operator.py 82.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
B
barriery 已提交
15
from time import time as _time
B
barriery 已提交
16
import time
17 18
import threading
import multiprocessing
H
HexToString 已提交
19
from paddle_serving_client import Client
20 21 22
from concurrent import futures
import logging
import func_timeout
23
import os
B
barrierye 已提交
24
import sys
25
import collections
B
barrierye 已提交
26
import numpy as np
T
TeslaZhao 已提交
27
import json
B
barrierye 已提交
28
from numpy import *
29
from io import BytesIO
B
barrierye 已提交
30 31 32 33 34 35
if sys.version_info.major == 2:
    import Queue
elif sys.version_info.major == 3:
    import queue as Queue
else:
    raise Exception("Error Python version")
36

37 38 39
from .error_catch import ErrorCatch, CustomException, CustomExceptionCode, ParamChecker, ParamVerify
check_feed_dict=ParamVerify.check_feed_dict
check_fetch_list=ParamVerify.check_fetch_list
B
barrierye 已提交
40
from .proto import pipeline_service_pb2
41 42 43 44
from .channel import (ThreadChannel, ProcessChannel,ChannelData, 
                      ChannelDataType, ChannelStopError, ChannelTimeoutError)
from .error_catch import  ProductErrCode
from .error_catch import CustomExceptionCode as ChannelDataErrcode
B
barrierye 已提交
45
from .util import NameGenerator
B
barriery 已提交
46
from .profiler import UnsafeTimeProfiler as TimeProfiler
W
wangjiawei04 已提交
47
from . import local_service_handler
48
from .pipeline_client import PipelineClient as PPClient
H
huangjianhui 已提交
49
from paddle_serving_server.util import kill_stop_process_by_pid
50

51
_LOGGER = logging.getLogger(__name__)
B
barrierye 已提交
52 53
_op_name_gen = NameGenerator("Op")

54 55 56 57 58 59 60 61 62 63 64 65 66 67
# data type of tensor to numpy_data
_TENSOR_DTYPE_2_NUMPY_DATA_DTYPE = {
    0: "int64",  # VarType.INT64
    1: "float32",  # VarType.FP32
    2: "int32",  # VarType.INT32
    3: "float64",  # VarType.FP64
    4: "int16",  # VarType.int16
    5: "float16",  # VarType.FP32
    6: "uint16",  # VarType.BF16
    7: "uint8",  # VarType.UINT8
    8: "int8",  # VarType.INT8
    9: "bool",  # VarType.BOOL
    10: "complex64",  # VarType.COMPLEX64
    11: "complex128",  # VarType.COMPLEX128
68 69
    12: "string",  # load by numpy
    13: "bytes",  # load by numpy
70 71
}

D
dongdaxiang 已提交
72 73 74

class Op(object):
    def __init__(self,
B
barrierye 已提交
75
                 name=None,
D
dongdaxiang 已提交
76
                 input_ops=[],
B
barriery 已提交
77 78
                 server_endpoints=None,
                 fetch_list=None,
B
barrierye 已提交
79
                 client_config=None,
W
wangjiawei04 已提交
80
                 client_type=None,
B
barriery 已提交
81 82
                 concurrency=None,
                 timeout=None,
T
TeslaZhao 已提交
83
                 retry=0,
B
barriery 已提交
84
                 batch_size=None,
85
                 auto_batching_timeout=None,
86 87
                 local_service_handler=None,
                 jump_to_ops=[]):
B
barriery 已提交
88
        # In __init__, all the parameters are just saved and Op is not initialized
B
barrierye 已提交
89
        if name is None:
B
barrierye 已提交
90
            name = _op_name_gen.next()
91
        self.name = name  # to identify the type of OP, it must be globally unique
B
barrierye 已提交
92
        self.concurrency = concurrency  # amount of concurrency
B
barrierye 已提交
93
        self.set_input_ops(input_ops)
94
        self.set_jump_to_ops(jump_to_ops)
B
barrierye 已提交
95

W
wangjiawei04 已提交
96
        self._local_service_handler = local_service_handler
B
barriery 已提交
97
        self._server_endpoints = server_endpoints
B
barrierye 已提交
98
        self._fetch_names = fetch_list
B
barriery 已提交
99
        self._client_config = client_config
W
wangjiawei04 已提交
100
        self.client_type = client_type
B
barriery 已提交
101
        self._timeout = timeout
102
        self._retry = max(1, retry)
B
barriery 已提交
103 104 105
        self._batch_size = batch_size
        self._auto_batching_timeout = auto_batching_timeout

106 107
        self._input = None
        self._outputs = []
B
barrierye 已提交
108

B
barriery 已提交
109 110 111
        self._server_use_profile = False
        self._tracer = None

112 113 114
        # for grpc_pipeline predict mode. False, string key/val; True, tensor format.
        self._pack_tensor_format = False

B
barriery 已提交
115 116 117 118 119
        # only for thread op
        self._for_init_op_lock = threading.Lock()
        self._for_close_op_lock = threading.Lock()
        self._succ_init_op = False
        self._succ_close_op = False
F
felixhjh 已提交
120 121 122 123
        self.dynamic_shape_info = {} 
        self.set_dynamic_shape_info()
    
    def set_dynamic_shape_info(self):
F
felixhjh 已提交
124 125 126 127 128
        """
        when opening tensorrt(configure in config.yml) and each time the input shape
        for inferring is different, using this method for configuring tensorrt
        dynamic shape to infer in each op model
        """
F
felixhjh 已提交
129
        pass
B
barriery 已提交
130

131 132 133 134 135 136 137 138 139 140 141 142 143
    # for feed/fetch dict cehck
    @staticmethod
    def get_feed_fetch_list(client):
        from paddle_serving_app.local_predict import LocalPredictor
        if isinstance(client, Client):
            feed_names = client.get_feed_names()
            fetch_names = client.get_fetch_names()
        if isinstance(client, LocalPredictor):
            feed_names = client.feed_names_
            fetch_names = client.fetch_names_
        return feed_names, fetch_names
              

B
barriery 已提交
144
    def init_from_dict(self, conf):
145 146 147 148 149 150 151 152 153 154 155
        """
        Initializing one Op from config.yaml. If server_endpoints exist,
        which is remote RPC mode, otherwise it is local RPC mode. There
        are three types of predictios in local RPC mode, brpc, grpc and
        local_predictor.

        Args:
            conf: config.yaml

        Returns:
        """
B
barriery 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        if self.concurrency is None:
            self.concurrency = conf["concurrency"]
        if self._retry is None:
            self._retry = conf["retry"]
        if self._fetch_names is None:
            self._fetch_names = conf.get("fetch_list")
        if self._client_config is None:
            self._client_config = conf.get("client_config")
        if self._timeout is None:
            self._timeout = conf["timeout"]
        if self._timeout > 0:
            self._timeout = self._timeout / 1000.0
        else:
            self._timeout = -1

        if self._batch_size is None:
            self._batch_size = conf["batch_size"]
        if self._auto_batching_timeout is None:
            self._auto_batching_timeout = conf["auto_batching_timeout"]
        if self._auto_batching_timeout <= 0 or self._batch_size == 1:
176
            _LOGGER.debug(
B
barriery 已提交
177 178 179 180 181 182 183
                self._log(
                    "Because auto_batching_timeout <= 0 or batch_size == 1,"
                    " set auto_batching_timeout to None."))
            self._auto_batching_timeout = None
        else:
            self._auto_batching_timeout = self._auto_batching_timeout / 1000.0

184 185 186
        self.model_config = None
        self.workdir = None
        self.thread_num = self.concurrency
187
        self.device_type = -1
188 189 190
        self.devices = ""
        self.mem_optim = False
        self.ir_optim = False
191
        self.precision = "fp32"
T
TeslaZhao 已提交
192 193 194 195
        self.use_mkldnn = False
        self.mkldnn_cache_capacity = 0
        self.mkldnn_op_list = None
        self.mkldnn_bf16_op_list = None
F
felixhjh 已提交
196
        self.min_subgraph_size = 3
197
        self.use_calib = False
T
TeslaZhao 已提交
198

B
barriery 已提交
199 200 201 202 203 204
        if self._server_endpoints is None:
            server_endpoints = conf.get("server_endpoints", [])
            if len(server_endpoints) != 0:
                # remote service
                self.with_serving = True
                self._server_endpoints = server_endpoints
205
                self.client_type = conf["client_type"]
206
            else:
W
wangjiawei04 已提交
207
                if self._local_service_handler is None:
B
barriery 已提交
208
                    local_service_conf = conf.get("local_service_conf")
B
barriery 已提交
209 210
                    _LOGGER.info("local_service_conf: {}".format(
                        local_service_conf))
211
                    self.model_config = local_service_conf.get("model_config")
W
wangjiawei04 已提交
212
                    self.client_type = local_service_conf.get("client_type")
213 214
                    self.workdir = local_service_conf.get("workdir")
                    self.thread_num = local_service_conf.get("thread_num")
215
                    self.device_type = local_service_conf.get("device_type")
216 217 218 219
                    self.devices = local_service_conf.get("devices")
                    self.mem_optim = local_service_conf.get("mem_optim")
                    self.ir_optim = local_service_conf.get("ir_optim")
                    self._fetch_names = local_service_conf.get("fetch_list")
220
                    self.precision = local_service_conf.get("precision")
221
                    self.use_calib = local_service_conf.get("use_calib")
T
TeslaZhao 已提交
222 223 224 225 226 227 228
                    self.use_mkldnn = local_service_conf.get("use_mkldnn")
                    self.mkldnn_cache_capacity = local_service_conf.get(
                        "mkldnn_cache_capacity")
                    self.mkldnn_op_list = local_service_conf.get(
                        "mkldnn_op_list")
                    self.mkldnn_bf16_op_list = local_service_conf.get(
                        "mkldnn_bf16_op_list")
F
felixhjh 已提交
229 230
                    self.min_subgraph_size = local_service_conf.get(
                        "min_subgraph_size")
T
TeslaZhao 已提交
231

232
                    if self.model_config is None:
B
barriery 已提交
233 234 235 236
                        self.with_serving = False
                    else:
                        # local rpc service
                        self.with_serving = True
W
wangjiawei04 已提交
237 238
                        if self.client_type == "brpc" or self.client_type == "grpc":
                            service_handler = local_service_handler.LocalServiceHandler(
239
                                model_config=self.model_config,
W
wangjiawei04 已提交
240
                                client_type=self.client_type,
241 242
                                workdir=self.workdir,
                                thread_num=self.thread_num,
243
                                device_type=self.device_type,
244 245
                                devices=self.devices,
                                mem_optim=self.mem_optim,
246
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
247 248 249 250 251
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_bf16_op_list,
F
felixhjh 已提交
252 253
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list,
                                min_subgraph_size=self.min_subgraph_size,
254 255
                                dynamic_shape_info=self.dynamic_shape_info,
                                use_calib=self.use_calib)
W
wangjiawei04 已提交
256 257 258 259 260 261 262 263 264 265 266 267
                            service_handler.prepare_server()  # get fetch_list
                            serivce_ports = service_handler.get_port_list()
                            self._server_endpoints = [
                                "127.0.0.1:{}".format(p) for p in serivce_ports
                            ]
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                            if self._fetch_names is None:
                                self._fetch_names = service_handler.get_fetch_list(
                                )
                        elif self.client_type == "local_predictor":
W
wangjiawei04 已提交
268
                            service_handler = local_service_handler.LocalServiceHandler(
269
                                model_config=self.model_config,
W
wangjiawei04 已提交
270
                                client_type=self.client_type,
271 272
                                workdir=self.workdir,
                                thread_num=self.thread_num,
273
                                device_type=self.device_type,
274
                                devices=self.devices,
275 276
                                fetch_names=self._fetch_names,
                                mem_optim=self.mem_optim,
277
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
278 279 280 281 282
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_op_list,
F
felixhjh 已提交
283 284
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list,
                                min_subgraph_size=self.min_subgraph_size,
285 286
                                dynamic_shape_info=self.dynamic_shape_info,
                                use_calib=self.use_calib)
W
wangjiawei04 已提交
287 288 289 290
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                        self._local_service_handler = service_handler
B
barriery 已提交
291
                else:
B
barriery 已提交
292
                    self.with_serving = True
W
wangjiawei04 已提交
293
                    self._local_service_handler.prepare_server(
B
barriery 已提交
294
                    )  # get fetch_list
W
wangjiawei04 已提交
295
                    serivce_ports = self._local_service_handler.get_port_list()
B
barriery 已提交
296 297 298
                    self._server_endpoints = [
                        "127.0.0.1:{}".format(p) for p in serivce_ports
                    ]
B
barriery 已提交
299
                    if self._client_config is None:
W
wangjiawei04 已提交
300
                        self._client_config = self._local_service_handler.get_client_config(
B
barriery 已提交
301
                        )
B
barriery 已提交
302
                    if self._fetch_names is None:
W
wangjiawei04 已提交
303
                        self._fetch_names = self._local_service_handler.get_fetch_list(
B
barriery 已提交
304
                        )
B
barriery 已提交
305 306
        else:
            self.with_serving = True
B
barriery 已提交
307

308 309 310 311 312 313 314 315 316 317 318
        if not isinstance(self, RequestOp) and not isinstance(self, ResponseOp):
            _LOGGER.info(
                self._log("\n\tinput_ops: {},"
                          "\n\tserver_endpoints: {}"
                          "\n\tfetch_list: {}"
                          "\n\tclient_config: {}"
                          "\n\tconcurrency: {},"
                          "\n\ttimeout(s): {},"
                          "\n\tretry: {},"
                          "\n\tbatch_size: {},"
                          "\n\tauto_batching_timeout(s): {}".format(
B
barriery 已提交
319
                              ", ".join([op.name for op in self._input_ops
320 321 322 323
                                         ]), self._server_endpoints,
                              self._fetch_names, self._client_config,
                              self.concurrency, self._timeout, self._retry,
                              self._batch_size, self._auto_batching_timeout)))
B
barriery 已提交
324

325
    def launch_local_rpc_service(self):
326 327 328 329 330 331 332 333 334
        """
        Launching multiple local rpc servers.

        Args:
            None

        Returns:
            None
        """
W
wangjiawei04 已提交
335
        if self._local_service_handler is None:
B
barriery 已提交
336 337
            _LOGGER.warning(
                self._log("Failed to launch local rpc"
W
wangjiawei04 已提交
338
                          " service: local_service_handler is None."))
B
barriery 已提交
339
            return
W
wangjiawei04 已提交
340
        port = self._local_service_handler.get_port_list()
W
wangjiawei04 已提交
341 342 343
        #if self._local_service_handler.client_type == "local_predictor":
        #    _LOGGER.info("Op({}) use local predictor.")
        #    return
W
wangjiawei04 已提交
344
        self._local_service_handler.start_server()
B
barriery 已提交
345
        _LOGGER.info("Op({}) use local rpc service at port: {}"
346 347
                     .format(self.name, port))

B
barriery 已提交
348
    def use_default_auto_batching_config(self):
349 350 351 352 353 354 355 356 357
        """
        Set the auto batching config default.

        Args:
            None

        Returns:
            None
        """
B
bug fix  
barriery 已提交
358
        if self._batch_size != 1:
359 360
            _LOGGER.warning("Op({}) reset batch_size=1 (original: {})"
                            .format(self.name, self._batch_size))
B
bug fix  
barriery 已提交
361 362
            self._batch_size = 1
        if self._auto_batching_timeout != None:
363
            _LOGGER.warning(
B
barriery 已提交
364 365
                "Op({}) reset auto_batching_timeout=None (original: {})"
                .format(self.name, self._auto_batching_timeout))
B
bug fix  
barriery 已提交
366
            self._auto_batching_timeout = None
B
barriery 已提交
367

B
barrierye 已提交
368
    def use_profiler(self, use_profile):
B
barrierye 已提交
369
        self._server_use_profile = use_profile
370

B
barriery 已提交
371 372 373
    def set_tracer(self, tracer):
        self._tracer = tracer

W
wangjiawei04 已提交
374
    def init_client(self, client_config, server_endpoints):
375 376 377 378 379 380 381 382 383 384 385 386
        """
        Initialize the client object. There are three types of clients, brpc,
        grpc and local_predictor. In grpc or brpc mode, the client connects 
        endpoints.

        Args:
            client_config: client config info
            server_endpoints: server IP/Port list.

        Returns:
            client: client object.
        """
387
        if self.with_serving == False:
B
barriery 已提交
388
            _LOGGER.info("Op({}) has no client (and it also do not "
389
                         "run the process function)".format(self.name))
B
barrierye 已提交
390
            return None
W
wangjiawei04 已提交
391
        if self.client_type == 'brpc':
B
barrierye 已提交
392 393
            client = Client()
            client.load_client_config(client_config)
394
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client) 
395 396
        elif self.client_type == 'pipeline_grpc':
            client = PPClient()
W
wangjiawei04 已提交
397 398 399 400
        elif self.client_type == 'local_predictor':
            if self.local_predictor is None:
                raise ValueError("local predictor not yet created")
            client = self.local_predictor
401
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client)
402
        else:
B
barriery 已提交
403
            raise ValueError("Failed to init client: unknow client "
W
wangjiawei04 已提交
404
                             "type {}".format(self.client_type))
W
wangjiawei04 已提交
405 406 407
        if self._fetch_names is None:
            self._fetch_names = client.fetch_names_
            _LOGGER.info("Op({}) has no fetch name set. So fetch all vars")
W
wangjiawei04 已提交
408 409
        if self.client_type != "local_predictor":
            client.connect(server_endpoints)
410
        _LOGGER.info("init_client, feed_list:{}, fetch_list: {}".format(self.right_feed_names, self.right_fetch_names))
B
barrierye 已提交
411
        return client
412 413 414 415 416

    def get_input_ops(self):
        return self._input_ops

    def set_input_ops(self, ops):
417 418 419 420 421 422 423 424 425 426
        """
        Set input ops.Each op have many input ops, but only one input
        channel.

        Args:
            ops: op list

        Returns:
            None.
        """
427 428 429 430 431
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]
        self._input_ops = []
        for op in ops:
            if not isinstance(op, Op):
432
                _LOGGER.critical(
B
barriery 已提交
433 434
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
435
                os._exit(-1)
436
            self._input_ops.append(op)
D
dongdaxiang 已提交
437

438 439 440
    def set_pack_tensor_format(self, is_tensor_format=False):
        self._pack_tensor_format = is_tensor_format

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    def get_jump_to_ops(self):
        return self._jump_to_ops

    def set_jump_to_ops(self, ops):
        """
        Set jump to ops, then, this op can send channeldata to output channel.

        Args:
            ops: op list to be jumpped

        Returns:
            None.
        """
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]

        self._jump_to_ops = []
        for op in ops:
            if not isinstance(op, Op):
                _LOGGER.critical(
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
                os._exit(-1)
            self._jump_to_ops.append(op)

    def is_jump_op(self):
        """
        The op has _jump_to_ops members or not.

        Args:
            None

        Returns:
            True or False
        """
        return len(self._jump_to_ops) > 0

    def check_jumping(self, input_data):
        """
        Check whether to send data to jump ops.WhileOp needs to rewrite 
        this interface. this function returns False default.
     
        Args:
            input_data: input data to be preprocessed

        Returns:
            True, send data to the output channel of jump ops
            False, send data to output channel.
        """
        return False

    def get_output_channels_of_jump_ops(self):
        """
        Get output channels of jump ops

        Args:
            None

        Returns:
            list of channels
        """
        channels = []
        if self.is_jump_op() is False:
            return channels
        for op in self._jump_to_ops:
            _LOGGER.info("op:{} extend op._get_output_channels:{}".format(
                op.name, op._get_output_channels()))
            channels.extend(op._get_output_channels())

        _LOGGER.info("get_output_channels_of_jump_ops, channels:{}".format(
            channels))
        return channels

514
    def add_input_channel(self, channel):
515 516 517 518
        """
        Adding one input channel to the Op. Each op have many front op,
        but, only one input channel.
        """
519
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
520
            _LOGGER.critical(
B
barriery 已提交
521 522 523
                self._log("Failed to set input_channel: input "
                          "channel must be Channel type, not {}".format(
                              type(channel))))
524
            os._exit(-1)
525 526
        channel.add_consumer(self.name)
        self._input = channel
D
dongdaxiang 已提交
527

528
    def clean_input_channel(self):
B
barrierye 已提交
529 530 531 532
        self._input = None

    def _get_input_channel(self):
        return self._input
D
dongdaxiang 已提交
533

534
    def add_output_channel(self, channel):
535 536 537 538 539 540 541 542 543 544
        """
        Adding one output channel to the Op. Each op have many output channels,
        But only one front channel.

        Args:
            channel: an output channel object.

        Returns:
            None
        """
545
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
546
            _LOGGER.critical(
B
barriery 已提交
547 548
                self._log("Failed to add output_channel: output channel "
                          "must be Channel type, not {}".format(type(channel))))
549
            os._exit(-1)
550 551
        channel.add_producer(self.name)
        self._outputs.append(channel)
552
        _LOGGER.debug("op:{} add output_channel {}".format(self.name, channel))
D
dongdaxiang 已提交
553

554
    def clean_output_channels(self):
B
barrierye 已提交
555 556 557 558 559
        self._outputs = []

    def _get_output_channels(self):
        return self._outputs

560
    def preprocess(self, input_dicts, data_id=0, log_id=0):
T
TeslaZhao 已提交
561 562 563 564 565 566
        """
        In preprocess stage, assembling data for process stage. users can 
        override this function for model feed features.

        Args:
            input_dicts: input data to be preprocessed
567
            data_id: inner unique id, increase auto
568
            log_id: global unique id for RTT, 0 default
T
TeslaZhao 已提交
569 570

        Return:
T
TeslaZhao 已提交
571
            output_data: data for process stage
T
TeslaZhao 已提交
572 573 574 575 576
            is_skip_process: skip process stage or not, False default
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception. 
            prod_errinfo: "" default
        """
B
barrierye 已提交
577
        # multiple previous Op
B
barrierye 已提交
578
        if len(input_dicts) != 1:
579 580
            _LOGGER.critical(
                self._log(
B
barriery 已提交
581 582
                    "Failed to run preprocess: this Op has multiple previous "
                    "inputs. Please override this func."))
583
            os._exit(-1)
D
dongdaxiang 已提交
584

B
barrierye 已提交
585
        (_, input_dict), = input_dicts.items()
T
TeslaZhao 已提交
586
        return input_dict, False, None, ""
587
    
588
    def process(self, feed_batch, typical_logid=0):
T
TeslaZhao 已提交
589 590 591 592 593
        """
        In process stage, send requests to the inference server or predict locally.
        users do not need to inherit this function
        Args:
            feed_batch: data to be fed to inference server
594 595
            typical_logid: mark batch predicts, usually the first logid in batch,
                0 default.
T
TeslaZhao 已提交
596 597 598 599

        Returns:
            call_result: predict result
        """
600 601 602 603

        call_result = None
        err_code = ChannelDataErrcode.OK.value
        err_info = ""
604 605 606 607 608 609 610 611 612 613 614 615 616
        @ErrorCatch 
        @ParamChecker
        def feed_fetch_list_check_helper(feed_batch : lambda feed_batch: check_feed_dict(feed_batch[0], self.right_feed_names),
                                         fetch_list : lambda fetch_list: check_fetch_list(fetch_list, self.right_fetch_names),
                                         log_id):
            return None
        _, resp = feed_fetch_list_check_helper(feed_batch, self._fetch_names, log_id=typical_logid)
        if resp.err_no != CustomExceptionCode.OK.value:
            err_code = resp.err_no
            err_info = resp.err_msg
            call_result = None
            return call_result, err_code, err_info
                
W
wangjiawei04 已提交
617
        if self.client_type == "local_predictor":
618 619 620 621 622 623 624 625
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for local_predictor mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"

W
wangjiawei04 已提交
626 627
            call_result = self.client.predict(
                feed=feed_batch[0],
W
wangjiawei04 已提交
628
                fetch=self._fetch_names,
W
wangjiawei04 已提交
629 630
                batch=True,
                log_id=typical_logid)
631 632 633 634 635 636 637 638

        elif self.client_type == "brpc":
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for brpc mode.".format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"
W
wangjiawei04 已提交
639
            call_result = self.client.predict(
640
                feed=feed_batch[0],
W
wangjiawei04 已提交
641
                fetch=self._fetch_names,
W
wangjiawei04 已提交
642 643
                batch=True,
                log_id=typical_logid)
644 645 646 647 648 649 650 651 652 653 654 655 656 657

        elif self.client_type == "pipeline_grpc":
            err, err_info = ChannelData.check_dictdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                       npdata in process for pipeline_grpc mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be dict"

            call_result = self.client.predict(
                feed_dict=feed_batch[0],
                fetch=self._fetch_names,
                asyn=False,
658
                pack_tensor_format=self._pack_tensor_format,
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
                profile=False)
            if call_result is None:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. call_result is None."))
                return call_result, ChannelDataErrcode.UNKNOW.value, "pipeline_grpc error"
            if call_result.err_no != 0:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. err_no:{}, err_info:{}".
                              format(call_result.err_no, call_result.err_msg)))
                return call_result, ChannelDataErrcode(
                    call_result.err_no).value, call_result.err_msg

            new_dict = {}
            err_code = ChannelDataErrcode(call_result.err_no).value
            err_info = call_result.err_msg
            for idx, key in enumerate(call_result.key):
                new_dict[key] = [call_result.value[idx]]
            call_result = new_dict

        return call_result, err_code, err_info
679

680
    def postprocess(self, input_data, fetch_data, data_id=0, log_id=0):
T
TeslaZhao 已提交
681 682 683
        """
        In postprocess stage, assemble data for next op or output.
        Args:
T
TeslaZhao 已提交
684 685
            input_data: data returned in preprocess stage, dict(for single predict) or list(for batch predict)
            fetch_data: data returned in process stage, dict(for single predict) or list(for batch predict)
686
            data_id: inner unique id, increase auto
687
            log_id: logid, 0 default
T
TeslaZhao 已提交
688 689

        Returns: 
T
TeslaZhao 已提交
690
            fetch_dict: fetch result must be dict type.
T
TeslaZhao 已提交
691 692 693 694
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception.
            prod_errinfo: "" default
        """
T
TeslaZhao 已提交
695 696 697
        fetch_dict = {}
        if isinstance(fetch_data, dict):
            fetch_dict = fetch_data
T
TeslaZhao 已提交
698
        return fetch_dict, None, ""
D
dongdaxiang 已提交
699

B
barrierye 已提交
700
    def _parse_channeldata(self, channeldata_dict):
T
TeslaZhao 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713
        """
        Parse one channeldata 
        Args:
            channeldata_dict : channel data to be parsed, dict type
        
        Return:
            data_id: created by dag._id_generator, unique
            error_channeldata: error channeldata
            parsed_data: get np/dict data from channeldata
            client_need_profile: need profile info
            profile_set: profile info
            log_id: logid for tracing a request 
        """
714
        data_id, error_channeldata = None, None
B
barrierye 已提交
715
        client_need_profile, profile_set = False, set()
B
barrierye 已提交
716 717 718 719
        parsed_data = {}

        key = list(channeldata_dict.keys())[0]
        data_id = channeldata_dict[key].id
T
TeslaZhao 已提交
720
        log_id = channeldata_dict[key].log_id
B
barrierye 已提交
721
        client_need_profile = channeldata_dict[key].client_need_profile
B
barrierye 已提交
722 723

        for name, data in channeldata_dict.items():
T
TeslaZhao 已提交
724
            if data.error_code != ChannelDataErrcode.OK.value:
B
barrierye 已提交
725 726 727
                error_channeldata = data
                break
            parsed_data[name] = data.parse()
B
barrierye 已提交
728
            if client_need_profile:
B
barrierye 已提交
729
                profile_set |= data.profile_data_set
B
barrierye 已提交
730
        return (data_id, error_channeldata, parsed_data, client_need_profile,
T
TeslaZhao 已提交
731
                profile_set, log_id)
B
barrierye 已提交
732 733 734 735 736

    def _push_to_output_channels(self,
                                 data,
                                 channels,
                                 name=None,
B
barriery 已提交
737
                                 profile_str=None,
B
barrierye 已提交
738
                                 client_need_profile=False,
B
barrierye 已提交
739
                                 profile_set=None):
T
TeslaZhao 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753
        """
        Push data to output channels, Do not run the later stage(preprocess,
        process, postprocess)
        Args:
            data: channeldata, to be pushed
            channels: output channels
            name: op name  
            profile_str: one profile message
            client_need_profile: False default
            profile_set: profile message collections

        Returns:
            None
        """
754 755
        if name is None:
            name = self.name
B
barrierye 已提交
756

B
barriery 已提交
757
        # add profile into channeldata
B
barrierye 已提交
758
        if client_need_profile and profile_set is not None:
B
barriery 已提交
759 760
            if profile_str is not None:
                profile_set.add(profile_str)
B
barrierye 已提交
761
            data.add_profile(profile_set)
B
barrierye 已提交
762

B
barriery 已提交
763 764 765
        for channel in channels:
            channel.push(data, name)

W
wangjiawei04 已提交
766
    def start_with_process(self):
767 768 769 770 771 772 773 774 775 776
        """
        Each OP creates a process to run the main loop, initializes the CUDA
        environment in each individual process.

        Args:
            None

        Returns:
            process array
        """
B
barriery 已提交
777 778 779
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
W
wangjiawei04 已提交
780
        process = []
B
barrierye 已提交
781
        for concurrency_idx in range(self.concurrency):
782 783
            p = multiprocessing.Process(
                target=self._run,
B
barrierye 已提交
784
                args=(concurrency_idx, self._get_input_channel(),
785 786
                      self._get_output_channels(), False, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
787
                      self.device_type, self.devices, self.mem_optim,
T
TeslaZhao 已提交
788 789
                      self.ir_optim, self.precision, self.use_mkldnn,
                      self.mkldnn_cache_capacity, self.mkldnn_op_list,
790
                      self.mkldnn_bf16_op_list, self.is_jump_op(),
F
felixhjh 已提交
791
                      self.get_output_channels_of_jump_ops(),
792 793
                      self.min_subgraph_size, self.dynamic_shape_info, 
                      self.use_calib))
B
barriery 已提交
794
            p.daemon = True
795
            p.start()
W
wangjiawei04 已提交
796 797
            process.append(p)
        return process
798

W
wangjiawei04 已提交
799
    def start_with_thread(self):
800 801 802 803 804 805 806 807 808 809
        """
        Each OP creates a thread to run the main loop, initializes the CUDA 
        environment in the main thread.

        Args:
            None
 
        Returns:
            thread array
        """
B
barriery 已提交
810 811 812
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
813 814 815 816

        #Init cuda env in main thread
        if self.client_type == "local_predictor":
            _LOGGER.info("Init cuda env in main thread")
817
            self.local_predictor = self._local_service_handler.get_client(0)
818

819
        threads = []
B
barrierye 已提交
820
        for concurrency_idx in range(self.concurrency):
821 822
            t = threading.Thread(
                target=self._run,
B
barrierye 已提交
823
                args=(concurrency_idx, self._get_input_channel(),
824 825
                      self._get_output_channels(), True, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
826
                      self.device_type, self.devices, self.mem_optim,
827 828 829
                      self.ir_optim, self.precision, self.use_mkldnn, 
                      self.mkldnn_cache_capacity, self.mkldnn_op_list, 
                      self.mkldnn_bf16_op_list, self.is_jump_op(), 
F
felixhjh 已提交
830
                      self.get_output_channels_of_jump_ops(),
831 832
                      self.min_subgraph_size, self.dynamic_shape_info,
                      self.use_calib))
B
barriery 已提交
833 834 835
            # When a process exits, it attempts to terminate
            # all of its daemonic child processes.
            t.daemon = True
836 837 838 839
            t.start()
            threads.append(t)
        return threads

B
barrierye 已提交
840
    def init_op(self):
B
barrierye 已提交
841 842
        pass

T
TeslaZhao 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855 856
    def _run_preprocess(self, parsed_data_dict, op_info_prefix, logid_dict):
        """
        Run preprocess stage
        Args:
            parsed_data_dict: data to be pre-processed
            op_info_prefix: input op info
            logid_dict: logid dict

        Returns:
            preped_data_dict: data preprocessed, to be processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it.
            skip_process_dict: skip process stage or not

        """
B
barriery 已提交
857
        _LOGGER.debug("{} Running preprocess".format(op_info_prefix))
858 859
        preped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
860
        skip_process_dict = {}
861 862 863 864 865 866
        @ErrorCatch
        def preprocess_help(self, parsed_data, data_id, logid_dict):
            preped_data, is_skip_process, prod_errcode, prod_errinfo = self.preprocess(
                parsed_data, data_id, logid_dict.get(data_id))
            return preped_data, is_skip_process, prod_errcode, prod_errinfo
            
867 868
        for data_id, parsed_data in parsed_data_dict.items():
            preped_data, error_channeldata = None, None
T
TeslaZhao 已提交
869 870 871
            is_skip_process = False
            prod_errcode, prod_errinfo = None, None
            log_id = logid_dict.get(data_id)
F
felixhjh 已提交
872 873
            process_res, resp = preprocess_help(self, parsed_data, data_id = data_id,
            logid_dict = logid_dict)
F
felixhjh 已提交
874
            if resp.err_no == CustomExceptionCode.OK.value:
875
                preped_data, is_skip_process, prod_errcode, prod_errinfo = process_res
T
TeslaZhao 已提交
876 877
                if is_skip_process is True:
                    skip_process_dict[data_id] = True
878 879 880 881 882 883 884 885 886 887 888
                if prod_errcode is not None:
                    _LOGGER.error("data_id: {} return product error. Product ErrNo:{}, Product ErrMsg: {}".format(data_id, prod_errcode, prod_errinfo))
                    error_channeldata = ChannelData(
                      error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                      error_info="",
                      prod_error_code=prod_errcode,
                      prod_error_info=prod_errinfo,
                      data_id=data_id,
                      log_id=log_id)
            else:
                
T
TeslaZhao 已提交
889
                error_channeldata = ChannelData(
890 891 892 893 894
                  error_code=resp.err_no,
                  error_info=resp.err_msg,
                  data_id=data_id,
                  log_id=log_id)
                skip_process_dict[data_id] = True 
T
TeslaZhao 已提交
895

896 897 898 899
            if error_channeldata is not None:
                err_channeldata_dict[data_id] = error_channeldata
            else:
                preped_data_dict[data_id] = preped_data
B
barriery 已提交
900
        _LOGGER.debug("{} Succ preprocess".format(op_info_prefix))
T
TeslaZhao 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
        return preped_data_dict, err_channeldata_dict, skip_process_dict

    def _run_process(self, preped_data_dict, op_info_prefix, skip_process_dict,
                     logid_dict):
        """
        Run process stage
        Args:
            preped_data_dict: feed the data to be predicted by the model.  
            op_info_prefix: prefix op info
            skip_process_dict: skip process stage or not
            logid_dict: logid dict

        Returns:
            midped_data_dict: data midprocessed, to be post-processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it 
        """
B
barriery 已提交
917
        _LOGGER.debug("{} Running process".format(op_info_prefix))
918 919
        midped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
920
        is_skip_process = False
T
TeslaZhao 已提交
921
        data_ids = list(preped_data_dict.keys())
T
TeslaZhao 已提交
922 923

        # skip process stage
T
TeslaZhao 已提交
924 925
        if len(data_ids) == 1 and skip_process_dict.get(data_ids[0]) == True:
            is_skip_process = True
T
TeslaZhao 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
        if self.with_serving is False or is_skip_process is True:
            midped_data_dict = preped_data_dict
            _LOGGER.warning("(data_id={} log_id={}) OP={} skip process stage. " \
                "with_serving={}, is_skip_process={}".format(data_ids[0],
                logid_dict.get(data_ids[0]), self.name, self.with_serving,
                is_skip_process))
            return midped_data_dict, err_channeldata_dict

        # use typical_logid to mark batch data
        # data_ids is one self-increasing unique key. 
        typical_logid = data_ids[0]
        if len(data_ids) != 1:
            for data_id in data_ids:
                _LOGGER.info(
                    "(data_id={} logid={}) Auto-batching is On Op={}!!" \
                    "We selected logid={} (from batch: {}) as a " \
                    "representative for logging.".format(
                    data_id, logid_dict.get(data_id), self.name,
                    typical_logid, data_ids))

        one_input = preped_data_dict[data_ids[0]]
        feed_batch = []
        feed_dict = {}
        cur_offset = 0
        input_offset_dict = {}
        batch_input = False

        if isinstance(one_input, dict):
            # For dict type, data structure is dict.
            # Merge multiple dicts for data_ids into one dict.
            # feed_batch is the input param of predict func.
            # input_offset_dict is used for data restration[data_ids]
            if len(data_ids) == 1:
                feed_batch = [preped_data_dict[data_id] for data_id in data_ids]
            else:
961 962
                for data_id in data_ids:
                    for key, val in preped_data_dict[data_id].items():
T
TeslaZhao 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
                        has_val = feed_dict.get(key)
                        if has_val is None:
                            feed_dict[key] = val
                            continue
                        # merge 2 np.arrray
                        if isinstance(val, np.ndarray):
                            feed_dict[key] = np.append(
                                feed_dict[key], val, axis=0)
                feed_batch.append(feed_dict)

            for data_id in data_ids:
                start = cur_offset
                for key, val in preped_data_dict[data_id].items():
                    if isinstance(val, (list, np.ndarray)):
                        cur_offset += len(val)
                    else:
                        cur_offset += 1
                    break
                input_offset_dict[data_id] = [start, cur_offset]
        elif isinstance(one_input, list):
            # For list type, data structure of one_input is [dict, dict, ...]
            # Data structure of feed_batch is [dict1_1, dict1_2, dict2_1, ...]   
            # Data structure of input_offset_dict is { data_id : [start, end] }
            batch_input = True
            for data_id in data_ids:
                feed_batch.extend(preped_data_dict[data_id])
                data_size = len(preped_data_dict[data_id])
                start = cur_offset
                cur_offset = start + data_size
                input_offset_dict[data_id] = [start, cur_offset]
        else:
            _LOGGER.critical(
                "(data_id={} log_id={}){} Failed to process: expect input type is dict"
                " or list(batch input), but get {}".format(data_ids[
                    0], typical_logid, op_info_prefix, type(one_input)))
            for data_id in data_ids:
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = "expect input type is dict or list, but get {}".format(
                    type(one_input))
                err_channeldata_dict[data_id] = ChannelData(
                    error_code=error_code,
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict
B
barrierye 已提交
1008

T
TeslaZhao 已提交
1009 1010
        midped_batch = None
        error_code = ChannelDataErrcode.OK.value
1011
        error_info = ""
T
TeslaZhao 已提交
1012 1013 1014 1015
        if self._timeout <= 0:
            # No retry
            try:
                if batch_input is False:
1016 1017
                    midped_batch, error_code, error_info = self.process(
                        feed_batch, typical_logid)
T
TeslaZhao 已提交
1018 1019 1020
                else:
                    midped_batch = []
                    for idx in range(len(feed_batch)):
1021 1022 1023 1024
                        predict_res, error_code, error_info = self.process(
                            [feed_batch[idx]], typical_logid)
                        if error_code != ChannelDataErrcode.OK.value:
                            break
T
TeslaZhao 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
                        midped_batch.append(predict_res)
            except Exception as e:
                error_code = ChannelDataErrcode.UNKNOW.value
                error_info = "(data_id={} log_id={}) {} Failed to process(batch: {}): {}".format(
                    data_ids[0], typical_logid, op_info_prefix, data_ids, e)
                _LOGGER.error(error_info, exc_info=True)
        else:
            # retry N times configed in yaml files.
            for i in range(self._retry):
                try:
                    # time out for each process
                    if batch_input is False:
1037
                        midped_batch, error_code, error_info = func_timeout.func_timeout(
B
barriery 已提交
1038 1039 1040
                            self._timeout,
                            self.process,
                            args=(feed_batch, typical_logid))
1041
                    else:
T
TeslaZhao 已提交
1042 1043
                        midped_batch = []
                        for idx in range(len(feed_batch)):
1044
                            predict_res, error_code, error_info = func_timeout.func_timeout(
T
TeslaZhao 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
                                self._timeout,
                                self.process,
                                args=([feed_batch[idx]], typical_logid))
                            midped_batch[idx].append(predict_res)

                except func_timeout.FunctionTimedOut as e:
                    if i + 1 >= self._retry:
                        error_code = ChannelDataErrcode.TIMEOUT.value
                        error_info = "(log_id={}) {} Failed to process(batch: {}): " \
                            "exceeded retry count.".format(typical_logid, op_info_prefix, data_ids)
                        _LOGGER.error(error_info)
B
barrierye 已提交
1056
                    else:
T
TeslaZhao 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
                        _LOGGER.warning(
                            "(log_id={}) {} Failed to process(batch: {}): timeout,"
                            " and retrying({}/{})...".format(
                                typical_logid, op_info_prefix, data_ids, i + 1,
                                self._retry))
                except Exception as e:
                    error_code = ChannelDataErrcode.UNKNOW.value
                    error_info = "(log_id={}) {} Failed to process(batch: {}): {}".format(
                        typical_logid, op_info_prefix, data_ids, e)
                    _LOGGER.error(error_info, exc_info=True)
                    break
                else:
                    break

        # 2 kinds of errors
        if error_code != ChannelDataErrcode.OK.value or midped_batch is None:
1073 1074 1075
            error_info = "[{}] failed to predict. {}. Please check the input dict and checkout PipelineServingLogs/pipeline.log for more details.".format(
             self.name, error_info)
    
T
TeslaZhao 已提交
1076 1077 1078
            _LOGGER.error(error_info)
            for data_id in data_ids:
                err_channeldata_dict[data_id] = ChannelData(
1079
                    error_code=error_code,
T
TeslaZhao 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict

        # Split batch infer result to each data_ids
        if batch_input is False:
            var_names = midped_batch.keys()
            lod_var_names = set()
            lod_offset_names = set()
            # midped_batch is dict type for single input 
            for name in var_names:
                lod_offset_name = "{}.lod".format(name)
                if lod_offset_name in var_names:
                    _LOGGER.debug("(log_id={}) {} {} is LodTensor".format(
                        typical_logid, op_info_prefix, name))
                    lod_var_names.add(name)
                    lod_offset_names.add(lod_offset_name)

            for idx, data_id in enumerate(data_ids):
                midped_data_dict[data_id] = {}

            for name, value in midped_batch.items():
                if name in lod_offset_names:
                    continue
                if name in lod_var_names:
                    # lodtensor
                    lod_offset_name = "{}.lod".format(name)
                    lod_offset = midped_batch[lod_offset_name]
                    for idx, data_id in enumerate(data_ids):
                        data_offset_left = input_offset_dict[data_id][0]
                        data_offset_right = input_offset_dict[data_id][1]
                        lod_offset_left = lod_offset[data_offset_left]
                        lod_offset_right = lod_offset[data_offset_right]
                        midped_data_dict[data_id][name] = value[
                            lod_offset_left:lod_offset_right]
                        midped_data_dict[data_id][lod_offset_name] = \
                            lod_offset[data_offset_left:data_offset_right + 1] - lod_offset[data_offset_left]
                else:
                    # normal tensor
                    for idx, data_id in enumerate(data_ids):
                        start = input_offset_dict[data_id][0]
                        end = input_offset_dict[data_id][1]
                        midped_data_dict[data_id][name] = value[start:end]
1124
        else:
T
TeslaZhao 已提交
1125 1126 1127 1128 1129
            # midped_batch is list type for batch input
            for idx, data_id in enumerate(data_ids):
                start = input_offset_dict[data_id][0]
                end = input_offset_dict[data_id][1]
                midped_data_dict[data_id] = midped_batch[start:end]
1130 1131
        return midped_data_dict, err_channeldata_dict

B
barriery 已提交
1132
    def _run_postprocess(self, parsed_data_dict, midped_data_dict,
T
TeslaZhao 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
                         op_info_prefix, logid_dict):
        """
        Run postprocess stage.
        Args:
            parsed_data_dict: data returned in preprocess stage 
            midped_data_dict: data returned in process stage
            op_info_prefix: prefix op info
            logid_dict: logid dict

        Returns:
            postped_data_dict: data postprocessed 
            err_channeldata_dict: when exceptions occurred, putting errors in it
 
        """
B
barriery 已提交
1147
        _LOGGER.debug("{} Running postprocess".format(op_info_prefix))
1148 1149
        postped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
1150 1151 1152 1153 1154
        @ErrorCatch
        def postprocess_help(self, parsed_data_dict, midped_data, data_id, logid_dict):
            postped_data, prod_errcode, prod_errinfo = self.postprocess(parsed_data_dict[data_id], 
              midped_data, data_id, logid_dict.get(data_id))
            if not isinstance(postped_data, dict):
F
felixhjh 已提交
1155
                raise CustomException(CustomExceptionCode.TYPE_ERROR, "postprocess should return dict", True)
1156 1157
            return postped_data, prod_errcode, prod_errinfo

B
bug fix  
barriery 已提交
1158
        for data_id, midped_data in midped_data_dict.items():
T
TeslaZhao 已提交
1159
            log_id = logid_dict.get(data_id)
1160
            postped_data, err_channeldata = None, None
T
TeslaZhao 已提交
1161 1162
            prod_errcode, prod_errinfo = None, None

F
felixhjh 已提交
1163 1164
            post_res, resp = postprocess_help(self, parsed_data_dict, midped_data, data_id
            = data_id, logid_dict = logid_dict)
H
huangjianhui 已提交
1165
            if resp.err_no == CustomExceptionCode.OK.value:
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
                postped_data, prod_errcode, prod_errinfo = post_res
                if prod_errcode is not None:
                  # product errors occured
                    err_channeldata = ChannelData(
                      error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                      error_info="",
                      prod_error_code=prod_errcode,
                      prod_error_info=prod_errinfo,
                      data_id=data_id,
                      log_id=log_id)
            else:
T
TeslaZhao 已提交
1177
                err_channeldata = ChannelData(
1178 1179
                    error_code=resp.err_no,
                    error_info=resp.err_msg,
T
TeslaZhao 已提交
1180 1181 1182
                    data_id=data_id,
                    log_id=log_id)

1183 1184 1185 1186
            if err_channeldata is not None:
                err_channeldata_dict[data_id] = err_channeldata
                continue

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
            output_data = None
            err, _ = ChannelData.check_npdata(postped_data)
            if err == 0:
                output_data = ChannelData(
                  ChannelDataType.CHANNEL_NPDATA.value,
                  npdata=postped_data,
                  data_id=data_id,
                  log_id=log_id)
            else:
                output_data = ChannelData(
                  ChannelDataType.DICT.value,
                  dictdata=postped_data,
                  data_id=data_id,
                  log_id=log_id)
            postped_data_dict[data_id] = output_data
B
barriery 已提交
1202
        _LOGGER.debug("{} Succ postprocess".format(op_info_prefix))
1203
        return postped_data_dict, err_channeldata_dict
B
barriery 已提交
1204 1205

    def _auto_batching_generator(self, input_channel, op_name, batch_size,
B
barriery 已提交
1206
                                 timeout, op_info_prefix):
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
        """
        Merge batch_size requests for one prediction.Taking one piece of data 
        from the input channel each time until equals batch_size, or the waiting 
        time exceeds auto_batching_timeout.

        Args:
            input_channel: the input channel of Op
            op_name: op name
            batch_size: batch size, Less than worker_num
            timeout: batch timeout, seconds, If timeout is None, and the quantity 
                taken from the front is less than batch_size, blocking occured.
            op_info_prefix: op link info.

        Returns:
            None
        """
B
barriery 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231
        while True:
            batch = []
            while len(batch) == 0:
                endtime = None
                if timeout is not None:
                    endtime = _time() + timeout
                for idx in range(batch_size):
                    try:
                        channeldata_dict = None
1232
                        front_start_time = int(round(_time() * 1000000))
B
barriery 已提交
1233 1234 1235
                        if timeout is not None:
                            remaining = endtime - _time()
                            if remaining <= 0.0:
B
barriery 已提交
1236 1237
                                _LOGGER.debug("{} Failed to generate batch: "
                                              "timeout".format(op_info_prefix))
B
barriery 已提交
1238
                                break
B
barriery 已提交
1239 1240
                            channeldata_dict = input_channel.front(op_name,
                                                                   timeout)
B
barriery 已提交
1241 1242 1243
                        else:
                            channeldata_dict = input_channel.front(op_name)
                        batch.append(channeldata_dict)
1244
                        _LOGGER.debug(
1245 1246
                            "_auto_batching_generator get {} channeldata from op:{} input channel. time={}".
                            format(idx, op_name, front_start_time))
B
barriery 已提交
1247
                    except ChannelTimeoutError:
B
barriery 已提交
1248 1249
                        _LOGGER.debug("{} Failed to generate batch: "
                                      "timeout".format(op_info_prefix))
B
barriery 已提交
1250
                        break
B
barriery 已提交
1251 1252
            _LOGGER.debug("{} Got actual batch_size: {}".format(op_info_prefix,
                                                                len(batch)))
B
barriery 已提交
1253
            yield batch
1254

1255
    def _parse_channeldata_batch(self, batch, output_channels):
T
TeslaZhao 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
        """
        Parse channeldatas batch
        Args:
            batch: auto-batching batch datas
            output_channels: output channels 

        Returns:
            parsed_data_dict: parsed from channeldata in batch
            need_profile_dict: need profile dict in batch 
            profile_dict: profile info dict in batch
            logid_dict: trace each request in batch
        """
1268
        parsed_data_dict = collections.OrderedDict()
1269 1270
        need_profile_dict = {}
        profile_dict = {}
T
TeslaZhao 已提交
1271
        logid_dict = {}
B
bug fix  
barriery 已提交
1272
        for channeldata_dict in batch:
1273
            (data_id, error_channeldata, parsed_data,
T
TeslaZhao 已提交
1274
                    client_need_profile, profile_set, log_id) = \
1275 1276 1277 1278 1279
                            self._parse_channeldata(channeldata_dict)
            if error_channeldata is None:
                parsed_data_dict[data_id] = parsed_data
                need_profile_dict[data_id] = client_need_profile
                profile_dict[data_id] = profile_set
T
TeslaZhao 已提交
1280
                logid_dict[data_id] = log_id
1281 1282 1283
            else:
                # error data in predecessor Op
                # (error_channeldata with profile info)
B
barriery 已提交
1284 1285
                self._push_to_output_channels(error_channeldata,
                                              output_channels)
1286

T
TeslaZhao 已提交
1287
        return parsed_data_dict, need_profile_dict, profile_dict, logid_dict
B
barriery 已提交
1288

W
wangjiawei04 已提交
1289
    def _run(self, concurrency_idx, input_channel, output_channels,
1290
             is_thread_op, trace_buffer, model_config, workdir, thread_num,
1291 1292 1293 1294
             device_type, devices, mem_optim, ir_optim, precision,
             use_mkldnn, mkldnn_cache_capacity, mkldnn_op_list, 
             mkldnn_bf16_op_list, is_jump_op, output_channels_of_jump_ops, 
             min_subgraph_size, dynamic_shape_info, use_calib):
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
        """
        _run() is the entry function of OP process / thread model.When client 
        type is local_predictor in process mode, the CUDA environment needs to 
        be initialized by LocalServiceHandler[child process], otherwise, Cuda
        error(3), initialization error is occured. Preprocess, process and 
        postprocess are executed in the main loop. The preprocess and postprocess
        function is usually rewrited by users. Trace data is recorded by trace_que.

        Args:
            concurrency_idx: thread/process index
            input_channel: input channel, take the data to be processed
            output_channels: output channel, store processed data
            is_thread_op: False, It's process op; True, It's thread op
            trace_buffer: store trace infomations
            model_config: model config path
            workdir: work directory
            thread_num: number of threads, concurrent quantity
1312
            device_type: support multiple devices
1313 1314
            devices: gpu id list[gpu], "" default[cpu]
            mem_optim: use memory/graphics memory optimization, True default.
1315
            ir_optim: use calculation chart optimization, False default.
T
TeslaZhao 已提交
1316 1317 1318 1319 1320
            precision: inference precision, e.g. "fp32", "fp16", "int8", "bf16"
            use_mkldnn: use mkldnn, default False.
            mkldnn_cache_capacity: cache capacity of mkldnn, 0 means no limit.
            mkldnn_op_list: OP list optimized by mkldnn, None default.
            mkldnn_bf16_op_list: OP list optimized by mkldnn bf16, None default.
1321 1322
            is_jump_op: OP has jump op list or not, False default.
            output_channels_of_jump_ops: all output channels of jump ops.
1323
            use_calib: use calib mode of paddle inference, False default.
1324 1325 1326 1327

        Returns:
            None
        """
1328
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1329

1330
        # init ops
B
barriery 已提交
1331
        profiler = None
1332 1333 1334 1335 1336 1337
        @ErrorCatch
        def check_helper(self, is_thread_op, model_config, workdir, 
             thread_num, device_type, devices, mem_optim, ir_optim, 
             precision, use_mkldnn, mkldnn_cache_capacity, mkldnn_op_list, 
             mkldnn_bf16_op_list, min_subgraph_size, dynamic_shape_info):
            
1338 1339 1340 1341 1342 1343
            if is_thread_op == False and self.client_type == "local_predictor":
                self.service_handler = local_service_handler.LocalServiceHandler(
                    model_config=model_config,
                    client_type="local_predictor",
                    workdir=workdir,
                    thread_num=thread_num,
1344
                    device_type=device_type,
1345 1346
                    devices=devices,
                    mem_optim=mem_optim,
1347
                    ir_optim=ir_optim,
T
TeslaZhao 已提交
1348 1349 1350 1351
                    precision=precision,
                    use_mkldnn=use_mkldnn,
                    mkldnn_cache_capacity=mkldnn_cache_capacity,
                    mkldnn_op_list=mkldnn_op_list,
F
felixhjh 已提交
1352 1353
                    mkldnn_bf16_op_list=mkldnn_bf16_op_list,
                    min_subgraph_size=min_subgraph_size,
1354 1355
                    dynamic_shape_info=dynamic_shape_info,
                    use_calib=use_calib)
1356 1357 1358

                _LOGGER.info("Init cuda env in process {}".format(
                    concurrency_idx))
1359 1360
                self.local_predictor = self.service_handler.get_client(
                    concurrency_idx)
1361
            # check all ops initialized successfully.
W
wangjiawei04 已提交
1362
            profiler = self._initialize(is_thread_op, concurrency_idx)
F
felixhjh 已提交
1363
            return profiler
1364

F
felixhjh 已提交
1365
        profiler, resp = check_helper(self, is_thread_op, model_config, workdir,
1366 1367 1368 1369 1370
             thread_num, device_type, devices, mem_optim, ir_optim,
             precision, use_mkldnn, mkldnn_cache_capacity, mkldnn_op_list,
             mkldnn_bf16_op_list, min_subgraph_size, dynamic_shape_info)

        if resp.err_no != CustomExceptionCode.OK.value:
F
felixhjh 已提交
1371
            _LOGGER.critical(
H
huangjianhui 已提交
1372
                "{} failed to init op: {}".format(op_info_prefix, resp.err_msg),
H
huangjianhui 已提交
1373
                exc_info=False)
1374

H
huangjianhui 已提交
1375
            print("{} failed to init op: {}".format(op_info_prefix, resp.err_msg))
H
huangjianhui 已提交
1376
            kill_stop_process_by_pid("kill", os.getpgid(os.getpid()))
1377

B
barriery 已提交
1378
        _LOGGER.info("{} Succ init".format(op_info_prefix))
1379

B
barriery 已提交
1380
        batch_generator = self._auto_batching_generator(
B
barriery 已提交
1381 1382 1383 1384
            input_channel=input_channel,
            op_name=self.name,
            batch_size=self._batch_size,
            timeout=self._auto_batching_timeout,
B
barriery 已提交
1385
            op_info_prefix=op_info_prefix)
B
barriery 已提交
1386

B
barriery 已提交
1387
        start, end = None, None
B
barrierye 已提交
1388
        trace_que = collections.deque()
B
barrierye 已提交
1389
        while True:
B
barriery 已提交
1390
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1391
            try:
B
barriery 已提交
1392
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1393
            except ChannelStopError:
B
barriery 已提交
1394
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
B
barriery 已提交
1395
                self._finalize(is_thread_op)
B
barrierye 已提交
1396
                break
B
barriery 已提交
1397
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1398
            in_time = end - start
1399 1400
            _LOGGER.debug("op:{} in_time_end:{}".format(op_info_prefix,
                                                        time.time()))
1401

B
barriery 已提交
1402 1403
            # parse channeldata batch
            try:
T
TeslaZhao 已提交
1404
                parsed_data_dict, need_profile_dict, profile_dict, logid_dict\
1405 1406
                        = self._parse_channeldata_batch(
                                channeldata_dict_batch, output_channels)
B
barriery 已提交
1407
            except ChannelStopError:
B
barriery 已提交
1408
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1409
                self._finalize(is_thread_op)
B
barriery 已提交
1410
                break
1411 1412 1413
            if len(parsed_data_dict) == 0:
                # data in the whole batch is all error data
                continue
1414 1415
            _LOGGER.debug("op:{} parse_end:{}".format(op_info_prefix,
                                                      time.time()))
1416

1417 1418 1419 1420 1421 1422
            front_cost = int(round(_time() * 1000000)) - start
            for data_id, parsed_data in parsed_data_dict.items():
                _LOGGER.debug(
                    "(data_id={}) POP INPUT CHANNEL! op:{}, cost:{} ms".format(
                        data_id, self.name, front_cost / 1000.0))

1423
            # preprecess
B
barriery 已提交
1424
            start = profiler.record("prep#{}_0".format(op_info_prefix))
T
TeslaZhao 已提交
1425 1426
            preped_data_dict, err_channeldata_dict, skip_process_dict \
                    = self._run_preprocess(parsed_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1427
            end = profiler.record("prep#{}_1".format(op_info_prefix))
B
barrierye 已提交
1428
            prep_time = end - start
1429 1430
            _LOGGER.debug("op:{} preprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), prep_time))
1431
            try:
T
TeslaZhao 已提交
1432
                # put error requests into output channel, skip process and postprocess stage
1433
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1434
                    self._push_to_output_channels(
B
barriery 已提交
1435 1436
                        data=err_channeldata,
                        channels=output_channels,
1437 1438 1439
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
            except ChannelStopError:
B
barriery 已提交
1440
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1441 1442
                self._finalize(is_thread_op)
                break
B
bug fix  
barrierye 已提交
1443
            if len(preped_data_dict) == 0:
1444 1445
                continue

B
barrierye 已提交
1446
            # process
B
barriery 已提交
1447
            start = profiler.record("midp#{}_0".format(op_info_prefix))
1448
            midped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1449
                    = self._run_process(preped_data_dict, op_info_prefix, skip_process_dict, logid_dict)
B
barriery 已提交
1450
            end = profiler.record("midp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1451
            midp_time = end - start
1452 1453
            _LOGGER.debug("op:{} process_end:{}, cost:{}".format(
                op_info_prefix, time.time(), midp_time))
1454 1455
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1456
                    self._push_to_output_channels(
B
barriery 已提交
1457 1458
                        data=err_channeldata,
                        channels=output_channels,
B
barriery 已提交
1459 1460
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1461
            except ChannelStopError:
B
barriery 已提交
1462
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1463 1464 1465
                self._finalize(is_thread_op)
                break
            if len(midped_data_dict) == 0:
1466
                continue
1467 1468

            # postprocess
B
barriery 已提交
1469
            start = profiler.record("postp#{}_0".format(op_info_prefix))
1470
            postped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1471
                    = self._run_postprocess(parsed_data_dict, midped_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1472
            end = profiler.record("postp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1473
            postp_time = end - start
1474
            after_postp_time = _time()
1475 1476
            _LOGGER.debug("op:{} postprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), postp_time))
1477 1478
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1479
                    self._push_to_output_channels(
B
bug fix  
barrierye 已提交
1480
                        data=err_channeldata,
B
barriery 已提交
1481
                        channels=output_channels,
B
barriery 已提交
1482 1483
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1484
            except ChannelStopError:
B
barriery 已提交
1485
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1486 1487 1488
                self._finalize(is_thread_op)
                break
            if len(postped_data_dict) == 0:
1489
                continue
1490

1491
            # push data to channel (if run succ)
B
barriery 已提交
1492
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1493
            try:
B
barriery 已提交
1494
                profile_str = profiler.gen_profile_str()
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
                if self.is_jump_op() is True and self.check_jumping(
                        postped_data_dict) is True:
                    # push data to output channel of ops to be jumped 
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels_of_jump_ops,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL OF JUMP OPs! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
                else:
                    # push data to output channel.
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
B
barrierye 已提交
1530
            except ChannelStopError:
B
barriery 已提交
1531
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1532
                self._finalize(is_thread_op)
B
barrierye 已提交
1533
                break
B
barriery 已提交
1534
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1535
            out_time = end - start
1536
            after_outchannel_time = int(round(_time() * 1000000))
B
barriery 已提交
1537
            if trace_buffer is not None:
B
barrierye 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
                trace_que.append({
                    "name": self.name,
                    "actions": {
                        "in": in_time,
                        "prep": prep_time,
                        "midp": midp_time,
                        "postp": postp_time,
                        "out": out_time,
                    }
                })
                while trace_que:
                    info = trace_que[0]
                    try:
                        trace_buffer.put_nowait(info)
                        trace_que.popleft()
                    except Queue.Full:
                        break
B
barriery 已提交
1555

W
wangjiawei04 已提交
1556
    def _initialize(self, is_thread_op, concurrency_idx):
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
        """
        Initialize one OP object in the target function of a thread or porcess.
        Initialize the client object with _client_config and _server_endpoints.
        Create a TimeProfiler per thread or process for recording profiler info.

        Args:
            is_thread_op: True, one op runs in one thread; False, one op runs
                in one process.
            concurrency_idx: process id, Thread mode does not use this param.

        Returns:
            TimeProfiler
        """
1570 1571 1572 1573 1574 1575 1576 1577 1578
        @ErrorCatch
        def init_helper(self, is_thread_op, concurrency_idx):
            if is_thread_op:
                with self._for_init_op_lock:
                    if not self._succ_init_op:
                        # for the threaded version of Op, each thread cannot get its concurrency_idx
                        self.concurrency_idx = None
                        # init client
                        self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1579
                                                   self._server_endpoints)
1580 1581 1582 1583 1584 1585 1586 1587
                        # user defined
                        self.init_op()
                        self._succ_init_op = True
                        self._succ_close_op = False
            else:
                self.concurrency_idx = concurrency_idx
                # init client
                self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1588
                                           self._server_endpoints)
1589 1590 1591 1592
                # user defined
                self.init_op() 
        
        init_helper(self, is_thread_op, concurrency_idx)
F
felixhjh 已提交
1593
        print("[OP Object] init success")
B
barriery 已提交
1594 1595 1596 1597 1598
        # use a separate TimeProfiler per thread or process
        profiler = TimeProfiler()
        profiler.enable(True)
        return profiler

B
barriery 已提交
1599 1600 1601 1602 1603 1604 1605 1606
    def _finalize(self, is_thread_op):
        if is_thread_op:
            with self._for_close_op_lock:
                if not self._succ_close_op:
                    self._profiler = None
                    self.client = None
                    self._succ_init_op = False
                    self._succ_close_op = True
1607 1608 1609 1610 1611

    def _log(self, info):
        return "{} {}".format(self.name, info)


B
barrierye 已提交
1612
class RequestOp(Op):
1613 1614 1615 1616 1617 1618
    """
    RequestOp is a special Op, for unpacking one request package. If the
    request needs one special unpackaging method, you need to inherit class
    RequestOp and rewrite function unpack_request_package.Notice!!! Class
    RequestOp does not run preprocess, process, postprocess.
    """
B
barrierye 已提交
1619

B
barrierye 已提交
1620
    def __init__(self):
1621 1622 1623
        """
        Initialize the RequestOp
        """
B
barriery 已提交
1624 1625
        # PipelineService.name = "@DAGExecutor"
        super(RequestOp, self).__init__(name="@DAGExecutor", input_ops=[])
B
barrierye 已提交
1626
        # init op
1627
        try:
1628
            self.init_op()
1629
        except Exception as e:
B
barriery 已提交
1630
            _LOGGER.critical("Op(Request) Failed to init: {}".format(e))
1631
            os._exit(-1)
B
barrierye 已提交
1632

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
    def proto_tensor_2_numpy(self, tensor):
        """
        Convert proto tensor to numpy array, The supported types are as follows:
                INT64
                FP32
		INT32
		FP64
		INT16
		FP16
		BF16
		UINT8
		INT8
		BOOL
1646
                BYTES
1647
        Unsupported type:
1648
                STRING
1649 1650 1651 1652 1653 1654 1655
                COMPLEX64
                COMPLEX128

        Args:
            tensor: one tensor in request.tensors.

        Returns:
T
TeslaZhao 已提交
1656 1657
            np_data: np.ndnumpy, the tensor data is converted to numpy.
            lod_info: np.ndnumpy, lod info of the tensor data, None default.
1658 1659 1660 1661 1662 1663
        """
        if tensor is None or tensor.elem_type is None or tensor.name is None:
            _LOGGER.error("input params of tensor is wrong. tensor: {}".format(
                tensor))
            return None

T
TeslaZhao 已提交
1664
        # Set dim shape
1665 1666 1667 1668 1669 1670 1671
        dims = []
        if tensor.shape is None:
            dims.append(1)
        else:
            for one_dim in tensor.shape:
                dims.append(one_dim)

T
TeslaZhao 已提交
1672 1673 1674 1675 1676
        # Set up 2-d lod tensor
        np_lod = None
        if len(tensor.lod) > 0:
            np_lod = np.array(tensor.lod).astype(int32).reshape(2, -1)

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
        np_data = None
        _LOGGER.info("proto_to_numpy, name:{}, type:{}, dims:{}".format(
            tensor.name, tensor.elem_type, dims))
        if tensor.elem_type == 0:
            # VarType: INT64
            np_data = np.array(tensor.int64_data).astype(int64).reshape(dims)
        elif tensor.elem_type == 1:
            # VarType: FP32
            np_data = np.array(tensor.float_data).astype(float32).reshape(dims)
        elif tensor.elem_type == 2:
            # VarType: INT32
            np_data = np.array(tensor.int_data).astype(int32).reshape(dims)
        elif tensor.elem_type == 3:
            # VarType: FP64
            np_data = np.array(tensor.float64_data).astype(float64).reshape(
                dims)
        elif tensor.elem_type == 4:
            # VarType: INT16
            np_data = np.array(tensor.int_data).astype(int16).reshape(dims)
        elif tensor.elem_type == 5:
            # VarType: FP16
            np_data = np.array(tensor.float_data).astype(float16).reshape(dims)
        elif tensor.elem_type == 6:
            # VarType: BF16
            np_data = np.array(tensor.uint32_data).astype(uint16).reshape(dims)
        elif tensor.elem_type == 7:
            # VarType: UINT8
            np_data = np.array(tensor.uint32_data).astype(uint8).reshape(dims)
        elif tensor.elem_type == 8:
            # VarType: INT8
            np_data = np.array(tensor.int_data).astype(int8).reshape(dims)
        elif tensor.elem_type == 9:
            # VarType: BOOL
            np_data = np.array(tensor.bool_data).astype(bool).reshape(dims)
1711 1712 1713 1714
        elif tensor.elem_type == 13:
            # VarType: BYTES
            byte_data = BytesIO(tensor.byte_data)
            np_data = np.load(byte_data, allow_pickle=True)
1715 1716 1717 1718 1719 1720 1721
        else:
            _LOGGER.error("Sorry, the type {} of tensor {} is not supported.".
                          format(tensor.elem_type, tensor.name))
            raise ValueError(
                "Sorry, the type {} of tensor {} is not supported.".format(
                    tensor.elem_type, tensor.name))

T
TeslaZhao 已提交
1722
        return np_data, np_lod
1723

B
barrierye 已提交
1724
    def unpack_request_package(self, request):
T
TeslaZhao 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
        """
        Unpack request package by gateway.proto
        Args:
            request: HTTP body, JSON format

        Returns:
            dict_data: json fields in HTTP body
            log_id: log_id
            prod_errcode: None or ProductErrCode.SUCC.value default, otherwise,
                          product errores occured.It is handled in the same way
                          as exception.
            prod_errinfo: "" default 
        """
        dict_data = {}
        log_id = None
        if request is None:
            _LOGGER.critical("request is None")
            raise ValueError("request is None")
1743

1744
        # unpack key/value string list
1745
        for idx, key in enumerate(request.key):
1746
            dict_data[key] = request.value[idx]
T
TeslaZhao 已提交
1747
        log_id = request.logid
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778

        # unpack proto.tensors data.
        for one_tensor in request.tensors:
            name = one_tensor.name
            elem_type = one_tensor.elem_type

            if one_tensor.name is None:
                _LOGGER.error("Tensor name is None.")
                raise ValueError("Tensor name is None.")

            numpy_dtype = _TENSOR_DTYPE_2_NUMPY_DATA_DTYPE.get(elem_type)
            if numpy_dtype is None:
                _LOGGER.error(
                    "elem_type:{} is dismatch in unpack_request_package.",
                    format(elem_type))
                raise ValueError("elem_type:{} error".format(elem_type))

            if numpy_dtype == "string":
                new_string = ""
                if one_tensor.str_data is None:
                    _LOGGER.error(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                    raise ValueError(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                for one_str in one_tensor.str_data:
                    new_string += one_str

                dict_data[name] = new_string
            else:
T
TeslaZhao 已提交
1779 1780 1781 1782
                np_data, np_lod = self.proto_tensor_2_numpy(one_tensor)
                dict_data[name] = np_data
                if np_lod is not None:
                    dict_data[name + ".lod"] = np_lod
1783

1784 1785 1786 1787
        _LOGGER.info("RequestOp unpack one request. log_id:{}, clientip:{} \
            name:{}, method:{}, time:{}"
                     .format(log_id, request.clientip, request.name,
                             request.method, time.time()))
T
TeslaZhao 已提交
1788 1789

        return dict_data, log_id, None, ""
B
barrierye 已提交
1790 1791 1792


class ResponseOp(Op):
1793 1794 1795 1796 1797 1798
    """ 
    ResponseOp is a special Op, for packing one response package. If the channeldata 
    needs a special packaging method, you need to inherit class ReponseOp and rewrite
    pack_response_package function. Notice!!! Class ResponseOp does not run preprocess,
    process, postprocess.
    """
B
barrierye 已提交
1799

B
barrierye 已提交
1800
    def __init__(self, input_ops):
1801 1802 1803
        """
        Initialize the ResponseOp
        """
B
barriery 已提交
1804 1805
        super(ResponseOp, self).__init__(
            name="@DAGExecutor", input_ops=input_ops)
1806

B
barrierye 已提交
1807
        # init op
1808
        try:
1809
            self.init_op()
1810
        except Exception as e:
B
barriery 已提交
1811 1812
            _LOGGER.critical("Op(ResponseOp) Failed to init: {}".format(
                e, exc_info=True))
1813
            os._exit(-1)
B
barrierye 已提交
1814

1815 1816 1817 1818 1819 1820
        # init ResponseOp
        self.is_pack_tensor = False

    def set_pack_format(self, isTensor=False):
        self.is_pack_tensor = isTensor

B
barrierye 已提交
1821
    def pack_response_package(self, channeldata):
T
TeslaZhao 已提交
1822
        """
1823 1824 1825 1826 1827 1828 1829 1830
        Getting channeldata from the last channel, packting the response 
        package serialized by protobuf.  

        Args:
            channeldata: Type ChannelData

        Returns:
            resp: pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1831
        """
B
barrierye 已提交
1832
        resp = pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1833 1834 1835
        error_code = channeldata.error_code
        error_info = ""
        if error_code == ChannelDataErrcode.OK.value:
1836
            # Framework level errors
B
barrierye 已提交
1837 1838 1839 1840
            if channeldata.datatype == ChannelDataType.CHANNEL_NPDATA.value:
                feed = channeldata.parse()
                # ndarray to string:
                # https://stackoverflow.com/questions/30167538/convert-a-numpy-ndarray-to-stringor-bytes-and-convert-it-back-to-numpy-ndarray
B
barrierye 已提交
1841
                np.set_printoptions(threshold=sys.maxsize)
B
barrierye 已提交
1842
                for name, var in feed.items():
1843 1844
                    resp.value.append(var.__repr__())
                    resp.key.append(name)
B
barrierye 已提交
1845 1846 1847 1848
            elif channeldata.datatype == ChannelDataType.DICT.value:
                feed = channeldata.parse()
                for name, var in feed.items():
                    if not isinstance(var, str):
T
TeslaZhao 已提交
1849 1850
                        error_code = ChannelDataErrcode.TYPE_ERROR.value
                        error_info = self._log(
B
barrierye 已提交
1851 1852
                            "fetch var type must be str({}).".format(
                                type(var)))
B
barriery 已提交
1853 1854
                        _LOGGER.error("(logid={}) Failed to pack RPC "
                                      "response package: {}".format(
W
wangjiawei04 已提交
1855
                                          channeldata.id, resp.err_msg))
B
barrierye 已提交
1856
                        break
1857 1858
                    resp.value.append(var)
                    resp.key.append(name)
B
barrierye 已提交
1859
            else:
T
TeslaZhao 已提交
1860 1861 1862
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = self._log("error type({}) in datatype.".format(
                    channeldata.datatype))
B
barriery 已提交
1863
                _LOGGER.error("(logid={}) Failed to pack RPC response"
T
TeslaZhao 已提交
1864
                              " package: {}".format(channeldata.id, error_info))
B
barrierye 已提交
1865
        else:
1866
            # Product level errors
T
TeslaZhao 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
            error_info = channeldata.error_info
            if error_code == ChannelDataErrcode.PRODUCT_ERROR.value:
                #rewrite error_code when product errors occured
                error_code = channeldata.prod_error_code
                error_info = channeldata.prod_error_info

        # pack results
        if error_code is None:
            error_code = 0
        resp.err_no = error_code
        resp.err_msg = error_info

B
barrierye 已提交
1879
        return resp
1880 1881 1882


class VirtualOp(Op):
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
    """ 
    To connect 2 ops across levels in dag view, we create virtual ops
    between non-virtual ops, and transfer data only. For examples, 
    the pred ops of F are D & E.In the process of building DAG, we will
    create channels layer by layer according to dag views.Op F is not 
    in the next layer view of [B, E], so we will create a virtual OP 
    'V1' whose pred OP is E. And so on, we create two virtual op 'V2'
    and 'V3', Finally, we find the non-virtual op F. we create 4 channels
    among E, V1, V2, V3 and F, the producer of V1, V2, V3 and F is E.
    
        DAG: [A -> B -> C -> D -> F]
               \-> E ----------/

        DAG view: [[A], [B, E], [C], [D], [F]]
        BUILD DAG: [A -> B -> C -> D -> E -> F]
                     \-> E -> V1-> V2-> V3/
    """
1900 1901 1902

    def __init__(self, name, concurrency=1):
        super(VirtualOp, self).__init__(
B
barrierye 已提交
1903
            name=name, input_ops=None, concurrency=concurrency)
1904 1905 1906
        self._virtual_pred_ops = []

    def add_virtual_pred_op(self, op):
1907 1908 1909 1910 1911 1912 1913 1914 1915
        """
        Add the front op of current vritual op.
        
        Args:
            op: one op object, may be a virtual op or not.

        Returns:
            None
        """
1916 1917
        self._virtual_pred_ops.append(op)

B
barrierye 已提交
1918
    def _actual_pred_op_names(self, op):
1919 1920 1921 1922 1923 1924 1925 1926 1927
        """
        Recursively find the front op which is a non-virtual op.
   
        Args:
            op: one op object
            
        Returns:
            names: the name of non-virtual pred ops.
        """
B
barriery 已提交
1928
        # can use disjoint-set, but it's not necessary
B
barrierye 已提交
1929 1930 1931 1932 1933 1934 1935
        if not isinstance(op, VirtualOp):
            return [op.name]
        names = []
        for x in op._virtual_pred_ops:
            names.extend(self._actual_pred_op_names(x))
        return names

1936
    def add_output_channel(self, channel):
1937 1938 1939 1940 1941 1942 1943 1944 1945
        """
        Adding the output channel of non-virtual pred ops.

        Args:
            channel: one channel.
          
        Returns:
            None.
        """
1946
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
1947
            _LOGGER.critical(
B
barriery 已提交
1948 1949 1950
                self._log("Failed to add output_channel: output_channel"
                          " must be Channel type, not {}".format(
                              type(channel))))
1951
            os._exit(-1)
1952
        for op in self._virtual_pred_ops:
B
barrierye 已提交
1953 1954
            for op_name in self._actual_pred_op_names(op):
                channel.add_producer(op_name)
1955
        self._outputs.append(channel)
D
dongdaxiang 已提交
1956

1957
    def _run(self, concurrency_idx, input_channel, output_channels, client_type,
1958
             is_thread_op):
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
        """
        The target function _run() only transfers data between OPs in one thread
        or process.

        Args:
            concurrency_idx: process id, not avaliable in thread mode.
            input_channel: input channel
            output_channels: output channels
            client_type: no use
            is_thread_op: True, thread mode; False, process mode

        Returns:
            None
        """
1973
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1974 1975 1976
        log = get_log_func(op_info_prefix)
        tid = threading.current_thread().ident

1977 1978 1979 1980 1981 1982 1983
        batch_generator = self._auto_batching_generator(
            input_channel=input_channel,
            op_name=self.name,
            batch_size=1,
            timeout=None,
            log_func=log)

B
barrierye 已提交
1984 1985
        while True:
            try:
1986
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1987
            except ChannelStopError:
B
barriery 已提交
1988
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1989
                self._finalize(is_thread_op)
B
barrierye 已提交
1990
                break
D
dongdaxiang 已提交
1991

B
barrierye 已提交
1992
            try:
1993 1994 1995 1996
                for channeldata_dict in channeldata_dict_batch:
                    for name, data in channeldata_dict.items():
                        self._push_to_output_channels(
                            data, channels=output_channels, name=name)
B
barrierye 已提交
1997
            except ChannelStopError:
B
barriery 已提交
1998
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1999
                self._finalize(is_thread_op)
B
barrierye 已提交
2000
                break