EngineCore> {
 public:
  virtual ~CloneDBReloadableInferEngine() {}

  virtual int proc_initialize(const configure::EngineDesc& conf, bool version) {
    _pd = new (std::nothrow) ModelData<EngineCore>;
    if (!_pd) {
      LOG(ERROR) << "Failed to allocate for ProcData";
      return -1;
    }
    return DBReloadableInferEngine<EngineCore>::proc_initialize(conf, version);
  }

511
  virtual int load(const InferEngineCreationParams& params) {
W
wangguibao 已提交
512 513
    // 加载进程级模型数据
    if (!_pd ||
514 515
        DBReloadableInferEngine<EngineCore>::load_data(_pd, params) != 0) {
      LOG(ERROR) << "Failed to create common model from [" << params.get_path()
W
wangguibao 已提交
516 517 518 519
                 << "].";
      return -1;
    }
    LOG(WARNING) << "Succ load common model[" << _pd->cores[_pd->current_idx]
520
                 << "], path[" << params.get_path() << "].";
W
wangguibao 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533

    if (DBReloadableInferEngine<EngineCore>::_reload_vec.empty()) {
      return 0;
    }

    for (uint32_t ti = 0;
         ti < DBReloadableInferEngine<EngineCore>::_reload_vec.size();
         ++ti) {
      if (load_data(DBReloadableInferEngine<EngineCore>::_reload_vec[ti],
                    _pd->cores[_pd->current_idx]) != 0) {
        LOG(ERROR) << "Failed reload engine model: " << ti;
        return -1;
      }
W
wangguibao 已提交
534 535
    }

536
    LOG(WARNING) << "Succ load clone model, path[" << params.get_path() << "]";
W
wangguibao 已提交
537

W
wangguibao 已提交
538 539
    return 0;
  }
W
wangguibao 已提交
540

W
wangguibao 已提交
541 542 543 544 545
  // 加载线程级对象,多个线程级对象共用pd_core的模型数据
  int load_data(ModelData<EngineCore>* td, EngineCore* pd_core) {
    uint32_t next_idx = (td->current_idx + 1) % 2;
    if (td->cores[next_idx]) {
      delete td->cores[next_idx];
W
wangguibao 已提交
546 547
    }

W
wangguibao 已提交
548 549 550 551 552 553
    td->cores[next_idx] = new (std::nothrow) EngineCore;
    if (!td->cores[next_idx] ||
        td->cores[next_idx]->clone(pd_core->get()) != 0) {
      LOG(ERROR) << "Failed clone model from pd_core[ " << pd_core << "], idx["
                 << next_idx << "]";
      return -1;
W
wangguibao 已提交
554
    }
W
wangguibao 已提交
555 556 557 558 559 560
    td->current_idx = next_idx;
    LOG(WARNING) << "td_core[" << td->cores[td->current_idx]
                 << "] clone model from pd_core[" << pd_core
                 << "] succ, cur_idx[" << td->current_idx << "].";
    return 0;
  }
W
wangguibao 已提交
561

W
wangguibao 已提交
562
  virtual int thrd_initialize_impl() {
H
HexToString 已提交
563 564 565 566 567 568
    // memory pool to be inited in non-serving-threads
    if (MempoolWrapper::instance().thread_initialize() != 0) {
      LOG(ERROR) << "Failed thread initialize mempool";
      return -1;
    }

W
wangguibao 已提交
569 570 571 572 573 574 575 576
    ModelData<EngineCore>* md = new (std::nothrow) ModelData<EngineCore>;
    if (!md || load_data(md, _pd->cores[_pd->current_idx]) != 0) {
      LOG(ERROR) << "Failed clone thread data, origin_core["
                 << _pd->cores[_pd->current_idx] << "].";
      return -1;
    }

    THREAD_SETSPECIFIC(DBReloadableInferEngine<EngineCore>::_skey, md);
H
HexToString 已提交
577
    im::bsf::AutoMutex lock(DBReloadableInferEngine<EngineCore>::_mutex);
W
wangguibao 已提交
578 579 580
    DBReloadableInferEngine<EngineCore>::_reload_vec.push_back(md);
    return 0;
  }
W
wangguibao 已提交
581

W
wangguibao 已提交
582 583 584
 protected:
  ModelData<EngineCore>*
      _pd;  // 进程级EngineCore,多个线程级EngineCore共用该对象的模型数据
W
wangguibao 已提交
585 586
};

W
wangguibao 已提交
587
template <typename FluidFamilyCore>
M
bug fix  
MRXLT 已提交
588
#ifdef WITH_TRT
M
MRXLT 已提交
589
class FluidInferEngine : public DBReloadableInferEngine<FluidFamilyCore> {
M
bug fix  
MRXLT 已提交
590 591 592 593
#else
class FluidInferEngine : public CloneDBReloadableInferEngine<FluidFamilyCore> {
#endif
 public:  // NOLINT
W
wangguibao 已提交
594 595
  FluidInferEngine() {}
  ~FluidInferEngine() {}
H
HexToString 已提交
596
  typedef std::vector<paddle::PaddleTensor> TensorVector;
H
HexToString 已提交
597 598
  int infer_impl(const void* in, void* out, uint32_t batch_size = -1) {
    //First of all, get the real core acording to the template parameter 'FluidFamilyCore'.
H
HexToString 已提交
599
    FluidFamilyCore* core =DBReloadableInferEngine<FluidFamilyCore>::get_core();
W
wangjiawei04 已提交
600
    if (!core || !core->get()) {
H
HexToString 已提交
601 602
      LOG(ERROR) << "Failed get fluid core in infer_impl()";
      return -1;
W
wangjiawei04 已提交
603
    }
H
HexToString 已提交
604 605 606
    //We use the for loop to process the input data.
    //Inside each for loop, use the in[i]->name as inputName and call 'core->GetInputHandle(inputName)' to get the pointer of InputData.
    //Set the lod and shape information of InputData first. then copy data from cpu to the core.
H
HexToString 已提交
607 608 609 610 611 612
    const TensorVector* tensorVector_in_pointer = reinterpret_cast<const TensorVector*>(in);
    for(int i =0; i< tensorVector_in_pointer->size();++i){
      auto lod_tensor_in = core->GetInputHandle((*tensorVector_in_pointer)[i].name);
      lod_tensor_in->SetLoD((*tensorVector_in_pointer)[i].lod);
      lod_tensor_in->Reshape((*tensorVector_in_pointer)[i].shape);
      void* origin_data = (*tensorVector_in_pointer)[i].data.data();
H
HexToString 已提交
613 614
      //Because the core needs to determine the size of memory space according to the data type passed in.
      //The pointer type of data must be one of float *,int64_t*,int32_t* instead void*.
H
HexToString 已提交
615 616
      if((*tensorVector_in_pointer)[i].dtype == paddle::PaddleDType::FLOAT32){
        float* data = static_cast<float*>(origin_data);
H
HexToString 已提交
617
        lod_tensor_in->CopyFromCpu(data);
H
HexToString 已提交
618 619
      }else if((*tensorVector_in_pointer)[i].dtype == paddle::PaddleDType::INT64){
        int64_t* data = static_cast<int64_t*>(origin_data);
H
HexToString 已提交
620
        lod_tensor_in->CopyFromCpu(data);
H
HexToString 已提交
621 622
      }else if((*tensorVector_in_pointer)[i].dtype == paddle::PaddleDType::INT32){
        int32_t* data = static_cast<int32_t*>(origin_data);
H
HexToString 已提交
623
        lod_tensor_in->CopyFromCpu(data);
H
HexToString 已提交
624
      }
W
wangjiawei04 已提交
625
    }
H
HexToString 已提交
626
    //After the input data is passed in, call 'core->Run()' perform the prediction process.
H
HexToString 已提交
627 628 629
    if (!core->Run()) {
        LOG(ERROR) << "Failed run fluid family core";
        return -1;
W
wangjiawei04 已提交
630
    }
H
HexToString 已提交
631 632 633
    
    //In order to get the results, first, call the 'core->GetOutputNames()' to get the name of output(which is a dict like {OutputName:pointer of OutputValue}).
    //Then, use for-loop to get OutputValue by calling 'core->GetOutputHandle'.
H
HexToString 已提交
634
    std::vector<std::string> outnames = core->GetOutputNames();
H
HexToString 已提交
635 636 637 638 639 640
    std::vector<int> output_shape;
    int out_num =0;
    int dataType =0;
    void* databuf_data = NULL;
    char* databuf_char = NULL;
    size_t databuf_size = 0;
H
HexToString 已提交
641 642 643 644 645 646 647
    TensorVector* tensorVector_out_pointer = reinterpret_cast<TensorVector*>(out);
    if(!tensorVector_out_pointer){
      LOG(ERROR) << "tensorVector_out_pointer is nullptr,error";
      return -1;
    }
    //Get the type and shape information of OutputData first. then copy data to cpu from the core.
    //The pointer type of data_out must be one of float *,int64_t*,int32_t* instead void*.
H
HexToString 已提交
648
    for (int i = 0; i < outnames.size(); ++i){
H
HexToString 已提交
649
      auto lod_tensor_out = core->GetOutputHandle(outnames[i]);
H
HexToString 已提交
650 651 652
      output_shape = lod_tensor_out->shape();
      out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1, std::multiplies<int>());
      dataType = lod_tensor_out->type();
H
HexToString 已提交
653
      if(dataType == paddle::PaddleDType::FLOAT32){
H
HexToString 已提交
654
        databuf_size = out_num*sizeof(float);
H
HexToString 已提交
655
        databuf_data = MempoolWrapper::instance().malloc(databuf_size);
H
HexToString 已提交
656 657 658 659 660
        if (!databuf_data) {
            LOG(ERROR) << "Malloc failed, size: " << databuf_size;
            return -1;
        }
        float* data_out = reinterpret_cast<float*>(databuf_data);
H
HexToString 已提交
661
        lod_tensor_out->CopyToCpu(data_out);
H
HexToString 已提交
662 663
        databuf_char = reinterpret_cast<char*>(data_out);
      }else if(dataType == paddle::PaddleDType::INT64){
H
HexToString 已提交
664
        databuf_size = out_num*sizeof(int64_t);
H
HexToString 已提交
665
        databuf_data = MempoolWrapper::instance().malloc(databuf_size);
H
HexToString 已提交
666 667 668 669
        if (!databuf_data) {
            LOG(ERROR) << "Malloc failed, size: " << databuf_size;
            return -1;
        }
H
HexToString 已提交
670
        int64_t* data_out = reinterpret_cast<int64_t*>(databuf_data);
H
HexToString 已提交
671
        lod_tensor_out->CopyToCpu(data_out);
H
HexToString 已提交
672 673
        databuf_char = reinterpret_cast<char*>(data_out);
      }else if(dataType == paddle::PaddleDType::INT32){
H
HexToString 已提交
674
        databuf_size = out_num*sizeof(int32_t);
H
HexToString 已提交
675
        databuf_data = MempoolWrapper::instance().malloc(databuf_size);
H
HexToString 已提交
676 677 678 679 680 681 682
        if (!databuf_data) {
            LOG(ERROR) << "Malloc failed, size: " << databuf_size;
            return -1;
        }
        int32_t* data_out = reinterpret_cast<int32_t*>(databuf_data);
        lod_tensor_out->CopyToCpu(data_out);
        databuf_char = reinterpret_cast<char*>(data_out);
H
HexToString 已提交
683
      }
H
HexToString 已提交
684 685 686
      //Because task scheduling requires OPs to use 'Channel'(which is a data structure) to transfer data between OPs.
      //We need to copy the processed data to the 'Channel' for the next OP.
      //In this function, it means we should copy the 'databuf_char' to the pointer 'void* out'.(which is also called ‘tensorVector_out_pointer’)
H
HexToString 已提交
687 688 689 690 691 692 693 694 695 696
      paddle::PaddleTensor tensor_out;
      tensor_out.name = outnames[i];
      tensor_out.dtype = paddle::PaddleDType(dataType);
      tensor_out.shape.assign(output_shape.begin(), output_shape.end());
      std::vector<std::vector<size_t>> out_lod = lod_tensor_out->lod();
      for (int li = 0; li < out_lod.size(); ++li) {
        std::vector<size_t> lod_element;
        lod_element.assign(out_lod[li].begin(), out_lod[li].end());
        tensor_out.lod.push_back(lod_element);
      }
H
HexToString 已提交
697
      paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
H
HexToString 已提交
698 699
      tensor_out.data = paddleBuf;
      tensorVector_out_pointer->push_back(tensor_out);
H
HexToString 已提交
700
    }
W
wangguibao 已提交
701 702
    return 0;
  }
H
HexToString 已提交
703

H
HexToString 已提交
704 705
  int task_infer_impl(const BatchTensor& in, BatchTensor& out) {  // NOLINT
    return infer_impl(&in, &out);
H
HexToString 已提交
706 707 708
  }


W
wangguibao 已提交
709 710
};

W
wangguibao 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
typedef FactoryPool<InferEngine> StaticInferFactory;

class VersionedInferEngine : public InferEngine {
 public:
  VersionedInferEngine() { _versions.clear(); }
  ~VersionedInferEngine() {}

  int proc_initialize(const configure::EngineDesc& conf) {
    if (proc_initialize(conf, false) != 0) {
      LOG(ERROR) << "Failed proc intialize engine: " << conf.name().c_str();
      return -1;
    }

    LOG(WARNING) << "Succ proc initialize engine: " << conf.name().c_str();
    return 0;
  }

  int proc_initialize(const configure::EngineDesc& conf, bool version) {
    std::string engine_type = conf.type();
    InferEngine* engine =
        StaticInferFactory::instance().generate_object(engine_type);
    if (!engine) {
      LOG(ERROR) << "Failed generate engine with type:" << engine_type;
      return -1;
    }
736
#ifndef BCLOUD
M
MRXLT 已提交
737
    VLOG(2) << "FLAGS_logtostderr " << FLAGS_logtostderr;
M
MRXLT 已提交
738
    int tmp = FLAGS_logtostderr;
W
wangguibao 已提交
739 740 741 742
    if (engine->proc_initialize(conf, version) != 0) {
      LOG(ERROR) << "Failed initialize engine, type:" << engine_type;
      return -1;
    }
M
bug fix  
MRXLT 已提交
743
    VLOG(2) << "FLAGS_logtostderr " << FLAGS_logtostderr;
M
MRXLT 已提交
744
    FLAGS_logtostderr = tmp;
745 746 747 748 749 750
#else
    if (engine->proc_initialize(conf, version) != 0) {
      LOG(ERROR) << "Failed initialize engine, type:" << engine_type;
      return -1;
    }
#endif
W
wangguibao 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
    auto r = _versions.insert(std::make_pair(engine->version(), engine));
    if (!r.second) {
      LOG(ERROR) << "Failed insert item: " << engine->version()
                 << ", type: " << engine_type;
      return -1;
    }
    LOG(WARNING) << "Succ proc initialize version engine: "
                 << engine->version();
    return 0;
  }

  int proc_finalize() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->proc_finalize() != 0) {
        LOG(ERROR) << "Failed proc finalize version engine: " << iter->first;
      }
      LOG(WARNING) << "Succ proc finalize version engine: " << iter->first;
    }
    return 0;
  }

  int thrd_initialize() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->thrd_initialize() != 0) {
        LOG(ERROR) << "Failed thrd initialize version engine: " << iter->first;
W
wangguibao 已提交
776
        return -1;
W
wangguibao 已提交
777 778
      }
      LOG(WARNING) << "Succ thrd initialize version engine: " << iter->first;
W
wangguibao 已提交
779
    }
W
wangguibao 已提交
780 781
    return 0;
  }
W
wangguibao 已提交
782

W
wangguibao 已提交
783 784 785 786
  int thrd_clear() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->thrd_clear() != 0) {
        LOG(ERROR) << "Failed thrd clear version engine: " << iter->first;
W
wangguibao 已提交
787
        return -1;
W
wangguibao 已提交
788
      }
W
wangguibao 已提交
789
    }
W
wangguibao 已提交
790 791
    return 0;
  }
W
wangguibao 已提交
792

W
wangguibao 已提交
793 794 795 796 797 798 799
  int thrd_finalize() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->thrd_finalize() != 0) {
        LOG(ERROR) << "Failed thrd finalize version engine: " << iter->first;
        return -1;
      }
      LOG(WARNING) << "Succ thrd finalize version engine: " << iter->first;
W
wangguibao 已提交
800
    }
W
wangguibao 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
    return 0;
  }

  int reload() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->reload() != 0) {
        LOG(ERROR) << "Failed reload version engine: " << iter->first;
        return -1;
      }
      LOG(WARNING) << "Succ reload version engine: " << iter->first;
    }
    return 0;
  }

  uint64_t version() const {
    InferEngine* engine = default_engine();
    if (engine) {
      return engine->version();
    } else {
      return uint64_t(-1);
    }
  }

  // inference interface
  InferEngine* default_engine() const {
    if (_versions.size() != 1) {
      LOG(ERROR) << "Ambiguous default engine version:" << _versions.size();
      return NULL;
    }

    return _versions.begin()->second;
  }

H
HexToString 已提交
834
  int infer(const void* in, void* out, uint32_t batch_size) {
W
wangguibao 已提交
835 836 837 838 839
    InferEngine* engine = default_engine();
    if (!engine) {
      LOG(WARNING) << "fail to get default engine";
      return -1;
    }
H
HexToString 已提交
840
    return engine->infer(in, out, batch_size);
W
wangguibao 已提交
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
  }

  template <typename T>
  T* get_core() {
    InferEngine* engine = default_engine();
    if (!engine) {
      LOG(WARNING) << "fail to get core";
      return NULL;
    }
    auto db_engine = dynamic_cast<DBReloadableInferEngine<T>*>(engine);
    if (db_engine) {
      return db_engine->get_core();
    }
    LOG(WARNING) << "fail to get core";
    return NULL;
  }

  // versioned inference interface
H
HexToString 已提交
859
  int infer(const void* in, void* out, uint32_t batch_size, uint64_t version) {
W
wangguibao 已提交
860 861 862 863 864 865
    auto iter = _versions.find(version);
    if (iter == _versions.end()) {
      LOG(ERROR) << "Not found version engine: " << version;
      return -1;
    }

H
HexToString 已提交
866
    return iter->second->infer(in, out, batch_size);
W
wangguibao 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
  }

  template <typename T>
  T* get_core(uint64_t version) {
    auto iter = _versions.find(version);
    if (iter == _versions.end()) {
      LOG(ERROR) << "Not found version engine: " << version;
      return NULL;
    }

    auto db_engine = dynamic_cast<DBReloadableInferEngine<T>*>(iter->second);
    if (db_engine) {
      return db_engine->get_core();
    }
    LOG(WARNING) << "fail to get core for " << version;
    return NULL;
  }

  // --
  int proc_initialize_impl(const configure::EngineDesc& conf, bool) {
    return -1;
  }
  int thrd_initialize_impl() { return -1; }
  int thrd_finalize_impl() { return -1; }
  int thrd_clear_impl() { return -1; }
  int proc_finalize_impl() { return -1; }
H
HexToString 已提交
893 894
  int infer_impl(const void* in, void* out, uint32_t batch_size = -1) { return -1; }
  int task_infer_impl(const BatchTensor& in, BatchTensor& out) {  // NOLINT
H
HexToString 已提交
895 896
    return -1;
  }  // NOLINT
W
wangguibao 已提交
897 898 899

 private:
  boost::unordered_map<uint64_t, InferEngine*> _versions;
W
wangguibao 已提交
900 901
};

W
wangguibao 已提交
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
class InferManager {
 public:
  static InferManager& instance() {
    static InferManager ins;
    return ins;
  }

  int proc_initialize(const char* path, const char* file) {
    ModelToolkitConf model_toolkit_conf;
    if (configure::read_proto_conf(path, file, &model_toolkit_conf) != 0) {
      LOG(ERROR) << "failed load infer config, path: " << path << "/" << file;
      return -1;
    }
    size_t engine_num = model_toolkit_conf.engines_size();
    for (size_t ei = 0; ei < engine_num; ++ei) {
B
barrierye 已提交
917 918
      LOG(INFO) << "model_toolkit_conf.engines(" << ei
                << ").name: " << model_toolkit_conf.engines(ei).name();
W
wangguibao 已提交
919 920 921 922 923 924 925 926
      std::string engine_name = model_toolkit_conf.engines(ei).name();
      VersionedInferEngine* engine = new (std::nothrow) VersionedInferEngine();
      if (!engine) {
        LOG(ERROR) << "Failed generate versioned engine: " << engine_name;
        return -1;
      }
      if (engine->proc_initialize(model_toolkit_conf.engines(ei)) != 0) {
        LOG(ERROR) << "Failed initialize version engine, name:" << engine_name;
W
wangguibao 已提交
927
        return -1;
W
wangguibao 已提交
928 929 930 931 932 933 934
      }
      auto r = _map.insert(std::make_pair(engine_name, engine));
      if (!r.second) {
        LOG(ERROR) << "Failed insert item: " << engine_name;
        return -1;
      }
      LOG(WARNING) << "Succ proc initialize engine: " << engine_name;
W
wangguibao 已提交
935
    }
W
wangguibao 已提交
936 937 938 939 940 941 942
    return 0;
  }

  int thrd_initialize() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->thrd_initialize() != 0) {
        LOG(ERROR) << "Failed thrd initialize engine, name: " << it->first;
W
wangguibao 已提交
943
        return -1;
W
wangguibao 已提交
944 945
      }
      LOG(WARNING) << "Succ thrd initialize engine, name: " << it->first;
W
wangguibao 已提交
946
    }
W
wangguibao 已提交
947 948
    return 0;
  }
W
wangguibao 已提交
949

W
wangguibao 已提交
950 951 952 953 954 955 956 957 958
  int thrd_clear() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->thrd_clear() != 0) {
        LOG(ERROR) << "Failed thrd clear engine, name: " << it->first;
        return -1;
      }
    }
    return 0;
  }
W
wangguibao 已提交
959

W
wangguibao 已提交
960 961 962 963 964 965 966 967 968
  int reload() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->reload() != 0) {
        LOG(ERROR) << "Failed reload engine, name: " << it->first;
        return -1;
      }
    }
    return 0;
  }
W
wangguibao 已提交
969

W
wangguibao 已提交
970 971 972 973 974 975 976 977 978 979
  int thrd_finalize() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->thrd_finalize() != 0) {
        LOG(ERROR) << "Failed thrd finalize engine, name: " << it->first;
        return -1;
      }
      LOG(WARNING) << "Succ thrd finalize engine, name: " << it->first;
    }
    return 0;
  }
W
wangguibao 已提交
980

W
wangguibao 已提交
981 982 983 984 985 986 987 988
  int proc_finalize() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->proc_finalize() != 0) {
        LOG(ERROR) << "Failed proc finalize engine, name: " << it->first;
        return -1;
      }
      LOG(WARNING) << "Succ proc finalize engine, name: " << it->first;
    }
W
wangguibao 已提交
989
    _map.clear();
W
wangguibao 已提交
990 991 992 993
    return 0;
  }

  // Inference interface
H
HexToString 已提交
994 995 996 997
  int infer(const char* model_name,
            const void* in,
            void* out,
            uint32_t batch_size = -1) {
W
wangguibao 已提交
998 999 1000 1001 1002
    auto it = _map.find(model_name);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
      return -1;
    }
H
HexToString 已提交
1003
    return it->second->infer(in, out, batch_size);
W
wangguibao 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
  }

  template <typename T>
  T* get_core(const char* model_name) {
    auto it = _map.find(model_name);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
      return NULL;
    }
    auto infer_engine =
        dynamic_cast<DBReloadableInferEngine<T>*>(it->second->default_engine());
    if (infer_engine) {
      return infer_engine->get_core();
    }
    LOG(WARNING) << "fail to get core for " << model_name;
    return NULL;
  }

  // Versioned inference interface
H
HexToString 已提交
1023 1024 1025 1026 1027
  int infer(const char* model_name, 
            const void* in,
            void* out,
            uint32_t batch_size,
            uint64_t version) {
W
wangguibao 已提交
1028 1029 1030 1031 1032
    auto it = _map.find(model_name);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
      return -1;
    }
H
HexToString 已提交
1033
    return it->second->infer(in, out, batch_size, version);
W
wangguibao 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
  }

  template <typename T>
  T* get_core(const char* model_name, uint64_t version) {
    auto it = _map.find(model_name);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
      return NULL;
    }
    return it->second->get_core<T>(version);
  }

  int query_version(const std::string& model, uint64_t& version) {  // NOLINT
    auto it = _map.find(model);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model;
      return -1;
    }
    auto infer_engine = it->second->default_engine();
    if (!infer_engine) {
      LOG(WARNING) << "Cannot get default engine for model:" << model;
      return -1;
    }
    version = infer_engine->version();
    LOG(INFO) << "Succ get version: " << version << " for model: " << model;
    return 0;
  }

 private:
  boost::unordered_map<std::string, VersionedInferEngine*> _map;
};
W
wangguibao 已提交
1065

W
wangguibao 已提交
1066 1067 1068
}  // namespace predictor
}  // namespace paddle_serving
}  // namespace baidu