operator.py 80.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
B
barriery 已提交
15
from time import time as _time
B
barriery 已提交
16
import time
17 18
import threading
import multiprocessing
H
HexToString 已提交
19
from paddle_serving_client import Client
20 21 22
from concurrent import futures
import logging
import func_timeout
23
import os
B
barrierye 已提交
24
import sys
25
import collections
B
barrierye 已提交
26
import numpy as np
T
TeslaZhao 已提交
27
import json
B
barrierye 已提交
28
from numpy import *
29
from io import BytesIO
B
barrierye 已提交
30 31 32 33 34 35
if sys.version_info.major == 2:
    import Queue
elif sys.version_info.major == 3:
    import queue as Queue
else:
    raise Exception("Error Python version")
36

37 38 39
from .error_catch import ErrorCatch, CustomException, CustomExceptionCode, ParamChecker, ParamVerify
check_feed_dict=ParamVerify.check_feed_dict
check_fetch_list=ParamVerify.check_fetch_list
B
barrierye 已提交
40
from .proto import pipeline_service_pb2
41 42 43 44
from .channel import (ThreadChannel, ProcessChannel,ChannelData, 
                      ChannelDataType, ChannelStopError, ChannelTimeoutError)
from .error_catch import  ProductErrCode
from .error_catch import CustomExceptionCode as ChannelDataErrcode
B
barrierye 已提交
45
from .util import NameGenerator
B
barriery 已提交
46
from .profiler import UnsafeTimeProfiler as TimeProfiler
W
wangjiawei04 已提交
47
from . import local_service_handler
48
from .pipeline_client import PipelineClient as PPClient
49

50
_LOGGER = logging.getLogger(__name__)
B
barrierye 已提交
51 52
_op_name_gen = NameGenerator("Op")

53 54 55 56 57 58 59 60 61 62 63 64 65 66
# data type of tensor to numpy_data
_TENSOR_DTYPE_2_NUMPY_DATA_DTYPE = {
    0: "int64",  # VarType.INT64
    1: "float32",  # VarType.FP32
    2: "int32",  # VarType.INT32
    3: "float64",  # VarType.FP64
    4: "int16",  # VarType.int16
    5: "float16",  # VarType.FP32
    6: "uint16",  # VarType.BF16
    7: "uint8",  # VarType.UINT8
    8: "int8",  # VarType.INT8
    9: "bool",  # VarType.BOOL
    10: "complex64",  # VarType.COMPLEX64
    11: "complex128",  # VarType.COMPLEX128
67 68
    12: "string",  # load by numpy
    13: "bytes",  # load by numpy
69 70
}

D
dongdaxiang 已提交
71 72 73

class Op(object):
    def __init__(self,
B
barrierye 已提交
74
                 name=None,
D
dongdaxiang 已提交
75
                 input_ops=[],
B
barriery 已提交
76 77
                 server_endpoints=None,
                 fetch_list=None,
B
barrierye 已提交
78
                 client_config=None,
W
wangjiawei04 已提交
79
                 client_type=None,
B
barriery 已提交
80 81
                 concurrency=None,
                 timeout=None,
T
TeslaZhao 已提交
82
                 retry=0,
B
barriery 已提交
83
                 batch_size=None,
84
                 auto_batching_timeout=None,
85 86
                 local_service_handler=None,
                 jump_to_ops=[]):
B
barriery 已提交
87
        # In __init__, all the parameters are just saved and Op is not initialized
B
barrierye 已提交
88
        if name is None:
B
barrierye 已提交
89
            name = _op_name_gen.next()
90
        self.name = name  # to identify the type of OP, it must be globally unique
B
barrierye 已提交
91
        self.concurrency = concurrency  # amount of concurrency
B
barrierye 已提交
92
        self.set_input_ops(input_ops)
93
        self.set_jump_to_ops(jump_to_ops)
B
barrierye 已提交
94

W
wangjiawei04 已提交
95
        self._local_service_handler = local_service_handler
B
barriery 已提交
96
        self._server_endpoints = server_endpoints
B
barrierye 已提交
97
        self._fetch_names = fetch_list
B
barriery 已提交
98
        self._client_config = client_config
W
wangjiawei04 已提交
99
        self.client_type = client_type
B
barriery 已提交
100
        self._timeout = timeout
101
        self._retry = max(1, retry)
B
barriery 已提交
102 103 104
        self._batch_size = batch_size
        self._auto_batching_timeout = auto_batching_timeout

105 106
        self._input = None
        self._outputs = []
B
barrierye 已提交
107

B
barriery 已提交
108 109 110
        self._server_use_profile = False
        self._tracer = None

111 112 113
        # for grpc_pipeline predict mode. False, string key/val; True, tensor format.
        self._pack_tensor_format = False

B
barriery 已提交
114 115 116 117 118
        # only for thread op
        self._for_init_op_lock = threading.Lock()
        self._for_close_op_lock = threading.Lock()
        self._succ_init_op = False
        self._succ_close_op = False
F
felixhjh 已提交
119 120 121 122 123
        self.dynamic_shape_info = {} 
        self.set_dynamic_shape_info()
    
    def set_dynamic_shape_info(self):
        pass
B
barriery 已提交
124

125 126 127 128 129 130 131 132 133 134 135 136 137
    # for feed/fetch dict cehck
    @staticmethod
    def get_feed_fetch_list(client):
        from paddle_serving_app.local_predict import LocalPredictor
        if isinstance(client, Client):
            feed_names = client.get_feed_names()
            fetch_names = client.get_fetch_names()
        if isinstance(client, LocalPredictor):
            feed_names = client.feed_names_
            fetch_names = client.fetch_names_
        return feed_names, fetch_names
              

B
barriery 已提交
138
    def init_from_dict(self, conf):
139 140 141 142 143 144 145 146 147 148 149
        """
        Initializing one Op from config.yaml. If server_endpoints exist,
        which is remote RPC mode, otherwise it is local RPC mode. There
        are three types of predictios in local RPC mode, brpc, grpc and
        local_predictor.

        Args:
            conf: config.yaml

        Returns:
        """
B
barriery 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        if self.concurrency is None:
            self.concurrency = conf["concurrency"]
        if self._retry is None:
            self._retry = conf["retry"]
        if self._fetch_names is None:
            self._fetch_names = conf.get("fetch_list")
        if self._client_config is None:
            self._client_config = conf.get("client_config")
        if self._timeout is None:
            self._timeout = conf["timeout"]
        if self._timeout > 0:
            self._timeout = self._timeout / 1000.0
        else:
            self._timeout = -1

        if self._batch_size is None:
            self._batch_size = conf["batch_size"]
        if self._auto_batching_timeout is None:
            self._auto_batching_timeout = conf["auto_batching_timeout"]
        if self._auto_batching_timeout <= 0 or self._batch_size == 1:
170
            _LOGGER.debug(
B
barriery 已提交
171 172 173 174 175 176 177
                self._log(
                    "Because auto_batching_timeout <= 0 or batch_size == 1,"
                    " set auto_batching_timeout to None."))
            self._auto_batching_timeout = None
        else:
            self._auto_batching_timeout = self._auto_batching_timeout / 1000.0

178 179 180
        self.model_config = None
        self.workdir = None
        self.thread_num = self.concurrency
181
        self.device_type = -1
182 183 184
        self.devices = ""
        self.mem_optim = False
        self.ir_optim = False
185
        self.precision = "fp32"
T
TeslaZhao 已提交
186 187 188 189
        self.use_mkldnn = False
        self.mkldnn_cache_capacity = 0
        self.mkldnn_op_list = None
        self.mkldnn_bf16_op_list = None
F
felixhjh 已提交
190
        self.min_subgraph_size = 3
T
TeslaZhao 已提交
191

B
barriery 已提交
192 193 194 195 196 197
        if self._server_endpoints is None:
            server_endpoints = conf.get("server_endpoints", [])
            if len(server_endpoints) != 0:
                # remote service
                self.with_serving = True
                self._server_endpoints = server_endpoints
198
                self.client_type = conf["client_type"]
199
            else:
W
wangjiawei04 已提交
200
                if self._local_service_handler is None:
B
barriery 已提交
201
                    local_service_conf = conf.get("local_service_conf")
B
barriery 已提交
202 203
                    _LOGGER.info("local_service_conf: {}".format(
                        local_service_conf))
204
                    self.model_config = local_service_conf.get("model_config")
W
wangjiawei04 已提交
205
                    self.client_type = local_service_conf.get("client_type")
206 207
                    self.workdir = local_service_conf.get("workdir")
                    self.thread_num = local_service_conf.get("thread_num")
208
                    self.device_type = local_service_conf.get("device_type")
209 210 211 212
                    self.devices = local_service_conf.get("devices")
                    self.mem_optim = local_service_conf.get("mem_optim")
                    self.ir_optim = local_service_conf.get("ir_optim")
                    self._fetch_names = local_service_conf.get("fetch_list")
213
                    self.precision = local_service_conf.get("precision")
T
TeslaZhao 已提交
214 215 216 217 218 219 220
                    self.use_mkldnn = local_service_conf.get("use_mkldnn")
                    self.mkldnn_cache_capacity = local_service_conf.get(
                        "mkldnn_cache_capacity")
                    self.mkldnn_op_list = local_service_conf.get(
                        "mkldnn_op_list")
                    self.mkldnn_bf16_op_list = local_service_conf.get(
                        "mkldnn_bf16_op_list")
F
felixhjh 已提交
221 222
                    self.min_subgraph_size = local_service_conf.get(
                        "min_subgraph_size")
T
TeslaZhao 已提交
223

224
                    if self.model_config is None:
B
barriery 已提交
225 226 227 228
                        self.with_serving = False
                    else:
                        # local rpc service
                        self.with_serving = True
W
wangjiawei04 已提交
229 230
                        if self.client_type == "brpc" or self.client_type == "grpc":
                            service_handler = local_service_handler.LocalServiceHandler(
231
                                model_config=self.model_config,
W
wangjiawei04 已提交
232
                                client_type=self.client_type,
233 234
                                workdir=self.workdir,
                                thread_num=self.thread_num,
235
                                device_type=self.device_type,
236 237
                                devices=self.devices,
                                mem_optim=self.mem_optim,
238
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
239 240 241 242 243
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_bf16_op_list,
F
felixhjh 已提交
244 245 246
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list,
                                min_subgraph_size=self.min_subgraph_size,
                                dynamic_shape_info=self.dynamic_shape_info)
W
wangjiawei04 已提交
247 248 249 250 251 252 253 254 255 256 257 258
                            service_handler.prepare_server()  # get fetch_list
                            serivce_ports = service_handler.get_port_list()
                            self._server_endpoints = [
                                "127.0.0.1:{}".format(p) for p in serivce_ports
                            ]
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                            if self._fetch_names is None:
                                self._fetch_names = service_handler.get_fetch_list(
                                )
                        elif self.client_type == "local_predictor":
W
wangjiawei04 已提交
259
                            service_handler = local_service_handler.LocalServiceHandler(
260
                                model_config=self.model_config,
W
wangjiawei04 已提交
261
                                client_type=self.client_type,
262 263
                                workdir=self.workdir,
                                thread_num=self.thread_num,
264
                                device_type=self.device_type,
265
                                devices=self.devices,
266 267
                                fetch_names=self._fetch_names,
                                mem_optim=self.mem_optim,
268
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
269 270 271 272 273
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_op_list,
F
felixhjh 已提交
274 275 276
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list,
                                min_subgraph_size=self.min_subgraph_size,
                                dynamic_shape_info=self.dynamic_shape_info)
W
wangjiawei04 已提交
277 278 279 280
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                        self._local_service_handler = service_handler
B
barriery 已提交
281
                else:
B
barriery 已提交
282
                    self.with_serving = True
W
wangjiawei04 已提交
283
                    self._local_service_handler.prepare_server(
B
barriery 已提交
284
                    )  # get fetch_list
W
wangjiawei04 已提交
285
                    serivce_ports = self._local_service_handler.get_port_list()
B
barriery 已提交
286 287 288
                    self._server_endpoints = [
                        "127.0.0.1:{}".format(p) for p in serivce_ports
                    ]
B
barriery 已提交
289
                    if self._client_config is None:
W
wangjiawei04 已提交
290
                        self._client_config = self._local_service_handler.get_client_config(
B
barriery 已提交
291
                        )
B
barriery 已提交
292
                    if self._fetch_names is None:
W
wangjiawei04 已提交
293
                        self._fetch_names = self._local_service_handler.get_fetch_list(
B
barriery 已提交
294
                        )
B
barriery 已提交
295 296
        else:
            self.with_serving = True
B
barriery 已提交
297

298 299 300 301 302 303 304 305 306 307 308
        if not isinstance(self, RequestOp) and not isinstance(self, ResponseOp):
            _LOGGER.info(
                self._log("\n\tinput_ops: {},"
                          "\n\tserver_endpoints: {}"
                          "\n\tfetch_list: {}"
                          "\n\tclient_config: {}"
                          "\n\tconcurrency: {},"
                          "\n\ttimeout(s): {},"
                          "\n\tretry: {},"
                          "\n\tbatch_size: {},"
                          "\n\tauto_batching_timeout(s): {}".format(
B
barriery 已提交
309
                              ", ".join([op.name for op in self._input_ops
310 311 312 313
                                         ]), self._server_endpoints,
                              self._fetch_names, self._client_config,
                              self.concurrency, self._timeout, self._retry,
                              self._batch_size, self._auto_batching_timeout)))
B
barriery 已提交
314

315
    def launch_local_rpc_service(self):
316 317 318 319 320 321 322 323 324
        """
        Launching multiple local rpc servers.

        Args:
            None

        Returns:
            None
        """
W
wangjiawei04 已提交
325
        if self._local_service_handler is None:
B
barriery 已提交
326 327
            _LOGGER.warning(
                self._log("Failed to launch local rpc"
W
wangjiawei04 已提交
328
                          " service: local_service_handler is None."))
B
barriery 已提交
329
            return
W
wangjiawei04 已提交
330
        port = self._local_service_handler.get_port_list()
W
wangjiawei04 已提交
331 332 333
        #if self._local_service_handler.client_type == "local_predictor":
        #    _LOGGER.info("Op({}) use local predictor.")
        #    return
W
wangjiawei04 已提交
334
        self._local_service_handler.start_server()
B
barriery 已提交
335
        _LOGGER.info("Op({}) use local rpc service at port: {}"
336 337
                     .format(self.name, port))

B
barriery 已提交
338
    def use_default_auto_batching_config(self):
339 340 341 342 343 344 345 346 347
        """
        Set the auto batching config default.

        Args:
            None

        Returns:
            None
        """
B
bug fix  
barriery 已提交
348
        if self._batch_size != 1:
349 350
            _LOGGER.warning("Op({}) reset batch_size=1 (original: {})"
                            .format(self.name, self._batch_size))
B
bug fix  
barriery 已提交
351 352
            self._batch_size = 1
        if self._auto_batching_timeout != None:
353
            _LOGGER.warning(
B
barriery 已提交
354 355
                "Op({}) reset auto_batching_timeout=None (original: {})"
                .format(self.name, self._auto_batching_timeout))
B
bug fix  
barriery 已提交
356
            self._auto_batching_timeout = None
B
barriery 已提交
357

B
barrierye 已提交
358
    def use_profiler(self, use_profile):
B
barrierye 已提交
359
        self._server_use_profile = use_profile
360

B
barriery 已提交
361 362 363
    def set_tracer(self, tracer):
        self._tracer = tracer

W
wangjiawei04 已提交
364
    def init_client(self, client_config, server_endpoints):
365 366 367 368 369 370 371 372 373 374 375 376
        """
        Initialize the client object. There are three types of clients, brpc,
        grpc and local_predictor. In grpc or brpc mode, the client connects 
        endpoints.

        Args:
            client_config: client config info
            server_endpoints: server IP/Port list.

        Returns:
            client: client object.
        """
377
        if self.with_serving == False:
B
barriery 已提交
378
            _LOGGER.info("Op({}) has no client (and it also do not "
379
                         "run the process function)".format(self.name))
B
barrierye 已提交
380
            return None
W
wangjiawei04 已提交
381
        if self.client_type == 'brpc':
B
barrierye 已提交
382 383
            client = Client()
            client.load_client_config(client_config)
384
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client) 
385 386
        elif self.client_type == 'pipeline_grpc':
            client = PPClient()
W
wangjiawei04 已提交
387 388 389 390
        elif self.client_type == 'local_predictor':
            if self.local_predictor is None:
                raise ValueError("local predictor not yet created")
            client = self.local_predictor
391
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client)
392
        else:
B
barriery 已提交
393
            raise ValueError("Failed to init client: unknow client "
W
wangjiawei04 已提交
394
                             "type {}".format(self.client_type))
W
wangjiawei04 已提交
395 396 397
        if self._fetch_names is None:
            self._fetch_names = client.fetch_names_
            _LOGGER.info("Op({}) has no fetch name set. So fetch all vars")
W
wangjiawei04 已提交
398 399
        if self.client_type != "local_predictor":
            client.connect(server_endpoints)
400
        _LOGGER.info("init_client, feed_list:{}, fetch_list: {}".format(self.right_feed_names, self.right_fetch_names))
B
barrierye 已提交
401
        return client
402 403 404 405 406

    def get_input_ops(self):
        return self._input_ops

    def set_input_ops(self, ops):
407 408 409 410 411 412 413 414 415 416
        """
        Set input ops.Each op have many input ops, but only one input
        channel.

        Args:
            ops: op list

        Returns:
            None.
        """
417 418 419 420 421
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]
        self._input_ops = []
        for op in ops:
            if not isinstance(op, Op):
422
                _LOGGER.critical(
B
barriery 已提交
423 424
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
425
                os._exit(-1)
426
            self._input_ops.append(op)
D
dongdaxiang 已提交
427

428 429 430
    def set_pack_tensor_format(self, is_tensor_format=False):
        self._pack_tensor_format = is_tensor_format

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
    def get_jump_to_ops(self):
        return self._jump_to_ops

    def set_jump_to_ops(self, ops):
        """
        Set jump to ops, then, this op can send channeldata to output channel.

        Args:
            ops: op list to be jumpped

        Returns:
            None.
        """
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]

        self._jump_to_ops = []
        for op in ops:
            if not isinstance(op, Op):
                _LOGGER.critical(
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
                os._exit(-1)
            self._jump_to_ops.append(op)

    def is_jump_op(self):
        """
        The op has _jump_to_ops members or not.

        Args:
            None

        Returns:
            True or False
        """
        return len(self._jump_to_ops) > 0

    def check_jumping(self, input_data):
        """
        Check whether to send data to jump ops.WhileOp needs to rewrite 
        this interface. this function returns False default.
     
        Args:
            input_data: input data to be preprocessed

        Returns:
            True, send data to the output channel of jump ops
            False, send data to output channel.
        """
        return False

    def get_output_channels_of_jump_ops(self):
        """
        Get output channels of jump ops

        Args:
            None

        Returns:
            list of channels
        """
        channels = []
        if self.is_jump_op() is False:
            return channels
        for op in self._jump_to_ops:
            _LOGGER.info("op:{} extend op._get_output_channels:{}".format(
                op.name, op._get_output_channels()))
            channels.extend(op._get_output_channels())

        _LOGGER.info("get_output_channels_of_jump_ops, channels:{}".format(
            channels))
        return channels

504
    def add_input_channel(self, channel):
505 506 507 508
        """
        Adding one input channel to the Op. Each op have many front op,
        but, only one input channel.
        """
509
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
510
            _LOGGER.critical(
B
barriery 已提交
511 512 513
                self._log("Failed to set input_channel: input "
                          "channel must be Channel type, not {}".format(
                              type(channel))))
514
            os._exit(-1)
515 516
        channel.add_consumer(self.name)
        self._input = channel
D
dongdaxiang 已提交
517

518
    def clean_input_channel(self):
B
barrierye 已提交
519 520 521 522
        self._input = None

    def _get_input_channel(self):
        return self._input
D
dongdaxiang 已提交
523

524
    def add_output_channel(self, channel):
525 526 527 528 529 530 531 532 533 534
        """
        Adding one output channel to the Op. Each op have many output channels,
        But only one front channel.

        Args:
            channel: an output channel object.

        Returns:
            None
        """
535
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
536
            _LOGGER.critical(
B
barriery 已提交
537 538
                self._log("Failed to add output_channel: output channel "
                          "must be Channel type, not {}".format(type(channel))))
539
            os._exit(-1)
540 541
        channel.add_producer(self.name)
        self._outputs.append(channel)
542
        _LOGGER.debug("op:{} add output_channel {}".format(self.name, channel))
D
dongdaxiang 已提交
543

544
    def clean_output_channels(self):
B
barrierye 已提交
545 546 547 548 549
        self._outputs = []

    def _get_output_channels(self):
        return self._outputs

550
    def preprocess(self, input_dicts, data_id=0, log_id=0):
T
TeslaZhao 已提交
551 552 553 554 555 556
        """
        In preprocess stage, assembling data for process stage. users can 
        override this function for model feed features.

        Args:
            input_dicts: input data to be preprocessed
557
            data_id: inner unique id, increase auto
558
            log_id: global unique id for RTT, 0 default
T
TeslaZhao 已提交
559 560

        Return:
T
TeslaZhao 已提交
561
            output_data: data for process stage
T
TeslaZhao 已提交
562 563 564 565 566
            is_skip_process: skip process stage or not, False default
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception. 
            prod_errinfo: "" default
        """
B
barrierye 已提交
567
        # multiple previous Op
B
barrierye 已提交
568
        if len(input_dicts) != 1:
569 570
            _LOGGER.critical(
                self._log(
B
barriery 已提交
571 572
                    "Failed to run preprocess: this Op has multiple previous "
                    "inputs. Please override this func."))
573
            os._exit(-1)
D
dongdaxiang 已提交
574

B
barrierye 已提交
575
        (_, input_dict), = input_dicts.items()
T
TeslaZhao 已提交
576
        return input_dict, False, None, ""
577
    
578
    def process(self, feed_batch, typical_logid=0):
T
TeslaZhao 已提交
579 580 581 582 583
        """
        In process stage, send requests to the inference server or predict locally.
        users do not need to inherit this function
        Args:
            feed_batch: data to be fed to inference server
584 585
            typical_logid: mark batch predicts, usually the first logid in batch,
                0 default.
T
TeslaZhao 已提交
586 587 588 589

        Returns:
            call_result: predict result
        """
590 591 592 593

        call_result = None
        err_code = ChannelDataErrcode.OK.value
        err_info = ""
594 595 596 597 598 599 600 601 602 603 604 605 606
        @ErrorCatch 
        @ParamChecker
        def feed_fetch_list_check_helper(feed_batch : lambda feed_batch: check_feed_dict(feed_batch[0], self.right_feed_names),
                                         fetch_list : lambda fetch_list: check_fetch_list(fetch_list, self.right_fetch_names),
                                         log_id):
            return None
        _, resp = feed_fetch_list_check_helper(feed_batch, self._fetch_names, log_id=typical_logid)
        if resp.err_no != CustomExceptionCode.OK.value:
            err_code = resp.err_no
            err_info = resp.err_msg
            call_result = None
            return call_result, err_code, err_info
                
W
wangjiawei04 已提交
607
        if self.client_type == "local_predictor":
608 609 610 611 612 613 614 615
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for local_predictor mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"

W
wangjiawei04 已提交
616 617
            call_result = self.client.predict(
                feed=feed_batch[0],
W
wangjiawei04 已提交
618
                fetch=self._fetch_names,
W
wangjiawei04 已提交
619 620
                batch=True,
                log_id=typical_logid)
621 622 623 624 625 626 627 628

        elif self.client_type == "brpc":
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for brpc mode.".format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"
W
wangjiawei04 已提交
629
            call_result = self.client.predict(
630
                feed=feed_batch[0],
W
wangjiawei04 已提交
631
                fetch=self._fetch_names,
W
wangjiawei04 已提交
632 633
                batch=True,
                log_id=typical_logid)
634 635 636 637 638 639 640 641 642 643 644 645 646 647

        elif self.client_type == "pipeline_grpc":
            err, err_info = ChannelData.check_dictdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                       npdata in process for pipeline_grpc mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be dict"

            call_result = self.client.predict(
                feed_dict=feed_batch[0],
                fetch=self._fetch_names,
                asyn=False,
648
                pack_tensor_format=self._pack_tensor_format,
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
                profile=False)
            if call_result is None:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. call_result is None."))
                return call_result, ChannelDataErrcode.UNKNOW.value, "pipeline_grpc error"
            if call_result.err_no != 0:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. err_no:{}, err_info:{}".
                              format(call_result.err_no, call_result.err_msg)))
                return call_result, ChannelDataErrcode(
                    call_result.err_no).value, call_result.err_msg

            new_dict = {}
            err_code = ChannelDataErrcode(call_result.err_no).value
            err_info = call_result.err_msg
            for idx, key in enumerate(call_result.key):
                new_dict[key] = [call_result.value[idx]]
            call_result = new_dict

        return call_result, err_code, err_info
669

670
    def postprocess(self, input_data, fetch_data, data_id=0, log_id=0):
T
TeslaZhao 已提交
671 672 673
        """
        In postprocess stage, assemble data for next op or output.
        Args:
T
TeslaZhao 已提交
674 675
            input_data: data returned in preprocess stage, dict(for single predict) or list(for batch predict)
            fetch_data: data returned in process stage, dict(for single predict) or list(for batch predict)
676
            data_id: inner unique id, increase auto
677
            log_id: logid, 0 default
T
TeslaZhao 已提交
678 679

        Returns: 
T
TeslaZhao 已提交
680
            fetch_dict: fetch result must be dict type.
T
TeslaZhao 已提交
681 682 683 684
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception.
            prod_errinfo: "" default
        """
T
TeslaZhao 已提交
685 686 687
        fetch_dict = {}
        if isinstance(fetch_data, dict):
            fetch_dict = fetch_data
T
TeslaZhao 已提交
688
        return fetch_dict, None, ""
D
dongdaxiang 已提交
689

B
barrierye 已提交
690
    def _parse_channeldata(self, channeldata_dict):
T
TeslaZhao 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703
        """
        Parse one channeldata 
        Args:
            channeldata_dict : channel data to be parsed, dict type
        
        Return:
            data_id: created by dag._id_generator, unique
            error_channeldata: error channeldata
            parsed_data: get np/dict data from channeldata
            client_need_profile: need profile info
            profile_set: profile info
            log_id: logid for tracing a request 
        """
704
        data_id, error_channeldata = None, None
B
barrierye 已提交
705
        client_need_profile, profile_set = False, set()
B
barrierye 已提交
706 707 708 709
        parsed_data = {}

        key = list(channeldata_dict.keys())[0]
        data_id = channeldata_dict[key].id
T
TeslaZhao 已提交
710
        log_id = channeldata_dict[key].log_id
B
barrierye 已提交
711
        client_need_profile = channeldata_dict[key].client_need_profile
B
barrierye 已提交
712 713

        for name, data in channeldata_dict.items():
T
TeslaZhao 已提交
714
            if data.error_code != ChannelDataErrcode.OK.value:
B
barrierye 已提交
715 716 717
                error_channeldata = data
                break
            parsed_data[name] = data.parse()
B
barrierye 已提交
718
            if client_need_profile:
B
barrierye 已提交
719
                profile_set |= data.profile_data_set
B
barrierye 已提交
720
        return (data_id, error_channeldata, parsed_data, client_need_profile,
T
TeslaZhao 已提交
721
                profile_set, log_id)
B
barrierye 已提交
722 723 724 725 726

    def _push_to_output_channels(self,
                                 data,
                                 channels,
                                 name=None,
B
barriery 已提交
727
                                 profile_str=None,
B
barrierye 已提交
728
                                 client_need_profile=False,
B
barrierye 已提交
729
                                 profile_set=None):
T
TeslaZhao 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743
        """
        Push data to output channels, Do not run the later stage(preprocess,
        process, postprocess)
        Args:
            data: channeldata, to be pushed
            channels: output channels
            name: op name  
            profile_str: one profile message
            client_need_profile: False default
            profile_set: profile message collections

        Returns:
            None
        """
744 745
        if name is None:
            name = self.name
B
barrierye 已提交
746

B
barriery 已提交
747
        # add profile into channeldata
B
barrierye 已提交
748
        if client_need_profile and profile_set is not None:
B
barriery 已提交
749 750
            if profile_str is not None:
                profile_set.add(profile_str)
B
barrierye 已提交
751
            data.add_profile(profile_set)
B
barrierye 已提交
752

B
barriery 已提交
753 754 755
        for channel in channels:
            channel.push(data, name)

W
wangjiawei04 已提交
756
    def start_with_process(self):
757 758 759 760 761 762 763 764 765 766
        """
        Each OP creates a process to run the main loop, initializes the CUDA
        environment in each individual process.

        Args:
            None

        Returns:
            process array
        """
B
barriery 已提交
767 768 769
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
W
wangjiawei04 已提交
770
        process = []
B
barrierye 已提交
771
        for concurrency_idx in range(self.concurrency):
772 773
            p = multiprocessing.Process(
                target=self._run,
B
barrierye 已提交
774
                args=(concurrency_idx, self._get_input_channel(),
775 776
                      self._get_output_channels(), False, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
777
                      self.device_type, self.devices, self.mem_optim,
T
TeslaZhao 已提交
778 779
                      self.ir_optim, self.precision, self.use_mkldnn,
                      self.mkldnn_cache_capacity, self.mkldnn_op_list,
780
                      self.mkldnn_bf16_op_list, self.is_jump_op(),
F
felixhjh 已提交
781 782 783
                      self.get_output_channels_of_jump_ops(),
                      self.min_subgraph_size,
                      self.dynamic_shape_info))
B
barriery 已提交
784
            p.daemon = True
785
            p.start()
W
wangjiawei04 已提交
786 787
            process.append(p)
        return process
788

W
wangjiawei04 已提交
789
    def start_with_thread(self):
790 791 792 793 794 795 796 797 798 799
        """
        Each OP creates a thread to run the main loop, initializes the CUDA 
        environment in the main thread.

        Args:
            None
 
        Returns:
            thread array
        """
B
barriery 已提交
800 801 802
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
803 804 805 806

        #Init cuda env in main thread
        if self.client_type == "local_predictor":
            _LOGGER.info("Init cuda env in main thread")
807
            self.local_predictor = self._local_service_handler.get_client(0)
808

809
        threads = []
B
barrierye 已提交
810
        for concurrency_idx in range(self.concurrency):
811 812
            t = threading.Thread(
                target=self._run,
B
barrierye 已提交
813
                args=(concurrency_idx, self._get_input_channel(),
814 815
                      self._get_output_channels(), True, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
816
                      self.device_type, self.devices, self.mem_optim,
T
TeslaZhao 已提交
817 818
                      self.ir_optim, self.precision, self.use_mkldnn,
                      self.mkldnn_cache_capacity, self.mkldnn_op_list,
819
                      self.mkldnn_bf16_op_list, self.is_jump_op(),
F
felixhjh 已提交
820 821 822
                      self.get_output_channels_of_jump_ops(),
                      self.min_subgraph_size,
                      self.dynamic_shape_info))
B
barriery 已提交
823 824 825
            # When a process exits, it attempts to terminate
            # all of its daemonic child processes.
            t.daemon = True
826 827 828 829
            t.start()
            threads.append(t)
        return threads

B
barrierye 已提交
830
    def init_op(self):
B
barrierye 已提交
831 832
        pass

T
TeslaZhao 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846
    def _run_preprocess(self, parsed_data_dict, op_info_prefix, logid_dict):
        """
        Run preprocess stage
        Args:
            parsed_data_dict: data to be pre-processed
            op_info_prefix: input op info
            logid_dict: logid dict

        Returns:
            preped_data_dict: data preprocessed, to be processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it.
            skip_process_dict: skip process stage or not

        """
B
barriery 已提交
847
        _LOGGER.debug("{} Running preprocess".format(op_info_prefix))
848 849
        preped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
850
        skip_process_dict = {}
851 852 853 854 855 856
        @ErrorCatch
        def preprocess_help(self, parsed_data, data_id, logid_dict):
            preped_data, is_skip_process, prod_errcode, prod_errinfo = self.preprocess(
                parsed_data, data_id, logid_dict.get(data_id))
            return preped_data, is_skip_process, prod_errcode, prod_errinfo
            
857 858
        for data_id, parsed_data in parsed_data_dict.items():
            preped_data, error_channeldata = None, None
T
TeslaZhao 已提交
859 860 861
            is_skip_process = False
            prod_errcode, prod_errinfo = None, None
            log_id = logid_dict.get(data_id)
F
felixhjh 已提交
862 863
            process_res, resp = preprocess_help(self, parsed_data, data_id = data_id,
            logid_dict = logid_dict)
F
felixhjh 已提交
864
            if resp.err_no == CustomExceptionCode.OK.value:
865
                preped_data, is_skip_process, prod_errcode, prod_errinfo = process_res
T
TeslaZhao 已提交
866 867
                if is_skip_process is True:
                    skip_process_dict[data_id] = True
868 869 870 871 872 873 874 875 876 877 878
                if prod_errcode is not None:
                    _LOGGER.error("data_id: {} return product error. Product ErrNo:{}, Product ErrMsg: {}".format(data_id, prod_errcode, prod_errinfo))
                    error_channeldata = ChannelData(
                      error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                      error_info="",
                      prod_error_code=prod_errcode,
                      prod_error_info=prod_errinfo,
                      data_id=data_id,
                      log_id=log_id)
            else:
                
T
TeslaZhao 已提交
879
                error_channeldata = ChannelData(
880 881 882 883 884
                  error_code=resp.err_no,
                  error_info=resp.err_msg,
                  data_id=data_id,
                  log_id=log_id)
                skip_process_dict[data_id] = True 
T
TeslaZhao 已提交
885

886 887 888 889
            if error_channeldata is not None:
                err_channeldata_dict[data_id] = error_channeldata
            else:
                preped_data_dict[data_id] = preped_data
B
barriery 已提交
890
        _LOGGER.debug("{} Succ preprocess".format(op_info_prefix))
T
TeslaZhao 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
        return preped_data_dict, err_channeldata_dict, skip_process_dict

    def _run_process(self, preped_data_dict, op_info_prefix, skip_process_dict,
                     logid_dict):
        """
        Run process stage
        Args:
            preped_data_dict: feed the data to be predicted by the model.  
            op_info_prefix: prefix op info
            skip_process_dict: skip process stage or not
            logid_dict: logid dict

        Returns:
            midped_data_dict: data midprocessed, to be post-processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it 
        """
B
barriery 已提交
907
        _LOGGER.debug("{} Running process".format(op_info_prefix))
908 909
        midped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
910
        is_skip_process = False
T
TeslaZhao 已提交
911
        data_ids = list(preped_data_dict.keys())
T
TeslaZhao 已提交
912 913

        # skip process stage
T
TeslaZhao 已提交
914 915
        if len(data_ids) == 1 and skip_process_dict.get(data_ids[0]) == True:
            is_skip_process = True
T
TeslaZhao 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
        if self.with_serving is False or is_skip_process is True:
            midped_data_dict = preped_data_dict
            _LOGGER.warning("(data_id={} log_id={}) OP={} skip process stage. " \
                "with_serving={}, is_skip_process={}".format(data_ids[0],
                logid_dict.get(data_ids[0]), self.name, self.with_serving,
                is_skip_process))
            return midped_data_dict, err_channeldata_dict

        # use typical_logid to mark batch data
        # data_ids is one self-increasing unique key. 
        typical_logid = data_ids[0]
        if len(data_ids) != 1:
            for data_id in data_ids:
                _LOGGER.info(
                    "(data_id={} logid={}) Auto-batching is On Op={}!!" \
                    "We selected logid={} (from batch: {}) as a " \
                    "representative for logging.".format(
                    data_id, logid_dict.get(data_id), self.name,
                    typical_logid, data_ids))

        one_input = preped_data_dict[data_ids[0]]
        feed_batch = []
        feed_dict = {}
        cur_offset = 0
        input_offset_dict = {}
        batch_input = False

        if isinstance(one_input, dict):
            # For dict type, data structure is dict.
            # Merge multiple dicts for data_ids into one dict.
            # feed_batch is the input param of predict func.
            # input_offset_dict is used for data restration[data_ids]
            if len(data_ids) == 1:
                feed_batch = [preped_data_dict[data_id] for data_id in data_ids]
            else:
951 952
                for data_id in data_ids:
                    for key, val in preped_data_dict[data_id].items():
T
TeslaZhao 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
                        has_val = feed_dict.get(key)
                        if has_val is None:
                            feed_dict[key] = val
                            continue
                        # merge 2 np.arrray
                        if isinstance(val, np.ndarray):
                            feed_dict[key] = np.append(
                                feed_dict[key], val, axis=0)
                feed_batch.append(feed_dict)

            for data_id in data_ids:
                start = cur_offset
                for key, val in preped_data_dict[data_id].items():
                    if isinstance(val, (list, np.ndarray)):
                        cur_offset += len(val)
                    else:
                        cur_offset += 1
                    break
                input_offset_dict[data_id] = [start, cur_offset]
        elif isinstance(one_input, list):
            # For list type, data structure of one_input is [dict, dict, ...]
            # Data structure of feed_batch is [dict1_1, dict1_2, dict2_1, ...]   
            # Data structure of input_offset_dict is { data_id : [start, end] }
            batch_input = True
            for data_id in data_ids:
                feed_batch.extend(preped_data_dict[data_id])
                data_size = len(preped_data_dict[data_id])
                start = cur_offset
                cur_offset = start + data_size
                input_offset_dict[data_id] = [start, cur_offset]
        else:
            _LOGGER.critical(
                "(data_id={} log_id={}){} Failed to process: expect input type is dict"
                " or list(batch input), but get {}".format(data_ids[
                    0], typical_logid, op_info_prefix, type(one_input)))
            for data_id in data_ids:
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = "expect input type is dict or list, but get {}".format(
                    type(one_input))
                err_channeldata_dict[data_id] = ChannelData(
                    error_code=error_code,
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict
B
barrierye 已提交
998

T
TeslaZhao 已提交
999 1000
        midped_batch = None
        error_code = ChannelDataErrcode.OK.value
1001
        error_info = ""
T
TeslaZhao 已提交
1002 1003 1004 1005
        if self._timeout <= 0:
            # No retry
            try:
                if batch_input is False:
1006 1007
                    midped_batch, error_code, error_info = self.process(
                        feed_batch, typical_logid)
T
TeslaZhao 已提交
1008 1009 1010
                else:
                    midped_batch = []
                    for idx in range(len(feed_batch)):
1011 1012 1013 1014
                        predict_res, error_code, error_info = self.process(
                            [feed_batch[idx]], typical_logid)
                        if error_code != ChannelDataErrcode.OK.value:
                            break
T
TeslaZhao 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
                        midped_batch.append(predict_res)
            except Exception as e:
                error_code = ChannelDataErrcode.UNKNOW.value
                error_info = "(data_id={} log_id={}) {} Failed to process(batch: {}): {}".format(
                    data_ids[0], typical_logid, op_info_prefix, data_ids, e)
                _LOGGER.error(error_info, exc_info=True)
        else:
            # retry N times configed in yaml files.
            for i in range(self._retry):
                try:
                    # time out for each process
                    if batch_input is False:
1027
                        midped_batch, error_code, error_info = func_timeout.func_timeout(
B
barriery 已提交
1028 1029 1030
                            self._timeout,
                            self.process,
                            args=(feed_batch, typical_logid))
1031
                    else:
T
TeslaZhao 已提交
1032 1033
                        midped_batch = []
                        for idx in range(len(feed_batch)):
1034
                            predict_res, error_code, error_info = func_timeout.func_timeout(
T
TeslaZhao 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
                                self._timeout,
                                self.process,
                                args=([feed_batch[idx]], typical_logid))
                            midped_batch[idx].append(predict_res)

                except func_timeout.FunctionTimedOut as e:
                    if i + 1 >= self._retry:
                        error_code = ChannelDataErrcode.TIMEOUT.value
                        error_info = "(log_id={}) {} Failed to process(batch: {}): " \
                            "exceeded retry count.".format(typical_logid, op_info_prefix, data_ids)
                        _LOGGER.error(error_info)
B
barrierye 已提交
1046
                    else:
T
TeslaZhao 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
                        _LOGGER.warning(
                            "(log_id={}) {} Failed to process(batch: {}): timeout,"
                            " and retrying({}/{})...".format(
                                typical_logid, op_info_prefix, data_ids, i + 1,
                                self._retry))
                except Exception as e:
                    error_code = ChannelDataErrcode.UNKNOW.value
                    error_info = "(log_id={}) {} Failed to process(batch: {}): {}".format(
                        typical_logid, op_info_prefix, data_ids, e)
                    _LOGGER.error(error_info, exc_info=True)
                    break
                else:
                    break

        # 2 kinds of errors
        if error_code != ChannelDataErrcode.OK.value or midped_batch is None:
1063 1064 1065
            error_info = "[{}] failed to predict. {}. Please check the input dict and checkout PipelineServingLogs/pipeline.log for more details.".format(
             self.name, error_info)
    
T
TeslaZhao 已提交
1066 1067 1068
            _LOGGER.error(error_info)
            for data_id in data_ids:
                err_channeldata_dict[data_id] = ChannelData(
1069
                    error_code=error_code,
T
TeslaZhao 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict

        # Split batch infer result to each data_ids
        if batch_input is False:
            var_names = midped_batch.keys()
            lod_var_names = set()
            lod_offset_names = set()
            # midped_batch is dict type for single input 
            for name in var_names:
                lod_offset_name = "{}.lod".format(name)
                if lod_offset_name in var_names:
                    _LOGGER.debug("(log_id={}) {} {} is LodTensor".format(
                        typical_logid, op_info_prefix, name))
                    lod_var_names.add(name)
                    lod_offset_names.add(lod_offset_name)

            for idx, data_id in enumerate(data_ids):
                midped_data_dict[data_id] = {}

            for name, value in midped_batch.items():
                if name in lod_offset_names:
                    continue
                if name in lod_var_names:
                    # lodtensor
                    lod_offset_name = "{}.lod".format(name)
                    lod_offset = midped_batch[lod_offset_name]
                    for idx, data_id in enumerate(data_ids):
                        data_offset_left = input_offset_dict[data_id][0]
                        data_offset_right = input_offset_dict[data_id][1]
                        lod_offset_left = lod_offset[data_offset_left]
                        lod_offset_right = lod_offset[data_offset_right]
                        midped_data_dict[data_id][name] = value[
                            lod_offset_left:lod_offset_right]
                        midped_data_dict[data_id][lod_offset_name] = \
                            lod_offset[data_offset_left:data_offset_right + 1] - lod_offset[data_offset_left]
                else:
                    # normal tensor
                    for idx, data_id in enumerate(data_ids):
                        start = input_offset_dict[data_id][0]
                        end = input_offset_dict[data_id][1]
                        midped_data_dict[data_id][name] = value[start:end]
1114
        else:
T
TeslaZhao 已提交
1115 1116 1117 1118 1119
            # midped_batch is list type for batch input
            for idx, data_id in enumerate(data_ids):
                start = input_offset_dict[data_id][0]
                end = input_offset_dict[data_id][1]
                midped_data_dict[data_id] = midped_batch[start:end]
1120 1121
        return midped_data_dict, err_channeldata_dict

B
barriery 已提交
1122
    def _run_postprocess(self, parsed_data_dict, midped_data_dict,
T
TeslaZhao 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
                         op_info_prefix, logid_dict):
        """
        Run postprocess stage.
        Args:
            parsed_data_dict: data returned in preprocess stage 
            midped_data_dict: data returned in process stage
            op_info_prefix: prefix op info
            logid_dict: logid dict

        Returns:
            postped_data_dict: data postprocessed 
            err_channeldata_dict: when exceptions occurred, putting errors in it
 
        """
B
barriery 已提交
1137
        _LOGGER.debug("{} Running postprocess".format(op_info_prefix))
1138 1139
        postped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
1140 1141 1142 1143 1144
        @ErrorCatch
        def postprocess_help(self, parsed_data_dict, midped_data, data_id, logid_dict):
            postped_data, prod_errcode, prod_errinfo = self.postprocess(parsed_data_dict[data_id], 
              midped_data, data_id, logid_dict.get(data_id))
            if not isinstance(postped_data, dict):
F
felixhjh 已提交
1145
                raise CustomException(CustomExceptionCode.TYPE_ERROR, "postprocess should return dict", True)
1146 1147
            return postped_data, prod_errcode, prod_errinfo

B
bug fix  
barriery 已提交
1148
        for data_id, midped_data in midped_data_dict.items():
T
TeslaZhao 已提交
1149
            log_id = logid_dict.get(data_id)
1150
            postped_data, err_channeldata = None, None
T
TeslaZhao 已提交
1151 1152
            prod_errcode, prod_errinfo = None, None

F
felixhjh 已提交
1153 1154
            post_res, resp = postprocess_help(self, parsed_data_dict, midped_data, data_id
            = data_id, logid_dict = logid_dict)
H
huangjianhui 已提交
1155
            if resp.err_no == CustomExceptionCode.OK.value:
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
                postped_data, prod_errcode, prod_errinfo = post_res
                if prod_errcode is not None:
                  # product errors occured
                    err_channeldata = ChannelData(
                      error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                      error_info="",
                      prod_error_code=prod_errcode,
                      prod_error_info=prod_errinfo,
                      data_id=data_id,
                      log_id=log_id)
            else:
T
TeslaZhao 已提交
1167
                err_channeldata = ChannelData(
1168 1169
                    error_code=resp.err_no,
                    error_info=resp.err_msg,
T
TeslaZhao 已提交
1170 1171 1172
                    data_id=data_id,
                    log_id=log_id)

1173 1174 1175 1176
            if err_channeldata is not None:
                err_channeldata_dict[data_id] = err_channeldata
                continue

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
            output_data = None
            err, _ = ChannelData.check_npdata(postped_data)
            if err == 0:
                output_data = ChannelData(
                  ChannelDataType.CHANNEL_NPDATA.value,
                  npdata=postped_data,
                  data_id=data_id,
                  log_id=log_id)
            else:
                output_data = ChannelData(
                  ChannelDataType.DICT.value,
                  dictdata=postped_data,
                  data_id=data_id,
                  log_id=log_id)
            postped_data_dict[data_id] = output_data
B
barriery 已提交
1192
        _LOGGER.debug("{} Succ postprocess".format(op_info_prefix))
1193
        return postped_data_dict, err_channeldata_dict
B
barriery 已提交
1194 1195

    def _auto_batching_generator(self, input_channel, op_name, batch_size,
B
barriery 已提交
1196
                                 timeout, op_info_prefix):
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
        """
        Merge batch_size requests for one prediction.Taking one piece of data 
        from the input channel each time until equals batch_size, or the waiting 
        time exceeds auto_batching_timeout.

        Args:
            input_channel: the input channel of Op
            op_name: op name
            batch_size: batch size, Less than worker_num
            timeout: batch timeout, seconds, If timeout is None, and the quantity 
                taken from the front is less than batch_size, blocking occured.
            op_info_prefix: op link info.

        Returns:
            None
        """
B
barriery 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221
        while True:
            batch = []
            while len(batch) == 0:
                endtime = None
                if timeout is not None:
                    endtime = _time() + timeout
                for idx in range(batch_size):
                    try:
                        channeldata_dict = None
1222
                        front_start_time = int(round(_time() * 1000000))
B
barriery 已提交
1223 1224 1225
                        if timeout is not None:
                            remaining = endtime - _time()
                            if remaining <= 0.0:
B
barriery 已提交
1226 1227
                                _LOGGER.debug("{} Failed to generate batch: "
                                              "timeout".format(op_info_prefix))
B
barriery 已提交
1228
                                break
B
barriery 已提交
1229 1230
                            channeldata_dict = input_channel.front(op_name,
                                                                   timeout)
B
barriery 已提交
1231 1232 1233
                        else:
                            channeldata_dict = input_channel.front(op_name)
                        batch.append(channeldata_dict)
1234
                        _LOGGER.debug(
1235 1236
                            "_auto_batching_generator get {} channeldata from op:{} input channel. time={}".
                            format(idx, op_name, front_start_time))
B
barriery 已提交
1237
                    except ChannelTimeoutError:
B
barriery 已提交
1238 1239
                        _LOGGER.debug("{} Failed to generate batch: "
                                      "timeout".format(op_info_prefix))
B
barriery 已提交
1240
                        break
B
barriery 已提交
1241 1242
            _LOGGER.debug("{} Got actual batch_size: {}".format(op_info_prefix,
                                                                len(batch)))
B
barriery 已提交
1243
            yield batch
1244

1245
    def _parse_channeldata_batch(self, batch, output_channels):
T
TeslaZhao 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
        """
        Parse channeldatas batch
        Args:
            batch: auto-batching batch datas
            output_channels: output channels 

        Returns:
            parsed_data_dict: parsed from channeldata in batch
            need_profile_dict: need profile dict in batch 
            profile_dict: profile info dict in batch
            logid_dict: trace each request in batch
        """
1258
        parsed_data_dict = collections.OrderedDict()
1259 1260
        need_profile_dict = {}
        profile_dict = {}
T
TeslaZhao 已提交
1261
        logid_dict = {}
B
bug fix  
barriery 已提交
1262
        for channeldata_dict in batch:
1263
            (data_id, error_channeldata, parsed_data,
T
TeslaZhao 已提交
1264
                    client_need_profile, profile_set, log_id) = \
1265 1266 1267 1268 1269
                            self._parse_channeldata(channeldata_dict)
            if error_channeldata is None:
                parsed_data_dict[data_id] = parsed_data
                need_profile_dict[data_id] = client_need_profile
                profile_dict[data_id] = profile_set
T
TeslaZhao 已提交
1270
                logid_dict[data_id] = log_id
1271 1272 1273
            else:
                # error data in predecessor Op
                # (error_channeldata with profile info)
B
barriery 已提交
1274 1275
                self._push_to_output_channels(error_channeldata,
                                              output_channels)
1276

T
TeslaZhao 已提交
1277
        return parsed_data_dict, need_profile_dict, profile_dict, logid_dict
B
barriery 已提交
1278

W
wangjiawei04 已提交
1279
    def _run(self, concurrency_idx, input_channel, output_channels,
1280
             is_thread_op, trace_buffer, model_config, workdir, thread_num,
T
TeslaZhao 已提交
1281
             device_type, devices, mem_optim, ir_optim, precision, use_mkldnn,
1282
             mkldnn_cache_capacity, mkldnn_op_list, mkldnn_bf16_op_list,
F
felixhjh 已提交
1283
             is_jump_op, output_channels_of_jump_ops, min_subgraph_size, dynamic_shape_info):
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
        """
        _run() is the entry function of OP process / thread model.When client 
        type is local_predictor in process mode, the CUDA environment needs to 
        be initialized by LocalServiceHandler[child process], otherwise, Cuda
        error(3), initialization error is occured. Preprocess, process and 
        postprocess are executed in the main loop. The preprocess and postprocess
        function is usually rewrited by users. Trace data is recorded by trace_que.

        Args:
            concurrency_idx: thread/process index
            input_channel: input channel, take the data to be processed
            output_channels: output channel, store processed data
            is_thread_op: False, It's process op; True, It's thread op
            trace_buffer: store trace infomations
            model_config: model config path
            workdir: work directory
            thread_num: number of threads, concurrent quantity
1301
            device_type: support multiple devices
1302 1303
            devices: gpu id list[gpu], "" default[cpu]
            mem_optim: use memory/graphics memory optimization, True default.
1304
            ir_optim: use calculation chart optimization, False default.
T
TeslaZhao 已提交
1305 1306 1307 1308 1309
            precision: inference precision, e.g. "fp32", "fp16", "int8", "bf16"
            use_mkldnn: use mkldnn, default False.
            mkldnn_cache_capacity: cache capacity of mkldnn, 0 means no limit.
            mkldnn_op_list: OP list optimized by mkldnn, None default.
            mkldnn_bf16_op_list: OP list optimized by mkldnn bf16, None default.
1310 1311
            is_jump_op: OP has jump op list or not, False default.
            output_channels_of_jump_ops: all output channels of jump ops.
1312 1313 1314 1315

        Returns:
            None
        """
1316
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1317

1318
        # init ops
B
barriery 已提交
1319
        profiler = None
B
barrierye 已提交
1320
        try:
1321 1322 1323 1324 1325 1326
            if is_thread_op == False and self.client_type == "local_predictor":
                self.service_handler = local_service_handler.LocalServiceHandler(
                    model_config=model_config,
                    client_type="local_predictor",
                    workdir=workdir,
                    thread_num=thread_num,
1327
                    device_type=device_type,
1328 1329
                    devices=devices,
                    mem_optim=mem_optim,
1330
                    ir_optim=ir_optim,
T
TeslaZhao 已提交
1331 1332 1333 1334
                    precision=precision,
                    use_mkldnn=use_mkldnn,
                    mkldnn_cache_capacity=mkldnn_cache_capacity,
                    mkldnn_op_list=mkldnn_op_list,
F
felixhjh 已提交
1335 1336 1337
                    mkldnn_bf16_op_list=mkldnn_bf16_op_list,
                    min_subgraph_size=min_subgraph_size,
                    dynamic_shape_info=dynamic_shape_info)
1338 1339 1340

                _LOGGER.info("Init cuda env in process {}".format(
                    concurrency_idx))
1341 1342
                self.local_predictor = self.service_handler.get_client(
                    concurrency_idx)
1343
            # check all ops initialized successfully.
W
wangjiawei04 已提交
1344
            profiler = self._initialize(is_thread_op, concurrency_idx)
1345

B
barrierye 已提交
1346
        except Exception as e:
B
barriery 已提交
1347
            _LOGGER.critical(
T
TeslaZhao 已提交
1348
                "{} failed to init op: {}".format(op_info_prefix, e),
B
barriery 已提交
1349
                exc_info=True)
B
barrierye 已提交
1350
            os._exit(-1)
B
barriery 已提交
1351
        _LOGGER.info("{} Succ init".format(op_info_prefix))
1352

B
barriery 已提交
1353
        batch_generator = self._auto_batching_generator(
B
barriery 已提交
1354 1355 1356 1357
            input_channel=input_channel,
            op_name=self.name,
            batch_size=self._batch_size,
            timeout=self._auto_batching_timeout,
B
barriery 已提交
1358
            op_info_prefix=op_info_prefix)
B
barriery 已提交
1359

B
barriery 已提交
1360
        start, end = None, None
B
barrierye 已提交
1361
        trace_que = collections.deque()
B
barrierye 已提交
1362
        while True:
B
barriery 已提交
1363
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1364
            try:
B
barriery 已提交
1365
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1366
            except ChannelStopError:
B
barriery 已提交
1367
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
B
barriery 已提交
1368
                self._finalize(is_thread_op)
B
barrierye 已提交
1369
                break
B
barriery 已提交
1370
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1371
            in_time = end - start
1372 1373
            _LOGGER.debug("op:{} in_time_end:{}".format(op_info_prefix,
                                                        time.time()))
1374

B
barriery 已提交
1375 1376
            # parse channeldata batch
            try:
T
TeslaZhao 已提交
1377
                parsed_data_dict, need_profile_dict, profile_dict, logid_dict\
1378 1379
                        = self._parse_channeldata_batch(
                                channeldata_dict_batch, output_channels)
B
barriery 已提交
1380
            except ChannelStopError:
B
barriery 已提交
1381
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1382
                self._finalize(is_thread_op)
B
barriery 已提交
1383
                break
1384 1385 1386
            if len(parsed_data_dict) == 0:
                # data in the whole batch is all error data
                continue
1387 1388
            _LOGGER.debug("op:{} parse_end:{}".format(op_info_prefix,
                                                      time.time()))
1389

1390 1391 1392 1393 1394 1395
            front_cost = int(round(_time() * 1000000)) - start
            for data_id, parsed_data in parsed_data_dict.items():
                _LOGGER.debug(
                    "(data_id={}) POP INPUT CHANNEL! op:{}, cost:{} ms".format(
                        data_id, self.name, front_cost / 1000.0))

1396
            # preprecess
B
barriery 已提交
1397
            start = profiler.record("prep#{}_0".format(op_info_prefix))
T
TeslaZhao 已提交
1398 1399
            preped_data_dict, err_channeldata_dict, skip_process_dict \
                    = self._run_preprocess(parsed_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1400
            end = profiler.record("prep#{}_1".format(op_info_prefix))
B
barrierye 已提交
1401
            prep_time = end - start
1402 1403
            _LOGGER.debug("op:{} preprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), prep_time))
1404
            try:
T
TeslaZhao 已提交
1405
                # put error requests into output channel, skip process and postprocess stage
1406
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1407
                    self._push_to_output_channels(
B
barriery 已提交
1408 1409
                        data=err_channeldata,
                        channels=output_channels,
1410 1411 1412
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
            except ChannelStopError:
B
barriery 已提交
1413
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1414 1415
                self._finalize(is_thread_op)
                break
B
bug fix  
barrierye 已提交
1416
            if len(preped_data_dict) == 0:
1417 1418
                continue

B
barrierye 已提交
1419
            # process
B
barriery 已提交
1420
            start = profiler.record("midp#{}_0".format(op_info_prefix))
1421
            midped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1422
                    = self._run_process(preped_data_dict, op_info_prefix, skip_process_dict, logid_dict)
B
barriery 已提交
1423
            end = profiler.record("midp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1424
            midp_time = end - start
1425 1426
            _LOGGER.debug("op:{} process_end:{}, cost:{}".format(
                op_info_prefix, time.time(), midp_time))
1427 1428
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1429
                    self._push_to_output_channels(
B
barriery 已提交
1430 1431
                        data=err_channeldata,
                        channels=output_channels,
B
barriery 已提交
1432 1433
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1434
            except ChannelStopError:
B
barriery 已提交
1435
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1436 1437 1438
                self._finalize(is_thread_op)
                break
            if len(midped_data_dict) == 0:
1439
                continue
1440 1441

            # postprocess
B
barriery 已提交
1442
            start = profiler.record("postp#{}_0".format(op_info_prefix))
1443
            postped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1444
                    = self._run_postprocess(parsed_data_dict, midped_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1445
            end = profiler.record("postp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1446
            postp_time = end - start
1447
            after_postp_time = _time()
1448 1449
            _LOGGER.debug("op:{} postprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), postp_time))
1450 1451
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1452
                    self._push_to_output_channels(
B
bug fix  
barrierye 已提交
1453
                        data=err_channeldata,
B
barriery 已提交
1454
                        channels=output_channels,
B
barriery 已提交
1455 1456
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1457
            except ChannelStopError:
B
barriery 已提交
1458
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1459 1460 1461
                self._finalize(is_thread_op)
                break
            if len(postped_data_dict) == 0:
1462
                continue
1463

1464
            # push data to channel (if run succ)
B
barriery 已提交
1465
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1466
            try:
B
barriery 已提交
1467
                profile_str = profiler.gen_profile_str()
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
                if self.is_jump_op() is True and self.check_jumping(
                        postped_data_dict) is True:
                    # push data to output channel of ops to be jumped 
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels_of_jump_ops,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL OF JUMP OPs! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
                else:
                    # push data to output channel.
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
B
barrierye 已提交
1503
            except ChannelStopError:
B
barriery 已提交
1504
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1505
                self._finalize(is_thread_op)
B
barrierye 已提交
1506
                break
B
barriery 已提交
1507
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1508
            out_time = end - start
1509
            after_outchannel_time = int(round(_time() * 1000000))
B
barriery 已提交
1510
            if trace_buffer is not None:
B
barrierye 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
                trace_que.append({
                    "name": self.name,
                    "actions": {
                        "in": in_time,
                        "prep": prep_time,
                        "midp": midp_time,
                        "postp": postp_time,
                        "out": out_time,
                    }
                })
                while trace_que:
                    info = trace_que[0]
                    try:
                        trace_buffer.put_nowait(info)
                        trace_que.popleft()
                    except Queue.Full:
                        break
B
barriery 已提交
1528

W
wangjiawei04 已提交
1529
    def _initialize(self, is_thread_op, concurrency_idx):
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
        """
        Initialize one OP object in the target function of a thread or porcess.
        Initialize the client object with _client_config and _server_endpoints.
        Create a TimeProfiler per thread or process for recording profiler info.

        Args:
            is_thread_op: True, one op runs in one thread; False, one op runs
                in one process.
            concurrency_idx: process id, Thread mode does not use this param.

        Returns:
            TimeProfiler
        """
1543 1544 1545 1546 1547 1548 1549 1550 1551
        @ErrorCatch
        def init_helper(self, is_thread_op, concurrency_idx):
            if is_thread_op:
                with self._for_init_op_lock:
                    if not self._succ_init_op:
                        # for the threaded version of Op, each thread cannot get its concurrency_idx
                        self.concurrency_idx = None
                        # init client
                        self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1552
                                                   self._server_endpoints)
1553 1554 1555 1556 1557 1558 1559 1560
                        # user defined
                        self.init_op()
                        self._succ_init_op = True
                        self._succ_close_op = False
            else:
                self.concurrency_idx = concurrency_idx
                # init client
                self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1561
                                           self._server_endpoints)
1562 1563 1564 1565
                # user defined
                self.init_op() 
        
        init_helper(self, is_thread_op, concurrency_idx)
F
felixhjh 已提交
1566
        print("[OP Object] init success")
B
barriery 已提交
1567 1568 1569 1570 1571
        # use a separate TimeProfiler per thread or process
        profiler = TimeProfiler()
        profiler.enable(True)
        return profiler

B
barriery 已提交
1572 1573 1574 1575 1576 1577 1578 1579
    def _finalize(self, is_thread_op):
        if is_thread_op:
            with self._for_close_op_lock:
                if not self._succ_close_op:
                    self._profiler = None
                    self.client = None
                    self._succ_init_op = False
                    self._succ_close_op = True
1580 1581 1582 1583 1584

    def _log(self, info):
        return "{} {}".format(self.name, info)


B
barrierye 已提交
1585
class RequestOp(Op):
1586 1587 1588 1589 1590 1591
    """
    RequestOp is a special Op, for unpacking one request package. If the
    request needs one special unpackaging method, you need to inherit class
    RequestOp and rewrite function unpack_request_package.Notice!!! Class
    RequestOp does not run preprocess, process, postprocess.
    """
B
barrierye 已提交
1592

B
barrierye 已提交
1593
    def __init__(self):
1594 1595 1596
        """
        Initialize the RequestOp
        """
B
barriery 已提交
1597 1598
        # PipelineService.name = "@DAGExecutor"
        super(RequestOp, self).__init__(name="@DAGExecutor", input_ops=[])
B
barrierye 已提交
1599
        # init op
1600
        try:
1601
            self.init_op()
1602
        except Exception as e:
B
barriery 已提交
1603
            _LOGGER.critical("Op(Request) Failed to init: {}".format(e))
1604
            os._exit(-1)
B
barrierye 已提交
1605

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
    def proto_tensor_2_numpy(self, tensor):
        """
        Convert proto tensor to numpy array, The supported types are as follows:
                INT64
                FP32
		INT32
		FP64
		INT16
		FP16
		BF16
		UINT8
		INT8
		BOOL
1619
                BYTES
1620
        Unsupported type:
1621
                STRING
1622 1623 1624 1625 1626 1627 1628
                COMPLEX64
                COMPLEX128

        Args:
            tensor: one tensor in request.tensors.

        Returns:
T
TeslaZhao 已提交
1629 1630
            np_data: np.ndnumpy, the tensor data is converted to numpy.
            lod_info: np.ndnumpy, lod info of the tensor data, None default.
1631 1632 1633 1634 1635 1636
        """
        if tensor is None or tensor.elem_type is None or tensor.name is None:
            _LOGGER.error("input params of tensor is wrong. tensor: {}".format(
                tensor))
            return None

T
TeslaZhao 已提交
1637
        # Set dim shape
1638 1639 1640 1641 1642 1643 1644
        dims = []
        if tensor.shape is None:
            dims.append(1)
        else:
            for one_dim in tensor.shape:
                dims.append(one_dim)

T
TeslaZhao 已提交
1645 1646 1647 1648 1649
        # Set up 2-d lod tensor
        np_lod = None
        if len(tensor.lod) > 0:
            np_lod = np.array(tensor.lod).astype(int32).reshape(2, -1)

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
        np_data = None
        _LOGGER.info("proto_to_numpy, name:{}, type:{}, dims:{}".format(
            tensor.name, tensor.elem_type, dims))
        if tensor.elem_type == 0:
            # VarType: INT64
            np_data = np.array(tensor.int64_data).astype(int64).reshape(dims)
        elif tensor.elem_type == 1:
            # VarType: FP32
            np_data = np.array(tensor.float_data).astype(float32).reshape(dims)
        elif tensor.elem_type == 2:
            # VarType: INT32
            np_data = np.array(tensor.int_data).astype(int32).reshape(dims)
        elif tensor.elem_type == 3:
            # VarType: FP64
            np_data = np.array(tensor.float64_data).astype(float64).reshape(
                dims)
        elif tensor.elem_type == 4:
            # VarType: INT16
            np_data = np.array(tensor.int_data).astype(int16).reshape(dims)
        elif tensor.elem_type == 5:
            # VarType: FP16
            np_data = np.array(tensor.float_data).astype(float16).reshape(dims)
        elif tensor.elem_type == 6:
            # VarType: BF16
            np_data = np.array(tensor.uint32_data).astype(uint16).reshape(dims)
        elif tensor.elem_type == 7:
            # VarType: UINT8
            np_data = np.array(tensor.uint32_data).astype(uint8).reshape(dims)
        elif tensor.elem_type == 8:
            # VarType: INT8
            np_data = np.array(tensor.int_data).astype(int8).reshape(dims)
        elif tensor.elem_type == 9:
            # VarType: BOOL
            np_data = np.array(tensor.bool_data).astype(bool).reshape(dims)
1684 1685 1686 1687
        elif tensor.elem_type == 13:
            # VarType: BYTES
            byte_data = BytesIO(tensor.byte_data)
            np_data = np.load(byte_data, allow_pickle=True)
1688 1689 1690 1691 1692 1693 1694
        else:
            _LOGGER.error("Sorry, the type {} of tensor {} is not supported.".
                          format(tensor.elem_type, tensor.name))
            raise ValueError(
                "Sorry, the type {} of tensor {} is not supported.".format(
                    tensor.elem_type, tensor.name))

T
TeslaZhao 已提交
1695
        return np_data, np_lod
1696

B
barrierye 已提交
1697
    def unpack_request_package(self, request):
T
TeslaZhao 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
        """
        Unpack request package by gateway.proto
        Args:
            request: HTTP body, JSON format

        Returns:
            dict_data: json fields in HTTP body
            log_id: log_id
            prod_errcode: None or ProductErrCode.SUCC.value default, otherwise,
                          product errores occured.It is handled in the same way
                          as exception.
            prod_errinfo: "" default 
        """
        dict_data = {}
        log_id = None
        if request is None:
            _LOGGER.critical("request is None")
            raise ValueError("request is None")
1716

1717
        # unpack key/value string list
1718
        for idx, key in enumerate(request.key):
1719
            dict_data[key] = request.value[idx]
T
TeslaZhao 已提交
1720
        log_id = request.logid
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

        # unpack proto.tensors data.
        for one_tensor in request.tensors:
            name = one_tensor.name
            elem_type = one_tensor.elem_type

            if one_tensor.name is None:
                _LOGGER.error("Tensor name is None.")
                raise ValueError("Tensor name is None.")

            numpy_dtype = _TENSOR_DTYPE_2_NUMPY_DATA_DTYPE.get(elem_type)
            if numpy_dtype is None:
                _LOGGER.error(
                    "elem_type:{} is dismatch in unpack_request_package.",
                    format(elem_type))
                raise ValueError("elem_type:{} error".format(elem_type))

            if numpy_dtype == "string":
                new_string = ""
                if one_tensor.str_data is None:
                    _LOGGER.error(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                    raise ValueError(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                for one_str in one_tensor.str_data:
                    new_string += one_str

                dict_data[name] = new_string
            else:
T
TeslaZhao 已提交
1752 1753 1754 1755
                np_data, np_lod = self.proto_tensor_2_numpy(one_tensor)
                dict_data[name] = np_data
                if np_lod is not None:
                    dict_data[name + ".lod"] = np_lod
1756

1757 1758 1759 1760
        _LOGGER.info("RequestOp unpack one request. log_id:{}, clientip:{} \
            name:{}, method:{}, time:{}"
                     .format(log_id, request.clientip, request.name,
                             request.method, time.time()))
T
TeslaZhao 已提交
1761 1762

        return dict_data, log_id, None, ""
B
barrierye 已提交
1763 1764 1765


class ResponseOp(Op):
1766 1767 1768 1769 1770 1771
    """ 
    ResponseOp is a special Op, for packing one response package. If the channeldata 
    needs a special packaging method, you need to inherit class ReponseOp and rewrite
    pack_response_package function. Notice!!! Class ResponseOp does not run preprocess,
    process, postprocess.
    """
B
barrierye 已提交
1772

B
barrierye 已提交
1773
    def __init__(self, input_ops):
1774 1775 1776
        """
        Initialize the ResponseOp
        """
B
barriery 已提交
1777 1778
        super(ResponseOp, self).__init__(
            name="@DAGExecutor", input_ops=input_ops)
1779

B
barrierye 已提交
1780
        # init op
1781
        try:
1782
            self.init_op()
1783
        except Exception as e:
B
barriery 已提交
1784 1785
            _LOGGER.critical("Op(ResponseOp) Failed to init: {}".format(
                e, exc_info=True))
1786
            os._exit(-1)
B
barrierye 已提交
1787

1788 1789 1790 1791 1792 1793
        # init ResponseOp
        self.is_pack_tensor = False

    def set_pack_format(self, isTensor=False):
        self.is_pack_tensor = isTensor

B
barrierye 已提交
1794
    def pack_response_package(self, channeldata):
T
TeslaZhao 已提交
1795
        """
1796 1797 1798 1799 1800 1801 1802 1803
        Getting channeldata from the last channel, packting the response 
        package serialized by protobuf.  

        Args:
            channeldata: Type ChannelData

        Returns:
            resp: pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1804
        """
B
barrierye 已提交
1805
        resp = pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1806 1807 1808
        error_code = channeldata.error_code
        error_info = ""
        if error_code == ChannelDataErrcode.OK.value:
1809
            # Framework level errors
B
barrierye 已提交
1810 1811 1812 1813
            if channeldata.datatype == ChannelDataType.CHANNEL_NPDATA.value:
                feed = channeldata.parse()
                # ndarray to string:
                # https://stackoverflow.com/questions/30167538/convert-a-numpy-ndarray-to-stringor-bytes-and-convert-it-back-to-numpy-ndarray
B
barrierye 已提交
1814
                np.set_printoptions(threshold=sys.maxsize)
B
barrierye 已提交
1815
                for name, var in feed.items():
1816 1817
                    resp.value.append(var.__repr__())
                    resp.key.append(name)
B
barrierye 已提交
1818 1819 1820 1821
            elif channeldata.datatype == ChannelDataType.DICT.value:
                feed = channeldata.parse()
                for name, var in feed.items():
                    if not isinstance(var, str):
T
TeslaZhao 已提交
1822 1823
                        error_code = ChannelDataErrcode.TYPE_ERROR.value
                        error_info = self._log(
B
barrierye 已提交
1824 1825
                            "fetch var type must be str({}).".format(
                                type(var)))
B
barriery 已提交
1826 1827
                        _LOGGER.error("(logid={}) Failed to pack RPC "
                                      "response package: {}".format(
W
wangjiawei04 已提交
1828
                                          channeldata.id, resp.err_msg))
B
barrierye 已提交
1829
                        break
1830 1831
                    resp.value.append(var)
                    resp.key.append(name)
B
barrierye 已提交
1832
            else:
T
TeslaZhao 已提交
1833 1834 1835
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = self._log("error type({}) in datatype.".format(
                    channeldata.datatype))
B
barriery 已提交
1836
                _LOGGER.error("(logid={}) Failed to pack RPC response"
T
TeslaZhao 已提交
1837
                              " package: {}".format(channeldata.id, error_info))
B
barrierye 已提交
1838
        else:
1839
            # Product level errors
T
TeslaZhao 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
            error_info = channeldata.error_info
            if error_code == ChannelDataErrcode.PRODUCT_ERROR.value:
                #rewrite error_code when product errors occured
                error_code = channeldata.prod_error_code
                error_info = channeldata.prod_error_info

        # pack results
        if error_code is None:
            error_code = 0
        resp.err_no = error_code
        resp.err_msg = error_info

B
barrierye 已提交
1852
        return resp
1853 1854 1855


class VirtualOp(Op):
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
    """ 
    To connect 2 ops across levels in dag view, we create virtual ops
    between non-virtual ops, and transfer data only. For examples, 
    the pred ops of F are D & E.In the process of building DAG, we will
    create channels layer by layer according to dag views.Op F is not 
    in the next layer view of [B, E], so we will create a virtual OP 
    'V1' whose pred OP is E. And so on, we create two virtual op 'V2'
    and 'V3', Finally, we find the non-virtual op F. we create 4 channels
    among E, V1, V2, V3 and F, the producer of V1, V2, V3 and F is E.
    
        DAG: [A -> B -> C -> D -> F]
               \-> E ----------/

        DAG view: [[A], [B, E], [C], [D], [F]]
        BUILD DAG: [A -> B -> C -> D -> E -> F]
                     \-> E -> V1-> V2-> V3/
    """
1873 1874 1875

    def __init__(self, name, concurrency=1):
        super(VirtualOp, self).__init__(
B
barrierye 已提交
1876
            name=name, input_ops=None, concurrency=concurrency)
1877 1878 1879
        self._virtual_pred_ops = []

    def add_virtual_pred_op(self, op):
1880 1881 1882 1883 1884 1885 1886 1887 1888
        """
        Add the front op of current vritual op.
        
        Args:
            op: one op object, may be a virtual op or not.

        Returns:
            None
        """
1889 1890
        self._virtual_pred_ops.append(op)

B
barrierye 已提交
1891
    def _actual_pred_op_names(self, op):
1892 1893 1894 1895 1896 1897 1898 1899 1900
        """
        Recursively find the front op which is a non-virtual op.
   
        Args:
            op: one op object
            
        Returns:
            names: the name of non-virtual pred ops.
        """
B
barriery 已提交
1901
        # can use disjoint-set, but it's not necessary
B
barrierye 已提交
1902 1903 1904 1905 1906 1907 1908
        if not isinstance(op, VirtualOp):
            return [op.name]
        names = []
        for x in op._virtual_pred_ops:
            names.extend(self._actual_pred_op_names(x))
        return names

1909
    def add_output_channel(self, channel):
1910 1911 1912 1913 1914 1915 1916 1917 1918
        """
        Adding the output channel of non-virtual pred ops.

        Args:
            channel: one channel.
          
        Returns:
            None.
        """
1919
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
1920
            _LOGGER.critical(
B
barriery 已提交
1921 1922 1923
                self._log("Failed to add output_channel: output_channel"
                          " must be Channel type, not {}".format(
                              type(channel))))
1924
            os._exit(-1)
1925
        for op in self._virtual_pred_ops:
B
barrierye 已提交
1926 1927
            for op_name in self._actual_pred_op_names(op):
                channel.add_producer(op_name)
1928
        self._outputs.append(channel)
D
dongdaxiang 已提交
1929

1930
    def _run(self, concurrency_idx, input_channel, output_channels, client_type,
1931
             is_thread_op):
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
        """
        The target function _run() only transfers data between OPs in one thread
        or process.

        Args:
            concurrency_idx: process id, not avaliable in thread mode.
            input_channel: input channel
            output_channels: output channels
            client_type: no use
            is_thread_op: True, thread mode; False, process mode

        Returns:
            None
        """
1946
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1947 1948 1949
        log = get_log_func(op_info_prefix)
        tid = threading.current_thread().ident

1950 1951 1952 1953 1954 1955 1956
        batch_generator = self._auto_batching_generator(
            input_channel=input_channel,
            op_name=self.name,
            batch_size=1,
            timeout=None,
            log_func=log)

B
barrierye 已提交
1957 1958
        while True:
            try:
1959
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1960
            except ChannelStopError:
B
barriery 已提交
1961
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1962
                self._finalize(is_thread_op)
B
barrierye 已提交
1963
                break
D
dongdaxiang 已提交
1964

B
barrierye 已提交
1965
            try:
1966 1967 1968 1969
                for channeldata_dict in channeldata_dict_batch:
                    for name, data in channeldata_dict.items():
                        self._push_to_output_channels(
                            data, channels=output_channels, name=name)
B
barrierye 已提交
1970
            except ChannelStopError:
B
barriery 已提交
1971
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1972
                self._finalize(is_thread_op)
B
barrierye 已提交
1973
                break