operator.py 81.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
B
barriery 已提交
15
from time import time as _time
B
barriery 已提交
16
import time
17 18
import threading
import multiprocessing
H
HexToString 已提交
19
from paddle_serving_client import Client
20 21 22
from concurrent import futures
import logging
import func_timeout
23
import os
B
barrierye 已提交
24
import sys
25
import collections
B
barrierye 已提交
26
import numpy as np
T
TeslaZhao 已提交
27
import json
B
barrierye 已提交
28
from numpy import *
29
from io import BytesIO
B
barrierye 已提交
30 31 32 33 34 35
if sys.version_info.major == 2:
    import Queue
elif sys.version_info.major == 3:
    import queue as Queue
else:
    raise Exception("Error Python version")
36

37 38 39
from .error_catch import ErrorCatch, CustomException, CustomExceptionCode, ParamChecker, ParamVerify
check_feed_dict=ParamVerify.check_feed_dict
check_fetch_list=ParamVerify.check_fetch_list
B
barrierye 已提交
40
from .proto import pipeline_service_pb2
41 42 43 44
from .channel import (ThreadChannel, ProcessChannel,ChannelData, 
                      ChannelDataType, ChannelStopError, ChannelTimeoutError)
from .error_catch import  ProductErrCode
from .error_catch import CustomExceptionCode as ChannelDataErrcode
B
barrierye 已提交
45
from .util import NameGenerator
B
barriery 已提交
46
from .profiler import UnsafeTimeProfiler as TimeProfiler
W
wangjiawei04 已提交
47
from . import local_service_handler
48
from .pipeline_client import PipelineClient as PPClient
49

50
_LOGGER = logging.getLogger(__name__)
B
barrierye 已提交
51 52
_op_name_gen = NameGenerator("Op")

53 54 55 56 57 58 59 60 61 62 63 64 65 66
# data type of tensor to numpy_data
_TENSOR_DTYPE_2_NUMPY_DATA_DTYPE = {
    0: "int64",  # VarType.INT64
    1: "float32",  # VarType.FP32
    2: "int32",  # VarType.INT32
    3: "float64",  # VarType.FP64
    4: "int16",  # VarType.int16
    5: "float16",  # VarType.FP32
    6: "uint16",  # VarType.BF16
    7: "uint8",  # VarType.UINT8
    8: "int8",  # VarType.INT8
    9: "bool",  # VarType.BOOL
    10: "complex64",  # VarType.COMPLEX64
    11: "complex128",  # VarType.COMPLEX128
67 68
    12: "string",  # load by numpy
    13: "bytes",  # load by numpy
69 70
}

D
dongdaxiang 已提交
71 72 73

class Op(object):
    def __init__(self,
B
barrierye 已提交
74
                 name=None,
D
dongdaxiang 已提交
75
                 input_ops=[],
B
barriery 已提交
76 77
                 server_endpoints=None,
                 fetch_list=None,
B
barrierye 已提交
78
                 client_config=None,
W
wangjiawei04 已提交
79
                 client_type=None,
B
barriery 已提交
80 81
                 concurrency=None,
                 timeout=None,
T
TeslaZhao 已提交
82
                 retry=0,
B
barriery 已提交
83
                 batch_size=None,
84
                 auto_batching_timeout=None,
85 86
                 local_service_handler=None,
                 jump_to_ops=[]):
B
barriery 已提交
87
        # In __init__, all the parameters are just saved and Op is not initialized
B
barrierye 已提交
88
        if name is None:
B
barrierye 已提交
89
            name = _op_name_gen.next()
90
        self.name = name  # to identify the type of OP, it must be globally unique
B
barrierye 已提交
91
        self.concurrency = concurrency  # amount of concurrency
B
barrierye 已提交
92
        self.set_input_ops(input_ops)
93
        self.set_jump_to_ops(jump_to_ops)
B
barrierye 已提交
94

W
wangjiawei04 已提交
95
        self._local_service_handler = local_service_handler
B
barriery 已提交
96
        self._server_endpoints = server_endpoints
B
barrierye 已提交
97
        self._fetch_names = fetch_list
B
barriery 已提交
98
        self._client_config = client_config
W
wangjiawei04 已提交
99
        self.client_type = client_type
B
barriery 已提交
100
        self._timeout = timeout
101
        self._retry = max(1, retry)
B
barriery 已提交
102 103 104
        self._batch_size = batch_size
        self._auto_batching_timeout = auto_batching_timeout

105 106
        self._input = None
        self._outputs = []
B
barrierye 已提交
107

B
barriery 已提交
108 109 110
        self._server_use_profile = False
        self._tracer = None

111 112 113
        # for grpc_pipeline predict mode. False, string key/val; True, tensor format.
        self._pack_tensor_format = False

B
barriery 已提交
114 115 116 117 118
        # only for thread op
        self._for_init_op_lock = threading.Lock()
        self._for_close_op_lock = threading.Lock()
        self._succ_init_op = False
        self._succ_close_op = False
F
felixhjh 已提交
119 120 121 122
        self.dynamic_shape_info = {} 
        self.set_dynamic_shape_info()
    
    def set_dynamic_shape_info(self):
F
felixhjh 已提交
123 124 125 126 127
        """
        when opening tensorrt(configure in config.yml) and each time the input shape
        for inferring is different, using this method for configuring tensorrt
        dynamic shape to infer in each op model
        """
F
felixhjh 已提交
128
        pass
B
barriery 已提交
129

130 131 132 133 134 135 136 137 138 139 140 141 142
    # for feed/fetch dict cehck
    @staticmethod
    def get_feed_fetch_list(client):
        from paddle_serving_app.local_predict import LocalPredictor
        if isinstance(client, Client):
            feed_names = client.get_feed_names()
            fetch_names = client.get_fetch_names()
        if isinstance(client, LocalPredictor):
            feed_names = client.feed_names_
            fetch_names = client.fetch_names_
        return feed_names, fetch_names
              

B
barriery 已提交
143
    def init_from_dict(self, conf):
144 145 146 147 148 149 150 151 152 153 154
        """
        Initializing one Op from config.yaml. If server_endpoints exist,
        which is remote RPC mode, otherwise it is local RPC mode. There
        are three types of predictios in local RPC mode, brpc, grpc and
        local_predictor.

        Args:
            conf: config.yaml

        Returns:
        """
B
barriery 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        if self.concurrency is None:
            self.concurrency = conf["concurrency"]
        if self._retry is None:
            self._retry = conf["retry"]
        if self._fetch_names is None:
            self._fetch_names = conf.get("fetch_list")
        if self._client_config is None:
            self._client_config = conf.get("client_config")
        if self._timeout is None:
            self._timeout = conf["timeout"]
        if self._timeout > 0:
            self._timeout = self._timeout / 1000.0
        else:
            self._timeout = -1

        if self._batch_size is None:
            self._batch_size = conf["batch_size"]
        if self._auto_batching_timeout is None:
            self._auto_batching_timeout = conf["auto_batching_timeout"]
        if self._auto_batching_timeout <= 0 or self._batch_size == 1:
175
            _LOGGER.debug(
B
barriery 已提交
176 177 178 179 180 181 182
                self._log(
                    "Because auto_batching_timeout <= 0 or batch_size == 1,"
                    " set auto_batching_timeout to None."))
            self._auto_batching_timeout = None
        else:
            self._auto_batching_timeout = self._auto_batching_timeout / 1000.0

183 184 185
        self.model_config = None
        self.workdir = None
        self.thread_num = self.concurrency
186
        self.device_type = -1
187 188 189
        self.devices = ""
        self.mem_optim = False
        self.ir_optim = False
190
        self.precision = "fp32"
T
TeslaZhao 已提交
191 192 193 194
        self.use_mkldnn = False
        self.mkldnn_cache_capacity = 0
        self.mkldnn_op_list = None
        self.mkldnn_bf16_op_list = None
F
felixhjh 已提交
195
        self.min_subgraph_size = 3
T
TeslaZhao 已提交
196

B
barriery 已提交
197 198 199 200 201 202
        if self._server_endpoints is None:
            server_endpoints = conf.get("server_endpoints", [])
            if len(server_endpoints) != 0:
                # remote service
                self.with_serving = True
                self._server_endpoints = server_endpoints
203
                self.client_type = conf["client_type"]
204
            else:
W
wangjiawei04 已提交
205
                if self._local_service_handler is None:
B
barriery 已提交
206
                    local_service_conf = conf.get("local_service_conf")
B
barriery 已提交
207 208
                    _LOGGER.info("local_service_conf: {}".format(
                        local_service_conf))
209
                    self.model_config = local_service_conf.get("model_config")
W
wangjiawei04 已提交
210
                    self.client_type = local_service_conf.get("client_type")
211 212
                    self.workdir = local_service_conf.get("workdir")
                    self.thread_num = local_service_conf.get("thread_num")
213
                    self.device_type = local_service_conf.get("device_type")
214 215 216 217
                    self.devices = local_service_conf.get("devices")
                    self.mem_optim = local_service_conf.get("mem_optim")
                    self.ir_optim = local_service_conf.get("ir_optim")
                    self._fetch_names = local_service_conf.get("fetch_list")
218
                    self.precision = local_service_conf.get("precision")
T
TeslaZhao 已提交
219 220 221 222 223 224 225
                    self.use_mkldnn = local_service_conf.get("use_mkldnn")
                    self.mkldnn_cache_capacity = local_service_conf.get(
                        "mkldnn_cache_capacity")
                    self.mkldnn_op_list = local_service_conf.get(
                        "mkldnn_op_list")
                    self.mkldnn_bf16_op_list = local_service_conf.get(
                        "mkldnn_bf16_op_list")
F
felixhjh 已提交
226 227
                    self.min_subgraph_size = local_service_conf.get(
                        "min_subgraph_size")
T
TeslaZhao 已提交
228

229
                    if self.model_config is None:
B
barriery 已提交
230 231 232 233
                        self.with_serving = False
                    else:
                        # local rpc service
                        self.with_serving = True
W
wangjiawei04 已提交
234 235
                        if self.client_type == "brpc" or self.client_type == "grpc":
                            service_handler = local_service_handler.LocalServiceHandler(
236
                                model_config=self.model_config,
W
wangjiawei04 已提交
237
                                client_type=self.client_type,
238 239
                                workdir=self.workdir,
                                thread_num=self.thread_num,
240
                                device_type=self.device_type,
241 242
                                devices=self.devices,
                                mem_optim=self.mem_optim,
243
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
244 245 246 247 248
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_bf16_op_list,
F
felixhjh 已提交
249 250 251
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list,
                                min_subgraph_size=self.min_subgraph_size,
                                dynamic_shape_info=self.dynamic_shape_info)
W
wangjiawei04 已提交
252 253 254 255 256 257 258 259 260 261 262 263
                            service_handler.prepare_server()  # get fetch_list
                            serivce_ports = service_handler.get_port_list()
                            self._server_endpoints = [
                                "127.0.0.1:{}".format(p) for p in serivce_ports
                            ]
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                            if self._fetch_names is None:
                                self._fetch_names = service_handler.get_fetch_list(
                                )
                        elif self.client_type == "local_predictor":
W
wangjiawei04 已提交
264
                            service_handler = local_service_handler.LocalServiceHandler(
265
                                model_config=self.model_config,
W
wangjiawei04 已提交
266
                                client_type=self.client_type,
267 268
                                workdir=self.workdir,
                                thread_num=self.thread_num,
269
                                device_type=self.device_type,
270
                                devices=self.devices,
271 272
                                fetch_names=self._fetch_names,
                                mem_optim=self.mem_optim,
273
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
274 275 276 277 278
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_op_list,
F
felixhjh 已提交
279 280 281
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list,
                                min_subgraph_size=self.min_subgraph_size,
                                dynamic_shape_info=self.dynamic_shape_info)
W
wangjiawei04 已提交
282 283 284 285
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                        self._local_service_handler = service_handler
B
barriery 已提交
286
                else:
B
barriery 已提交
287
                    self.with_serving = True
W
wangjiawei04 已提交
288
                    self._local_service_handler.prepare_server(
B
barriery 已提交
289
                    )  # get fetch_list
W
wangjiawei04 已提交
290
                    serivce_ports = self._local_service_handler.get_port_list()
B
barriery 已提交
291 292 293
                    self._server_endpoints = [
                        "127.0.0.1:{}".format(p) for p in serivce_ports
                    ]
B
barriery 已提交
294
                    if self._client_config is None:
W
wangjiawei04 已提交
295
                        self._client_config = self._local_service_handler.get_client_config(
B
barriery 已提交
296
                        )
B
barriery 已提交
297
                    if self._fetch_names is None:
W
wangjiawei04 已提交
298
                        self._fetch_names = self._local_service_handler.get_fetch_list(
B
barriery 已提交
299
                        )
B
barriery 已提交
300 301
        else:
            self.with_serving = True
B
barriery 已提交
302

303 304 305 306 307 308 309 310 311 312 313
        if not isinstance(self, RequestOp) and not isinstance(self, ResponseOp):
            _LOGGER.info(
                self._log("\n\tinput_ops: {},"
                          "\n\tserver_endpoints: {}"
                          "\n\tfetch_list: {}"
                          "\n\tclient_config: {}"
                          "\n\tconcurrency: {},"
                          "\n\ttimeout(s): {},"
                          "\n\tretry: {},"
                          "\n\tbatch_size: {},"
                          "\n\tauto_batching_timeout(s): {}".format(
B
barriery 已提交
314
                              ", ".join([op.name for op in self._input_ops
315 316 317 318
                                         ]), self._server_endpoints,
                              self._fetch_names, self._client_config,
                              self.concurrency, self._timeout, self._retry,
                              self._batch_size, self._auto_batching_timeout)))
B
barriery 已提交
319

320
    def launch_local_rpc_service(self):
321 322 323 324 325 326 327 328 329
        """
        Launching multiple local rpc servers.

        Args:
            None

        Returns:
            None
        """
W
wangjiawei04 已提交
330
        if self._local_service_handler is None:
B
barriery 已提交
331 332
            _LOGGER.warning(
                self._log("Failed to launch local rpc"
W
wangjiawei04 已提交
333
                          " service: local_service_handler is None."))
B
barriery 已提交
334
            return
W
wangjiawei04 已提交
335
        port = self._local_service_handler.get_port_list()
W
wangjiawei04 已提交
336 337 338
        #if self._local_service_handler.client_type == "local_predictor":
        #    _LOGGER.info("Op({}) use local predictor.")
        #    return
W
wangjiawei04 已提交
339
        self._local_service_handler.start_server()
B
barriery 已提交
340
        _LOGGER.info("Op({}) use local rpc service at port: {}"
341 342
                     .format(self.name, port))

B
barriery 已提交
343
    def use_default_auto_batching_config(self):
344 345 346 347 348 349 350 351 352
        """
        Set the auto batching config default.

        Args:
            None

        Returns:
            None
        """
B
bug fix  
barriery 已提交
353
        if self._batch_size != 1:
354 355
            _LOGGER.warning("Op({}) reset batch_size=1 (original: {})"
                            .format(self.name, self._batch_size))
B
bug fix  
barriery 已提交
356 357
            self._batch_size = 1
        if self._auto_batching_timeout != None:
358
            _LOGGER.warning(
B
barriery 已提交
359 360
                "Op({}) reset auto_batching_timeout=None (original: {})"
                .format(self.name, self._auto_batching_timeout))
B
bug fix  
barriery 已提交
361
            self._auto_batching_timeout = None
B
barriery 已提交
362

B
barrierye 已提交
363
    def use_profiler(self, use_profile):
B
barrierye 已提交
364
        self._server_use_profile = use_profile
365

B
barriery 已提交
366 367 368
    def set_tracer(self, tracer):
        self._tracer = tracer

W
wangjiawei04 已提交
369
    def init_client(self, client_config, server_endpoints):
370 371 372 373 374 375 376 377 378 379 380 381
        """
        Initialize the client object. There are three types of clients, brpc,
        grpc and local_predictor. In grpc or brpc mode, the client connects 
        endpoints.

        Args:
            client_config: client config info
            server_endpoints: server IP/Port list.

        Returns:
            client: client object.
        """
382
        if self.with_serving == False:
B
barriery 已提交
383
            _LOGGER.info("Op({}) has no client (and it also do not "
384
                         "run the process function)".format(self.name))
B
barrierye 已提交
385
            return None
W
wangjiawei04 已提交
386
        if self.client_type == 'brpc':
B
barrierye 已提交
387 388
            client = Client()
            client.load_client_config(client_config)
389
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client) 
390 391
        elif self.client_type == 'pipeline_grpc':
            client = PPClient()
W
wangjiawei04 已提交
392 393 394 395
        elif self.client_type == 'local_predictor':
            if self.local_predictor is None:
                raise ValueError("local predictor not yet created")
            client = self.local_predictor
396
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client)
397
        else:
B
barriery 已提交
398
            raise ValueError("Failed to init client: unknow client "
W
wangjiawei04 已提交
399
                             "type {}".format(self.client_type))
W
wangjiawei04 已提交
400 401 402
        if self._fetch_names is None:
            self._fetch_names = client.fetch_names_
            _LOGGER.info("Op({}) has no fetch name set. So fetch all vars")
W
wangjiawei04 已提交
403 404
        if self.client_type != "local_predictor":
            client.connect(server_endpoints)
405
        _LOGGER.info("init_client, feed_list:{}, fetch_list: {}".format(self.right_feed_names, self.right_fetch_names))
B
barrierye 已提交
406
        return client
407 408 409 410 411

    def get_input_ops(self):
        return self._input_ops

    def set_input_ops(self, ops):
412 413 414 415 416 417 418 419 420 421
        """
        Set input ops.Each op have many input ops, but only one input
        channel.

        Args:
            ops: op list

        Returns:
            None.
        """
422 423 424 425 426
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]
        self._input_ops = []
        for op in ops:
            if not isinstance(op, Op):
427
                _LOGGER.critical(
B
barriery 已提交
428 429
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
430
                os._exit(-1)
431
            self._input_ops.append(op)
D
dongdaxiang 已提交
432

433 434 435
    def set_pack_tensor_format(self, is_tensor_format=False):
        self._pack_tensor_format = is_tensor_format

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
    def get_jump_to_ops(self):
        return self._jump_to_ops

    def set_jump_to_ops(self, ops):
        """
        Set jump to ops, then, this op can send channeldata to output channel.

        Args:
            ops: op list to be jumpped

        Returns:
            None.
        """
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]

        self._jump_to_ops = []
        for op in ops:
            if not isinstance(op, Op):
                _LOGGER.critical(
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
                os._exit(-1)
            self._jump_to_ops.append(op)

    def is_jump_op(self):
        """
        The op has _jump_to_ops members or not.

        Args:
            None

        Returns:
            True or False
        """
        return len(self._jump_to_ops) > 0

    def check_jumping(self, input_data):
        """
        Check whether to send data to jump ops.WhileOp needs to rewrite 
        this interface. this function returns False default.
     
        Args:
            input_data: input data to be preprocessed

        Returns:
            True, send data to the output channel of jump ops
            False, send data to output channel.
        """
        return False

    def get_output_channels_of_jump_ops(self):
        """
        Get output channels of jump ops

        Args:
            None

        Returns:
            list of channels
        """
        channels = []
        if self.is_jump_op() is False:
            return channels
        for op in self._jump_to_ops:
            _LOGGER.info("op:{} extend op._get_output_channels:{}".format(
                op.name, op._get_output_channels()))
            channels.extend(op._get_output_channels())

        _LOGGER.info("get_output_channels_of_jump_ops, channels:{}".format(
            channels))
        return channels

509
    def add_input_channel(self, channel):
510 511 512 513
        """
        Adding one input channel to the Op. Each op have many front op,
        but, only one input channel.
        """
514
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
515
            _LOGGER.critical(
B
barriery 已提交
516 517 518
                self._log("Failed to set input_channel: input "
                          "channel must be Channel type, not {}".format(
                              type(channel))))
519
            os._exit(-1)
520 521
        channel.add_consumer(self.name)
        self._input = channel
D
dongdaxiang 已提交
522

523
    def clean_input_channel(self):
B
barrierye 已提交
524 525 526 527
        self._input = None

    def _get_input_channel(self):
        return self._input
D
dongdaxiang 已提交
528

529
    def add_output_channel(self, channel):
530 531 532 533 534 535 536 537 538 539
        """
        Adding one output channel to the Op. Each op have many output channels,
        But only one front channel.

        Args:
            channel: an output channel object.

        Returns:
            None
        """
540
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
541
            _LOGGER.critical(
B
barriery 已提交
542 543
                self._log("Failed to add output_channel: output channel "
                          "must be Channel type, not {}".format(type(channel))))
544
            os._exit(-1)
545 546
        channel.add_producer(self.name)
        self._outputs.append(channel)
547
        _LOGGER.debug("op:{} add output_channel {}".format(self.name, channel))
D
dongdaxiang 已提交
548

549
    def clean_output_channels(self):
B
barrierye 已提交
550 551 552 553 554
        self._outputs = []

    def _get_output_channels(self):
        return self._outputs

555
    def preprocess(self, input_dicts, data_id=0, log_id=0):
T
TeslaZhao 已提交
556 557 558 559 560 561
        """
        In preprocess stage, assembling data for process stage. users can 
        override this function for model feed features.

        Args:
            input_dicts: input data to be preprocessed
562
            data_id: inner unique id, increase auto
563
            log_id: global unique id for RTT, 0 default
T
TeslaZhao 已提交
564 565

        Return:
T
TeslaZhao 已提交
566
            output_data: data for process stage
T
TeslaZhao 已提交
567 568 569 570 571
            is_skip_process: skip process stage or not, False default
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception. 
            prod_errinfo: "" default
        """
B
barrierye 已提交
572
        # multiple previous Op
B
barrierye 已提交
573
        if len(input_dicts) != 1:
574 575
            _LOGGER.critical(
                self._log(
B
barriery 已提交
576 577
                    "Failed to run preprocess: this Op has multiple previous "
                    "inputs. Please override this func."))
578
            os._exit(-1)
D
dongdaxiang 已提交
579

B
barrierye 已提交
580
        (_, input_dict), = input_dicts.items()
T
TeslaZhao 已提交
581
        return input_dict, False, None, ""
582
    
583
    def process(self, feed_batch, typical_logid=0):
T
TeslaZhao 已提交
584 585 586 587 588
        """
        In process stage, send requests to the inference server or predict locally.
        users do not need to inherit this function
        Args:
            feed_batch: data to be fed to inference server
589 590
            typical_logid: mark batch predicts, usually the first logid in batch,
                0 default.
T
TeslaZhao 已提交
591 592 593 594

        Returns:
            call_result: predict result
        """
595 596 597 598

        call_result = None
        err_code = ChannelDataErrcode.OK.value
        err_info = ""
599 600 601 602 603 604 605 606 607 608 609 610 611
        @ErrorCatch 
        @ParamChecker
        def feed_fetch_list_check_helper(feed_batch : lambda feed_batch: check_feed_dict(feed_batch[0], self.right_feed_names),
                                         fetch_list : lambda fetch_list: check_fetch_list(fetch_list, self.right_fetch_names),
                                         log_id):
            return None
        _, resp = feed_fetch_list_check_helper(feed_batch, self._fetch_names, log_id=typical_logid)
        if resp.err_no != CustomExceptionCode.OK.value:
            err_code = resp.err_no
            err_info = resp.err_msg
            call_result = None
            return call_result, err_code, err_info
                
W
wangjiawei04 已提交
612
        if self.client_type == "local_predictor":
613 614 615 616 617 618 619 620
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for local_predictor mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"

W
wangjiawei04 已提交
621 622
            call_result = self.client.predict(
                feed=feed_batch[0],
W
wangjiawei04 已提交
623
                fetch=self._fetch_names,
W
wangjiawei04 已提交
624 625
                batch=True,
                log_id=typical_logid)
626 627 628 629 630 631 632 633

        elif self.client_type == "brpc":
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for brpc mode.".format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"
W
wangjiawei04 已提交
634
            call_result = self.client.predict(
635
                feed=feed_batch[0],
W
wangjiawei04 已提交
636
                fetch=self._fetch_names,
W
wangjiawei04 已提交
637 638
                batch=True,
                log_id=typical_logid)
639 640 641 642 643 644 645 646 647 648 649 650 651 652

        elif self.client_type == "pipeline_grpc":
            err, err_info = ChannelData.check_dictdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                       npdata in process for pipeline_grpc mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be dict"

            call_result = self.client.predict(
                feed_dict=feed_batch[0],
                fetch=self._fetch_names,
                asyn=False,
653
                pack_tensor_format=self._pack_tensor_format,
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
                profile=False)
            if call_result is None:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. call_result is None."))
                return call_result, ChannelDataErrcode.UNKNOW.value, "pipeline_grpc error"
            if call_result.err_no != 0:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. err_no:{}, err_info:{}".
                              format(call_result.err_no, call_result.err_msg)))
                return call_result, ChannelDataErrcode(
                    call_result.err_no).value, call_result.err_msg

            new_dict = {}
            err_code = ChannelDataErrcode(call_result.err_no).value
            err_info = call_result.err_msg
            for idx, key in enumerate(call_result.key):
                new_dict[key] = [call_result.value[idx]]
            call_result = new_dict

        return call_result, err_code, err_info
674

675
    def postprocess(self, input_data, fetch_data, data_id=0, log_id=0):
T
TeslaZhao 已提交
676 677 678
        """
        In postprocess stage, assemble data for next op or output.
        Args:
T
TeslaZhao 已提交
679 680
            input_data: data returned in preprocess stage, dict(for single predict) or list(for batch predict)
            fetch_data: data returned in process stage, dict(for single predict) or list(for batch predict)
681
            data_id: inner unique id, increase auto
682
            log_id: logid, 0 default
T
TeslaZhao 已提交
683 684

        Returns: 
T
TeslaZhao 已提交
685
            fetch_dict: fetch result must be dict type.
T
TeslaZhao 已提交
686 687 688 689
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception.
            prod_errinfo: "" default
        """
T
TeslaZhao 已提交
690 691 692
        fetch_dict = {}
        if isinstance(fetch_data, dict):
            fetch_dict = fetch_data
T
TeslaZhao 已提交
693
        return fetch_dict, None, ""
D
dongdaxiang 已提交
694

B
barrierye 已提交
695
    def _parse_channeldata(self, channeldata_dict):
T
TeslaZhao 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708
        """
        Parse one channeldata 
        Args:
            channeldata_dict : channel data to be parsed, dict type
        
        Return:
            data_id: created by dag._id_generator, unique
            error_channeldata: error channeldata
            parsed_data: get np/dict data from channeldata
            client_need_profile: need profile info
            profile_set: profile info
            log_id: logid for tracing a request 
        """
709
        data_id, error_channeldata = None, None
B
barrierye 已提交
710
        client_need_profile, profile_set = False, set()
B
barrierye 已提交
711 712 713 714
        parsed_data = {}

        key = list(channeldata_dict.keys())[0]
        data_id = channeldata_dict[key].id
T
TeslaZhao 已提交
715
        log_id = channeldata_dict[key].log_id
B
barrierye 已提交
716
        client_need_profile = channeldata_dict[key].client_need_profile
B
barrierye 已提交
717 718

        for name, data in channeldata_dict.items():
T
TeslaZhao 已提交
719
            if data.error_code != ChannelDataErrcode.OK.value:
B
barrierye 已提交
720 721 722
                error_channeldata = data
                break
            parsed_data[name] = data.parse()
B
barrierye 已提交
723
            if client_need_profile:
B
barrierye 已提交
724
                profile_set |= data.profile_data_set
B
barrierye 已提交
725
        return (data_id, error_channeldata, parsed_data, client_need_profile,
T
TeslaZhao 已提交
726
                profile_set, log_id)
B
barrierye 已提交
727 728 729 730 731

    def _push_to_output_channels(self,
                                 data,
                                 channels,
                                 name=None,
B
barriery 已提交
732
                                 profile_str=None,
B
barrierye 已提交
733
                                 client_need_profile=False,
B
barrierye 已提交
734
                                 profile_set=None):
T
TeslaZhao 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748
        """
        Push data to output channels, Do not run the later stage(preprocess,
        process, postprocess)
        Args:
            data: channeldata, to be pushed
            channels: output channels
            name: op name  
            profile_str: one profile message
            client_need_profile: False default
            profile_set: profile message collections

        Returns:
            None
        """
749 750
        if name is None:
            name = self.name
B
barrierye 已提交
751

B
barriery 已提交
752
        # add profile into channeldata
B
barrierye 已提交
753
        if client_need_profile and profile_set is not None:
B
barriery 已提交
754 755
            if profile_str is not None:
                profile_set.add(profile_str)
B
barrierye 已提交
756
            data.add_profile(profile_set)
B
barrierye 已提交
757

B
barriery 已提交
758 759 760
        for channel in channels:
            channel.push(data, name)

W
wangjiawei04 已提交
761
    def start_with_process(self):
762 763 764 765 766 767 768 769 770 771
        """
        Each OP creates a process to run the main loop, initializes the CUDA
        environment in each individual process.

        Args:
            None

        Returns:
            process array
        """
B
barriery 已提交
772 773 774
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
W
wangjiawei04 已提交
775
        process = []
B
barrierye 已提交
776
        for concurrency_idx in range(self.concurrency):
777 778
            p = multiprocessing.Process(
                target=self._run,
B
barrierye 已提交
779
                args=(concurrency_idx, self._get_input_channel(),
780 781
                      self._get_output_channels(), False, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
782
                      self.device_type, self.devices, self.mem_optim,
T
TeslaZhao 已提交
783 784
                      self.ir_optim, self.precision, self.use_mkldnn,
                      self.mkldnn_cache_capacity, self.mkldnn_op_list,
785
                      self.mkldnn_bf16_op_list, self.is_jump_op(),
F
felixhjh 已提交
786 787 788
                      self.get_output_channels_of_jump_ops(),
                      self.min_subgraph_size,
                      self.dynamic_shape_info))
B
barriery 已提交
789
            p.daemon = True
790
            p.start()
W
wangjiawei04 已提交
791 792
            process.append(p)
        return process
793

W
wangjiawei04 已提交
794
    def start_with_thread(self):
795 796 797 798 799 800 801 802 803 804
        """
        Each OP creates a thread to run the main loop, initializes the CUDA 
        environment in the main thread.

        Args:
            None
 
        Returns:
            thread array
        """
B
barriery 已提交
805 806 807
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
808 809 810 811

        #Init cuda env in main thread
        if self.client_type == "local_predictor":
            _LOGGER.info("Init cuda env in main thread")
812
            self.local_predictor = self._local_service_handler.get_client(0)
813

814
        threads = []
B
barrierye 已提交
815
        for concurrency_idx in range(self.concurrency):
816 817
            t = threading.Thread(
                target=self._run,
B
barrierye 已提交
818
                args=(concurrency_idx, self._get_input_channel(),
819 820
                      self._get_output_channels(), True, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
821
                      self.device_type, self.devices, self.mem_optim,
T
TeslaZhao 已提交
822 823
                      self.ir_optim, self.precision, self.use_mkldnn,
                      self.mkldnn_cache_capacity, self.mkldnn_op_list,
824
                      self.mkldnn_bf16_op_list, self.is_jump_op(),
F
felixhjh 已提交
825 826 827
                      self.get_output_channels_of_jump_ops(),
                      self.min_subgraph_size,
                      self.dynamic_shape_info))
B
barriery 已提交
828 829 830
            # When a process exits, it attempts to terminate
            # all of its daemonic child processes.
            t.daemon = True
831 832 833 834
            t.start()
            threads.append(t)
        return threads

B
barrierye 已提交
835
    def init_op(self):
B
barrierye 已提交
836 837
        pass

T
TeslaZhao 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850 851
    def _run_preprocess(self, parsed_data_dict, op_info_prefix, logid_dict):
        """
        Run preprocess stage
        Args:
            parsed_data_dict: data to be pre-processed
            op_info_prefix: input op info
            logid_dict: logid dict

        Returns:
            preped_data_dict: data preprocessed, to be processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it.
            skip_process_dict: skip process stage or not

        """
B
barriery 已提交
852
        _LOGGER.debug("{} Running preprocess".format(op_info_prefix))
853 854
        preped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
855
        skip_process_dict = {}
856 857 858 859 860 861
        @ErrorCatch
        def preprocess_help(self, parsed_data, data_id, logid_dict):
            preped_data, is_skip_process, prod_errcode, prod_errinfo = self.preprocess(
                parsed_data, data_id, logid_dict.get(data_id))
            return preped_data, is_skip_process, prod_errcode, prod_errinfo
            
862 863
        for data_id, parsed_data in parsed_data_dict.items():
            preped_data, error_channeldata = None, None
T
TeslaZhao 已提交
864 865 866
            is_skip_process = False
            prod_errcode, prod_errinfo = None, None
            log_id = logid_dict.get(data_id)
F
felixhjh 已提交
867 868
            process_res, resp = preprocess_help(self, parsed_data, data_id = data_id,
            logid_dict = logid_dict)
F
felixhjh 已提交
869
            if resp.err_no == CustomExceptionCode.OK.value:
870
                preped_data, is_skip_process, prod_errcode, prod_errinfo = process_res
T
TeslaZhao 已提交
871 872
                if is_skip_process is True:
                    skip_process_dict[data_id] = True
873 874 875 876 877 878 879 880 881 882 883
                if prod_errcode is not None:
                    _LOGGER.error("data_id: {} return product error. Product ErrNo:{}, Product ErrMsg: {}".format(data_id, prod_errcode, prod_errinfo))
                    error_channeldata = ChannelData(
                      error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                      error_info="",
                      prod_error_code=prod_errcode,
                      prod_error_info=prod_errinfo,
                      data_id=data_id,
                      log_id=log_id)
            else:
                
T
TeslaZhao 已提交
884
                error_channeldata = ChannelData(
885 886 887 888 889
                  error_code=resp.err_no,
                  error_info=resp.err_msg,
                  data_id=data_id,
                  log_id=log_id)
                skip_process_dict[data_id] = True 
T
TeslaZhao 已提交
890

891 892 893 894
            if error_channeldata is not None:
                err_channeldata_dict[data_id] = error_channeldata
            else:
                preped_data_dict[data_id] = preped_data
B
barriery 已提交
895
        _LOGGER.debug("{} Succ preprocess".format(op_info_prefix))
T
TeslaZhao 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
        return preped_data_dict, err_channeldata_dict, skip_process_dict

    def _run_process(self, preped_data_dict, op_info_prefix, skip_process_dict,
                     logid_dict):
        """
        Run process stage
        Args:
            preped_data_dict: feed the data to be predicted by the model.  
            op_info_prefix: prefix op info
            skip_process_dict: skip process stage or not
            logid_dict: logid dict

        Returns:
            midped_data_dict: data midprocessed, to be post-processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it 
        """
B
barriery 已提交
912
        _LOGGER.debug("{} Running process".format(op_info_prefix))
913 914
        midped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
915
        is_skip_process = False
T
TeslaZhao 已提交
916
        data_ids = list(preped_data_dict.keys())
T
TeslaZhao 已提交
917 918

        # skip process stage
T
TeslaZhao 已提交
919 920
        if len(data_ids) == 1 and skip_process_dict.get(data_ids[0]) == True:
            is_skip_process = True
T
TeslaZhao 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
        if self.with_serving is False or is_skip_process is True:
            midped_data_dict = preped_data_dict
            _LOGGER.warning("(data_id={} log_id={}) OP={} skip process stage. " \
                "with_serving={}, is_skip_process={}".format(data_ids[0],
                logid_dict.get(data_ids[0]), self.name, self.with_serving,
                is_skip_process))
            return midped_data_dict, err_channeldata_dict

        # use typical_logid to mark batch data
        # data_ids is one self-increasing unique key. 
        typical_logid = data_ids[0]
        if len(data_ids) != 1:
            for data_id in data_ids:
                _LOGGER.info(
                    "(data_id={} logid={}) Auto-batching is On Op={}!!" \
                    "We selected logid={} (from batch: {}) as a " \
                    "representative for logging.".format(
                    data_id, logid_dict.get(data_id), self.name,
                    typical_logid, data_ids))

        one_input = preped_data_dict[data_ids[0]]
        feed_batch = []
        feed_dict = {}
        cur_offset = 0
        input_offset_dict = {}
        batch_input = False

        if isinstance(one_input, dict):
            # For dict type, data structure is dict.
            # Merge multiple dicts for data_ids into one dict.
            # feed_batch is the input param of predict func.
            # input_offset_dict is used for data restration[data_ids]
            if len(data_ids) == 1:
                feed_batch = [preped_data_dict[data_id] for data_id in data_ids]
            else:
956 957
                for data_id in data_ids:
                    for key, val in preped_data_dict[data_id].items():
T
TeslaZhao 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
                        has_val = feed_dict.get(key)
                        if has_val is None:
                            feed_dict[key] = val
                            continue
                        # merge 2 np.arrray
                        if isinstance(val, np.ndarray):
                            feed_dict[key] = np.append(
                                feed_dict[key], val, axis=0)
                feed_batch.append(feed_dict)

            for data_id in data_ids:
                start = cur_offset
                for key, val in preped_data_dict[data_id].items():
                    if isinstance(val, (list, np.ndarray)):
                        cur_offset += len(val)
                    else:
                        cur_offset += 1
                    break
                input_offset_dict[data_id] = [start, cur_offset]
        elif isinstance(one_input, list):
            # For list type, data structure of one_input is [dict, dict, ...]
            # Data structure of feed_batch is [dict1_1, dict1_2, dict2_1, ...]   
            # Data structure of input_offset_dict is { data_id : [start, end] }
            batch_input = True
            for data_id in data_ids:
                feed_batch.extend(preped_data_dict[data_id])
                data_size = len(preped_data_dict[data_id])
                start = cur_offset
                cur_offset = start + data_size
                input_offset_dict[data_id] = [start, cur_offset]
        else:
            _LOGGER.critical(
                "(data_id={} log_id={}){} Failed to process: expect input type is dict"
                " or list(batch input), but get {}".format(data_ids[
                    0], typical_logid, op_info_prefix, type(one_input)))
            for data_id in data_ids:
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = "expect input type is dict or list, but get {}".format(
                    type(one_input))
                err_channeldata_dict[data_id] = ChannelData(
                    error_code=error_code,
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict
B
barrierye 已提交
1003

T
TeslaZhao 已提交
1004 1005
        midped_batch = None
        error_code = ChannelDataErrcode.OK.value
1006
        error_info = ""
T
TeslaZhao 已提交
1007 1008 1009 1010
        if self._timeout <= 0:
            # No retry
            try:
                if batch_input is False:
1011 1012
                    midped_batch, error_code, error_info = self.process(
                        feed_batch, typical_logid)
T
TeslaZhao 已提交
1013 1014 1015
                else:
                    midped_batch = []
                    for idx in range(len(feed_batch)):
1016 1017 1018 1019
                        predict_res, error_code, error_info = self.process(
                            [feed_batch[idx]], typical_logid)
                        if error_code != ChannelDataErrcode.OK.value:
                            break
T
TeslaZhao 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
                        midped_batch.append(predict_res)
            except Exception as e:
                error_code = ChannelDataErrcode.UNKNOW.value
                error_info = "(data_id={} log_id={}) {} Failed to process(batch: {}): {}".format(
                    data_ids[0], typical_logid, op_info_prefix, data_ids, e)
                _LOGGER.error(error_info, exc_info=True)
        else:
            # retry N times configed in yaml files.
            for i in range(self._retry):
                try:
                    # time out for each process
                    if batch_input is False:
1032
                        midped_batch, error_code, error_info = func_timeout.func_timeout(
B
barriery 已提交
1033 1034 1035
                            self._timeout,
                            self.process,
                            args=(feed_batch, typical_logid))
1036
                    else:
T
TeslaZhao 已提交
1037 1038
                        midped_batch = []
                        for idx in range(len(feed_batch)):
1039
                            predict_res, error_code, error_info = func_timeout.func_timeout(
T
TeslaZhao 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
                                self._timeout,
                                self.process,
                                args=([feed_batch[idx]], typical_logid))
                            midped_batch[idx].append(predict_res)

                except func_timeout.FunctionTimedOut as e:
                    if i + 1 >= self._retry:
                        error_code = ChannelDataErrcode.TIMEOUT.value
                        error_info = "(log_id={}) {} Failed to process(batch: {}): " \
                            "exceeded retry count.".format(typical_logid, op_info_prefix, data_ids)
                        _LOGGER.error(error_info)
B
barrierye 已提交
1051
                    else:
T
TeslaZhao 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
                        _LOGGER.warning(
                            "(log_id={}) {} Failed to process(batch: {}): timeout,"
                            " and retrying({}/{})...".format(
                                typical_logid, op_info_prefix, data_ids, i + 1,
                                self._retry))
                except Exception as e:
                    error_code = ChannelDataErrcode.UNKNOW.value
                    error_info = "(log_id={}) {} Failed to process(batch: {}): {}".format(
                        typical_logid, op_info_prefix, data_ids, e)
                    _LOGGER.error(error_info, exc_info=True)
                    break
                else:
                    break

        # 2 kinds of errors
        if error_code != ChannelDataErrcode.OK.value or midped_batch is None:
1068 1069 1070
            error_info = "[{}] failed to predict. {}. Please check the input dict and checkout PipelineServingLogs/pipeline.log for more details.".format(
             self.name, error_info)
    
T
TeslaZhao 已提交
1071 1072 1073
            _LOGGER.error(error_info)
            for data_id in data_ids:
                err_channeldata_dict[data_id] = ChannelData(
1074
                    error_code=error_code,
T
TeslaZhao 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict

        # Split batch infer result to each data_ids
        if batch_input is False:
            var_names = midped_batch.keys()
            lod_var_names = set()
            lod_offset_names = set()
            # midped_batch is dict type for single input 
            for name in var_names:
                lod_offset_name = "{}.lod".format(name)
                if lod_offset_name in var_names:
                    _LOGGER.debug("(log_id={}) {} {} is LodTensor".format(
                        typical_logid, op_info_prefix, name))
                    lod_var_names.add(name)
                    lod_offset_names.add(lod_offset_name)

            for idx, data_id in enumerate(data_ids):
                midped_data_dict[data_id] = {}

            for name, value in midped_batch.items():
                if name in lod_offset_names:
                    continue
                if name in lod_var_names:
                    # lodtensor
                    lod_offset_name = "{}.lod".format(name)
                    lod_offset = midped_batch[lod_offset_name]
                    for idx, data_id in enumerate(data_ids):
                        data_offset_left = input_offset_dict[data_id][0]
                        data_offset_right = input_offset_dict[data_id][1]
                        lod_offset_left = lod_offset[data_offset_left]
                        lod_offset_right = lod_offset[data_offset_right]
                        midped_data_dict[data_id][name] = value[
                            lod_offset_left:lod_offset_right]
                        midped_data_dict[data_id][lod_offset_name] = \
                            lod_offset[data_offset_left:data_offset_right + 1] - lod_offset[data_offset_left]
                else:
                    # normal tensor
                    for idx, data_id in enumerate(data_ids):
                        start = input_offset_dict[data_id][0]
                        end = input_offset_dict[data_id][1]
                        midped_data_dict[data_id][name] = value[start:end]
1119
        else:
T
TeslaZhao 已提交
1120 1121 1122 1123 1124
            # midped_batch is list type for batch input
            for idx, data_id in enumerate(data_ids):
                start = input_offset_dict[data_id][0]
                end = input_offset_dict[data_id][1]
                midped_data_dict[data_id] = midped_batch[start:end]
1125 1126
        return midped_data_dict, err_channeldata_dict

B
barriery 已提交
1127
    def _run_postprocess(self, parsed_data_dict, midped_data_dict,
T
TeslaZhao 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
                         op_info_prefix, logid_dict):
        """
        Run postprocess stage.
        Args:
            parsed_data_dict: data returned in preprocess stage 
            midped_data_dict: data returned in process stage
            op_info_prefix: prefix op info
            logid_dict: logid dict

        Returns:
            postped_data_dict: data postprocessed 
            err_channeldata_dict: when exceptions occurred, putting errors in it
 
        """
B
barriery 已提交
1142
        _LOGGER.debug("{} Running postprocess".format(op_info_prefix))
1143 1144
        postped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
1145 1146 1147 1148 1149
        @ErrorCatch
        def postprocess_help(self, parsed_data_dict, midped_data, data_id, logid_dict):
            postped_data, prod_errcode, prod_errinfo = self.postprocess(parsed_data_dict[data_id], 
              midped_data, data_id, logid_dict.get(data_id))
            if not isinstance(postped_data, dict):
F
felixhjh 已提交
1150
                raise CustomException(CustomExceptionCode.TYPE_ERROR, "postprocess should return dict", True)
1151 1152
            return postped_data, prod_errcode, prod_errinfo

B
bug fix  
barriery 已提交
1153
        for data_id, midped_data in midped_data_dict.items():
T
TeslaZhao 已提交
1154
            log_id = logid_dict.get(data_id)
1155
            postped_data, err_channeldata = None, None
T
TeslaZhao 已提交
1156 1157
            prod_errcode, prod_errinfo = None, None

F
felixhjh 已提交
1158 1159
            post_res, resp = postprocess_help(self, parsed_data_dict, midped_data, data_id
            = data_id, logid_dict = logid_dict)
H
huangjianhui 已提交
1160
            if resp.err_no == CustomExceptionCode.OK.value:
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
                postped_data, prod_errcode, prod_errinfo = post_res
                if prod_errcode is not None:
                  # product errors occured
                    err_channeldata = ChannelData(
                      error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                      error_info="",
                      prod_error_code=prod_errcode,
                      prod_error_info=prod_errinfo,
                      data_id=data_id,
                      log_id=log_id)
            else:
T
TeslaZhao 已提交
1172
                err_channeldata = ChannelData(
1173 1174
                    error_code=resp.err_no,
                    error_info=resp.err_msg,
T
TeslaZhao 已提交
1175 1176 1177
                    data_id=data_id,
                    log_id=log_id)

1178 1179 1180 1181
            if err_channeldata is not None:
                err_channeldata_dict[data_id] = err_channeldata
                continue

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
            output_data = None
            err, _ = ChannelData.check_npdata(postped_data)
            if err == 0:
                output_data = ChannelData(
                  ChannelDataType.CHANNEL_NPDATA.value,
                  npdata=postped_data,
                  data_id=data_id,
                  log_id=log_id)
            else:
                output_data = ChannelData(
                  ChannelDataType.DICT.value,
                  dictdata=postped_data,
                  data_id=data_id,
                  log_id=log_id)
            postped_data_dict[data_id] = output_data
B
barriery 已提交
1197
        _LOGGER.debug("{} Succ postprocess".format(op_info_prefix))
1198
        return postped_data_dict, err_channeldata_dict
B
barriery 已提交
1199 1200

    def _auto_batching_generator(self, input_channel, op_name, batch_size,
B
barriery 已提交
1201
                                 timeout, op_info_prefix):
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
        """
        Merge batch_size requests for one prediction.Taking one piece of data 
        from the input channel each time until equals batch_size, or the waiting 
        time exceeds auto_batching_timeout.

        Args:
            input_channel: the input channel of Op
            op_name: op name
            batch_size: batch size, Less than worker_num
            timeout: batch timeout, seconds, If timeout is None, and the quantity 
                taken from the front is less than batch_size, blocking occured.
            op_info_prefix: op link info.

        Returns:
            None
        """
B
barriery 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226
        while True:
            batch = []
            while len(batch) == 0:
                endtime = None
                if timeout is not None:
                    endtime = _time() + timeout
                for idx in range(batch_size):
                    try:
                        channeldata_dict = None
1227
                        front_start_time = int(round(_time() * 1000000))
B
barriery 已提交
1228 1229 1230
                        if timeout is not None:
                            remaining = endtime - _time()
                            if remaining <= 0.0:
B
barriery 已提交
1231 1232
                                _LOGGER.debug("{} Failed to generate batch: "
                                              "timeout".format(op_info_prefix))
B
barriery 已提交
1233
                                break
B
barriery 已提交
1234 1235
                            channeldata_dict = input_channel.front(op_name,
                                                                   timeout)
B
barriery 已提交
1236 1237 1238
                        else:
                            channeldata_dict = input_channel.front(op_name)
                        batch.append(channeldata_dict)
1239
                        _LOGGER.debug(
1240 1241
                            "_auto_batching_generator get {} channeldata from op:{} input channel. time={}".
                            format(idx, op_name, front_start_time))
B
barriery 已提交
1242
                    except ChannelTimeoutError:
B
barriery 已提交
1243 1244
                        _LOGGER.debug("{} Failed to generate batch: "
                                      "timeout".format(op_info_prefix))
B
barriery 已提交
1245
                        break
B
barriery 已提交
1246 1247
            _LOGGER.debug("{} Got actual batch_size: {}".format(op_info_prefix,
                                                                len(batch)))
B
barriery 已提交
1248
            yield batch
1249

1250
    def _parse_channeldata_batch(self, batch, output_channels):
T
TeslaZhao 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
        """
        Parse channeldatas batch
        Args:
            batch: auto-batching batch datas
            output_channels: output channels 

        Returns:
            parsed_data_dict: parsed from channeldata in batch
            need_profile_dict: need profile dict in batch 
            profile_dict: profile info dict in batch
            logid_dict: trace each request in batch
        """
1263
        parsed_data_dict = collections.OrderedDict()
1264 1265
        need_profile_dict = {}
        profile_dict = {}
T
TeslaZhao 已提交
1266
        logid_dict = {}
B
bug fix  
barriery 已提交
1267
        for channeldata_dict in batch:
1268
            (data_id, error_channeldata, parsed_data,
T
TeslaZhao 已提交
1269
                    client_need_profile, profile_set, log_id) = \
1270 1271 1272 1273 1274
                            self._parse_channeldata(channeldata_dict)
            if error_channeldata is None:
                parsed_data_dict[data_id] = parsed_data
                need_profile_dict[data_id] = client_need_profile
                profile_dict[data_id] = profile_set
T
TeslaZhao 已提交
1275
                logid_dict[data_id] = log_id
1276 1277 1278
            else:
                # error data in predecessor Op
                # (error_channeldata with profile info)
B
barriery 已提交
1279 1280
                self._push_to_output_channels(error_channeldata,
                                              output_channels)
1281

T
TeslaZhao 已提交
1282
        return parsed_data_dict, need_profile_dict, profile_dict, logid_dict
B
barriery 已提交
1283

W
wangjiawei04 已提交
1284
    def _run(self, concurrency_idx, input_channel, output_channels,
1285
             is_thread_op, trace_buffer, model_config, workdir, thread_num,
T
TeslaZhao 已提交
1286
             device_type, devices, mem_optim, ir_optim, precision, use_mkldnn,
1287
             mkldnn_cache_capacity, mkldnn_op_list, mkldnn_bf16_op_list,
F
felixhjh 已提交
1288
             is_jump_op, output_channels_of_jump_ops, min_subgraph_size, dynamic_shape_info):
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
        """
        _run() is the entry function of OP process / thread model.When client 
        type is local_predictor in process mode, the CUDA environment needs to 
        be initialized by LocalServiceHandler[child process], otherwise, Cuda
        error(3), initialization error is occured. Preprocess, process and 
        postprocess are executed in the main loop. The preprocess and postprocess
        function is usually rewrited by users. Trace data is recorded by trace_que.

        Args:
            concurrency_idx: thread/process index
            input_channel: input channel, take the data to be processed
            output_channels: output channel, store processed data
            is_thread_op: False, It's process op; True, It's thread op
            trace_buffer: store trace infomations
            model_config: model config path
            workdir: work directory
            thread_num: number of threads, concurrent quantity
1306
            device_type: support multiple devices
1307 1308
            devices: gpu id list[gpu], "" default[cpu]
            mem_optim: use memory/graphics memory optimization, True default.
1309
            ir_optim: use calculation chart optimization, False default.
T
TeslaZhao 已提交
1310 1311 1312 1313 1314
            precision: inference precision, e.g. "fp32", "fp16", "int8", "bf16"
            use_mkldnn: use mkldnn, default False.
            mkldnn_cache_capacity: cache capacity of mkldnn, 0 means no limit.
            mkldnn_op_list: OP list optimized by mkldnn, None default.
            mkldnn_bf16_op_list: OP list optimized by mkldnn bf16, None default.
1315 1316
            is_jump_op: OP has jump op list or not, False default.
            output_channels_of_jump_ops: all output channels of jump ops.
1317 1318 1319 1320

        Returns:
            None
        """
1321
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1322

1323
        # init ops
B
barriery 已提交
1324
        profiler = None
B
barrierye 已提交
1325
        try:
1326 1327 1328 1329 1330 1331
            if is_thread_op == False and self.client_type == "local_predictor":
                self.service_handler = local_service_handler.LocalServiceHandler(
                    model_config=model_config,
                    client_type="local_predictor",
                    workdir=workdir,
                    thread_num=thread_num,
1332
                    device_type=device_type,
1333 1334
                    devices=devices,
                    mem_optim=mem_optim,
1335
                    ir_optim=ir_optim,
T
TeslaZhao 已提交
1336 1337 1338 1339
                    precision=precision,
                    use_mkldnn=use_mkldnn,
                    mkldnn_cache_capacity=mkldnn_cache_capacity,
                    mkldnn_op_list=mkldnn_op_list,
F
felixhjh 已提交
1340 1341 1342
                    mkldnn_bf16_op_list=mkldnn_bf16_op_list,
                    min_subgraph_size=min_subgraph_size,
                    dynamic_shape_info=dynamic_shape_info)
1343 1344 1345

                _LOGGER.info("Init cuda env in process {}".format(
                    concurrency_idx))
1346 1347
                self.local_predictor = self.service_handler.get_client(
                    concurrency_idx)
1348
            # check all ops initialized successfully.
W
wangjiawei04 已提交
1349
            profiler = self._initialize(is_thread_op, concurrency_idx)
1350

B
barrierye 已提交
1351
        except Exception as e:
B
barriery 已提交
1352
            _LOGGER.critical(
T
TeslaZhao 已提交
1353
                "{} failed to init op: {}".format(op_info_prefix, e),
B
barriery 已提交
1354
                exc_info=True)
B
barrierye 已提交
1355
            os._exit(-1)
B
barriery 已提交
1356
        _LOGGER.info("{} Succ init".format(op_info_prefix))
1357

B
barriery 已提交
1358
        batch_generator = self._auto_batching_generator(
B
barriery 已提交
1359 1360 1361 1362
            input_channel=input_channel,
            op_name=self.name,
            batch_size=self._batch_size,
            timeout=self._auto_batching_timeout,
B
barriery 已提交
1363
            op_info_prefix=op_info_prefix)
B
barriery 已提交
1364

B
barriery 已提交
1365
        start, end = None, None
B
barrierye 已提交
1366
        trace_que = collections.deque()
B
barrierye 已提交
1367
        while True:
B
barriery 已提交
1368
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1369
            try:
B
barriery 已提交
1370
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1371
            except ChannelStopError:
B
barriery 已提交
1372
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
B
barriery 已提交
1373
                self._finalize(is_thread_op)
B
barrierye 已提交
1374
                break
B
barriery 已提交
1375
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1376
            in_time = end - start
1377 1378
            _LOGGER.debug("op:{} in_time_end:{}".format(op_info_prefix,
                                                        time.time()))
1379

B
barriery 已提交
1380 1381
            # parse channeldata batch
            try:
T
TeslaZhao 已提交
1382
                parsed_data_dict, need_profile_dict, profile_dict, logid_dict\
1383 1384
                        = self._parse_channeldata_batch(
                                channeldata_dict_batch, output_channels)
B
barriery 已提交
1385
            except ChannelStopError:
B
barriery 已提交
1386
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1387
                self._finalize(is_thread_op)
B
barriery 已提交
1388
                break
1389 1390 1391
            if len(parsed_data_dict) == 0:
                # data in the whole batch is all error data
                continue
1392 1393
            _LOGGER.debug("op:{} parse_end:{}".format(op_info_prefix,
                                                      time.time()))
1394

1395 1396 1397 1398 1399 1400
            front_cost = int(round(_time() * 1000000)) - start
            for data_id, parsed_data in parsed_data_dict.items():
                _LOGGER.debug(
                    "(data_id={}) POP INPUT CHANNEL! op:{}, cost:{} ms".format(
                        data_id, self.name, front_cost / 1000.0))

1401
            # preprecess
B
barriery 已提交
1402
            start = profiler.record("prep#{}_0".format(op_info_prefix))
T
TeslaZhao 已提交
1403 1404
            preped_data_dict, err_channeldata_dict, skip_process_dict \
                    = self._run_preprocess(parsed_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1405
            end = profiler.record("prep#{}_1".format(op_info_prefix))
B
barrierye 已提交
1406
            prep_time = end - start
1407 1408
            _LOGGER.debug("op:{} preprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), prep_time))
1409
            try:
T
TeslaZhao 已提交
1410
                # put error requests into output channel, skip process and postprocess stage
1411
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1412
                    self._push_to_output_channels(
B
barriery 已提交
1413 1414
                        data=err_channeldata,
                        channels=output_channels,
1415 1416 1417
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
            except ChannelStopError:
B
barriery 已提交
1418
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1419 1420
                self._finalize(is_thread_op)
                break
B
bug fix  
barrierye 已提交
1421
            if len(preped_data_dict) == 0:
1422 1423
                continue

B
barrierye 已提交
1424
            # process
B
barriery 已提交
1425
            start = profiler.record("midp#{}_0".format(op_info_prefix))
1426
            midped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1427
                    = self._run_process(preped_data_dict, op_info_prefix, skip_process_dict, logid_dict)
B
barriery 已提交
1428
            end = profiler.record("midp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1429
            midp_time = end - start
1430 1431
            _LOGGER.debug("op:{} process_end:{}, cost:{}".format(
                op_info_prefix, time.time(), midp_time))
1432 1433
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1434
                    self._push_to_output_channels(
B
barriery 已提交
1435 1436
                        data=err_channeldata,
                        channels=output_channels,
B
barriery 已提交
1437 1438
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1439
            except ChannelStopError:
B
barriery 已提交
1440
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1441 1442 1443
                self._finalize(is_thread_op)
                break
            if len(midped_data_dict) == 0:
1444
                continue
1445 1446

            # postprocess
B
barriery 已提交
1447
            start = profiler.record("postp#{}_0".format(op_info_prefix))
1448
            postped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1449
                    = self._run_postprocess(parsed_data_dict, midped_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1450
            end = profiler.record("postp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1451
            postp_time = end - start
1452
            after_postp_time = _time()
1453 1454
            _LOGGER.debug("op:{} postprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), postp_time))
1455 1456
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1457
                    self._push_to_output_channels(
B
bug fix  
barrierye 已提交
1458
                        data=err_channeldata,
B
barriery 已提交
1459
                        channels=output_channels,
B
barriery 已提交
1460 1461
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1462
            except ChannelStopError:
B
barriery 已提交
1463
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1464 1465 1466
                self._finalize(is_thread_op)
                break
            if len(postped_data_dict) == 0:
1467
                continue
1468

1469
            # push data to channel (if run succ)
B
barriery 已提交
1470
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1471
            try:
B
barriery 已提交
1472
                profile_str = profiler.gen_profile_str()
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
                if self.is_jump_op() is True and self.check_jumping(
                        postped_data_dict) is True:
                    # push data to output channel of ops to be jumped 
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels_of_jump_ops,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL OF JUMP OPs! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
                else:
                    # push data to output channel.
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
B
barrierye 已提交
1508
            except ChannelStopError:
B
barriery 已提交
1509
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1510
                self._finalize(is_thread_op)
B
barrierye 已提交
1511
                break
B
barriery 已提交
1512
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1513
            out_time = end - start
1514
            after_outchannel_time = int(round(_time() * 1000000))
B
barriery 已提交
1515
            if trace_buffer is not None:
B
barrierye 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
                trace_que.append({
                    "name": self.name,
                    "actions": {
                        "in": in_time,
                        "prep": prep_time,
                        "midp": midp_time,
                        "postp": postp_time,
                        "out": out_time,
                    }
                })
                while trace_que:
                    info = trace_que[0]
                    try:
                        trace_buffer.put_nowait(info)
                        trace_que.popleft()
                    except Queue.Full:
                        break
B
barriery 已提交
1533

W
wangjiawei04 已提交
1534
    def _initialize(self, is_thread_op, concurrency_idx):
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
        """
        Initialize one OP object in the target function of a thread or porcess.
        Initialize the client object with _client_config and _server_endpoints.
        Create a TimeProfiler per thread or process for recording profiler info.

        Args:
            is_thread_op: True, one op runs in one thread; False, one op runs
                in one process.
            concurrency_idx: process id, Thread mode does not use this param.

        Returns:
            TimeProfiler
        """
1548 1549 1550 1551 1552 1553 1554 1555 1556
        @ErrorCatch
        def init_helper(self, is_thread_op, concurrency_idx):
            if is_thread_op:
                with self._for_init_op_lock:
                    if not self._succ_init_op:
                        # for the threaded version of Op, each thread cannot get its concurrency_idx
                        self.concurrency_idx = None
                        # init client
                        self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1557
                                                   self._server_endpoints)
1558 1559 1560 1561 1562 1563 1564 1565
                        # user defined
                        self.init_op()
                        self._succ_init_op = True
                        self._succ_close_op = False
            else:
                self.concurrency_idx = concurrency_idx
                # init client
                self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1566
                                           self._server_endpoints)
1567 1568 1569 1570
                # user defined
                self.init_op() 
        
        init_helper(self, is_thread_op, concurrency_idx)
F
felixhjh 已提交
1571
        print("[OP Object] init success")
B
barriery 已提交
1572 1573 1574 1575 1576
        # use a separate TimeProfiler per thread or process
        profiler = TimeProfiler()
        profiler.enable(True)
        return profiler

B
barriery 已提交
1577 1578 1579 1580 1581 1582 1583 1584
    def _finalize(self, is_thread_op):
        if is_thread_op:
            with self._for_close_op_lock:
                if not self._succ_close_op:
                    self._profiler = None
                    self.client = None
                    self._succ_init_op = False
                    self._succ_close_op = True
1585 1586 1587 1588 1589

    def _log(self, info):
        return "{} {}".format(self.name, info)


B
barrierye 已提交
1590
class RequestOp(Op):
1591 1592 1593 1594 1595 1596
    """
    RequestOp is a special Op, for unpacking one request package. If the
    request needs one special unpackaging method, you need to inherit class
    RequestOp and rewrite function unpack_request_package.Notice!!! Class
    RequestOp does not run preprocess, process, postprocess.
    """
B
barrierye 已提交
1597

B
barrierye 已提交
1598
    def __init__(self):
1599 1600 1601
        """
        Initialize the RequestOp
        """
B
barriery 已提交
1602 1603
        # PipelineService.name = "@DAGExecutor"
        super(RequestOp, self).__init__(name="@DAGExecutor", input_ops=[])
B
barrierye 已提交
1604
        # init op
1605
        try:
1606
            self.init_op()
1607
        except Exception as e:
B
barriery 已提交
1608
            _LOGGER.critical("Op(Request) Failed to init: {}".format(e))
1609
            os._exit(-1)
B
barrierye 已提交
1610

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
    def proto_tensor_2_numpy(self, tensor):
        """
        Convert proto tensor to numpy array, The supported types are as follows:
                INT64
                FP32
		INT32
		FP64
		INT16
		FP16
		BF16
		UINT8
		INT8
		BOOL
1624
                BYTES
1625
        Unsupported type:
1626
                STRING
1627 1628 1629 1630 1631 1632 1633
                COMPLEX64
                COMPLEX128

        Args:
            tensor: one tensor in request.tensors.

        Returns:
T
TeslaZhao 已提交
1634 1635
            np_data: np.ndnumpy, the tensor data is converted to numpy.
            lod_info: np.ndnumpy, lod info of the tensor data, None default.
1636 1637 1638 1639 1640 1641
        """
        if tensor is None or tensor.elem_type is None or tensor.name is None:
            _LOGGER.error("input params of tensor is wrong. tensor: {}".format(
                tensor))
            return None

T
TeslaZhao 已提交
1642
        # Set dim shape
1643 1644 1645 1646 1647 1648 1649
        dims = []
        if tensor.shape is None:
            dims.append(1)
        else:
            for one_dim in tensor.shape:
                dims.append(one_dim)

T
TeslaZhao 已提交
1650 1651 1652 1653 1654
        # Set up 2-d lod tensor
        np_lod = None
        if len(tensor.lod) > 0:
            np_lod = np.array(tensor.lod).astype(int32).reshape(2, -1)

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
        np_data = None
        _LOGGER.info("proto_to_numpy, name:{}, type:{}, dims:{}".format(
            tensor.name, tensor.elem_type, dims))
        if tensor.elem_type == 0:
            # VarType: INT64
            np_data = np.array(tensor.int64_data).astype(int64).reshape(dims)
        elif tensor.elem_type == 1:
            # VarType: FP32
            np_data = np.array(tensor.float_data).astype(float32).reshape(dims)
        elif tensor.elem_type == 2:
            # VarType: INT32
            np_data = np.array(tensor.int_data).astype(int32).reshape(dims)
        elif tensor.elem_type == 3:
            # VarType: FP64
            np_data = np.array(tensor.float64_data).astype(float64).reshape(
                dims)
        elif tensor.elem_type == 4:
            # VarType: INT16
            np_data = np.array(tensor.int_data).astype(int16).reshape(dims)
        elif tensor.elem_type == 5:
            # VarType: FP16
            np_data = np.array(tensor.float_data).astype(float16).reshape(dims)
        elif tensor.elem_type == 6:
            # VarType: BF16
            np_data = np.array(tensor.uint32_data).astype(uint16).reshape(dims)
        elif tensor.elem_type == 7:
            # VarType: UINT8
            np_data = np.array(tensor.uint32_data).astype(uint8).reshape(dims)
        elif tensor.elem_type == 8:
            # VarType: INT8
            np_data = np.array(tensor.int_data).astype(int8).reshape(dims)
        elif tensor.elem_type == 9:
            # VarType: BOOL
            np_data = np.array(tensor.bool_data).astype(bool).reshape(dims)
1689 1690 1691 1692
        elif tensor.elem_type == 13:
            # VarType: BYTES
            byte_data = BytesIO(tensor.byte_data)
            np_data = np.load(byte_data, allow_pickle=True)
1693 1694 1695 1696 1697 1698 1699
        else:
            _LOGGER.error("Sorry, the type {} of tensor {} is not supported.".
                          format(tensor.elem_type, tensor.name))
            raise ValueError(
                "Sorry, the type {} of tensor {} is not supported.".format(
                    tensor.elem_type, tensor.name))

T
TeslaZhao 已提交
1700
        return np_data, np_lod
1701

B
barrierye 已提交
1702
    def unpack_request_package(self, request):
T
TeslaZhao 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
        """
        Unpack request package by gateway.proto
        Args:
            request: HTTP body, JSON format

        Returns:
            dict_data: json fields in HTTP body
            log_id: log_id
            prod_errcode: None or ProductErrCode.SUCC.value default, otherwise,
                          product errores occured.It is handled in the same way
                          as exception.
            prod_errinfo: "" default 
        """
        dict_data = {}
        log_id = None
        if request is None:
            _LOGGER.critical("request is None")
            raise ValueError("request is None")
1721

1722
        # unpack key/value string list
1723
        for idx, key in enumerate(request.key):
1724
            dict_data[key] = request.value[idx]
T
TeslaZhao 已提交
1725
        log_id = request.logid
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

        # unpack proto.tensors data.
        for one_tensor in request.tensors:
            name = one_tensor.name
            elem_type = one_tensor.elem_type

            if one_tensor.name is None:
                _LOGGER.error("Tensor name is None.")
                raise ValueError("Tensor name is None.")

            numpy_dtype = _TENSOR_DTYPE_2_NUMPY_DATA_DTYPE.get(elem_type)
            if numpy_dtype is None:
                _LOGGER.error(
                    "elem_type:{} is dismatch in unpack_request_package.",
                    format(elem_type))
                raise ValueError("elem_type:{} error".format(elem_type))

            if numpy_dtype == "string":
                new_string = ""
                if one_tensor.str_data is None:
                    _LOGGER.error(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                    raise ValueError(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                for one_str in one_tensor.str_data:
                    new_string += one_str

                dict_data[name] = new_string
            else:
T
TeslaZhao 已提交
1757 1758 1759 1760
                np_data, np_lod = self.proto_tensor_2_numpy(one_tensor)
                dict_data[name] = np_data
                if np_lod is not None:
                    dict_data[name + ".lod"] = np_lod
1761

1762 1763 1764 1765
        _LOGGER.info("RequestOp unpack one request. log_id:{}, clientip:{} \
            name:{}, method:{}, time:{}"
                     .format(log_id, request.clientip, request.name,
                             request.method, time.time()))
T
TeslaZhao 已提交
1766 1767

        return dict_data, log_id, None, ""
B
barrierye 已提交
1768 1769 1770


class ResponseOp(Op):
1771 1772 1773 1774 1775 1776
    """ 
    ResponseOp is a special Op, for packing one response package. If the channeldata 
    needs a special packaging method, you need to inherit class ReponseOp and rewrite
    pack_response_package function. Notice!!! Class ResponseOp does not run preprocess,
    process, postprocess.
    """
B
barrierye 已提交
1777

B
barrierye 已提交
1778
    def __init__(self, input_ops):
1779 1780 1781
        """
        Initialize the ResponseOp
        """
B
barriery 已提交
1782 1783
        super(ResponseOp, self).__init__(
            name="@DAGExecutor", input_ops=input_ops)
1784

B
barrierye 已提交
1785
        # init op
1786
        try:
1787
            self.init_op()
1788
        except Exception as e:
B
barriery 已提交
1789 1790
            _LOGGER.critical("Op(ResponseOp) Failed to init: {}".format(
                e, exc_info=True))
1791
            os._exit(-1)
B
barrierye 已提交
1792

1793 1794 1795 1796 1797 1798
        # init ResponseOp
        self.is_pack_tensor = False

    def set_pack_format(self, isTensor=False):
        self.is_pack_tensor = isTensor

B
barrierye 已提交
1799
    def pack_response_package(self, channeldata):
T
TeslaZhao 已提交
1800
        """
1801 1802 1803 1804 1805 1806 1807 1808
        Getting channeldata from the last channel, packting the response 
        package serialized by protobuf.  

        Args:
            channeldata: Type ChannelData

        Returns:
            resp: pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1809
        """
B
barrierye 已提交
1810
        resp = pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1811 1812 1813
        error_code = channeldata.error_code
        error_info = ""
        if error_code == ChannelDataErrcode.OK.value:
1814
            # Framework level errors
B
barrierye 已提交
1815 1816 1817 1818
            if channeldata.datatype == ChannelDataType.CHANNEL_NPDATA.value:
                feed = channeldata.parse()
                # ndarray to string:
                # https://stackoverflow.com/questions/30167538/convert-a-numpy-ndarray-to-stringor-bytes-and-convert-it-back-to-numpy-ndarray
B
barrierye 已提交
1819
                np.set_printoptions(threshold=sys.maxsize)
B
barrierye 已提交
1820
                for name, var in feed.items():
1821 1822
                    resp.value.append(var.__repr__())
                    resp.key.append(name)
B
barrierye 已提交
1823 1824 1825 1826
            elif channeldata.datatype == ChannelDataType.DICT.value:
                feed = channeldata.parse()
                for name, var in feed.items():
                    if not isinstance(var, str):
T
TeslaZhao 已提交
1827 1828
                        error_code = ChannelDataErrcode.TYPE_ERROR.value
                        error_info = self._log(
B
barrierye 已提交
1829 1830
                            "fetch var type must be str({}).".format(
                                type(var)))
B
barriery 已提交
1831 1832
                        _LOGGER.error("(logid={}) Failed to pack RPC "
                                      "response package: {}".format(
W
wangjiawei04 已提交
1833
                                          channeldata.id, resp.err_msg))
B
barrierye 已提交
1834
                        break
1835 1836
                    resp.value.append(var)
                    resp.key.append(name)
B
barrierye 已提交
1837
            else:
T
TeslaZhao 已提交
1838 1839 1840
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = self._log("error type({}) in datatype.".format(
                    channeldata.datatype))
B
barriery 已提交
1841
                _LOGGER.error("(logid={}) Failed to pack RPC response"
T
TeslaZhao 已提交
1842
                              " package: {}".format(channeldata.id, error_info))
B
barrierye 已提交
1843
        else:
1844
            # Product level errors
T
TeslaZhao 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
            error_info = channeldata.error_info
            if error_code == ChannelDataErrcode.PRODUCT_ERROR.value:
                #rewrite error_code when product errors occured
                error_code = channeldata.prod_error_code
                error_info = channeldata.prod_error_info

        # pack results
        if error_code is None:
            error_code = 0
        resp.err_no = error_code
        resp.err_msg = error_info

B
barrierye 已提交
1857
        return resp
1858 1859 1860


class VirtualOp(Op):
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
    """ 
    To connect 2 ops across levels in dag view, we create virtual ops
    between non-virtual ops, and transfer data only. For examples, 
    the pred ops of F are D & E.In the process of building DAG, we will
    create channels layer by layer according to dag views.Op F is not 
    in the next layer view of [B, E], so we will create a virtual OP 
    'V1' whose pred OP is E. And so on, we create two virtual op 'V2'
    and 'V3', Finally, we find the non-virtual op F. we create 4 channels
    among E, V1, V2, V3 and F, the producer of V1, V2, V3 and F is E.
    
        DAG: [A -> B -> C -> D -> F]
               \-> E ----------/

        DAG view: [[A], [B, E], [C], [D], [F]]
        BUILD DAG: [A -> B -> C -> D -> E -> F]
                     \-> E -> V1-> V2-> V3/
    """
1878 1879 1880

    def __init__(self, name, concurrency=1):
        super(VirtualOp, self).__init__(
B
barrierye 已提交
1881
            name=name, input_ops=None, concurrency=concurrency)
1882 1883 1884
        self._virtual_pred_ops = []

    def add_virtual_pred_op(self, op):
1885 1886 1887 1888 1889 1890 1891 1892 1893
        """
        Add the front op of current vritual op.
        
        Args:
            op: one op object, may be a virtual op or not.

        Returns:
            None
        """
1894 1895
        self._virtual_pred_ops.append(op)

B
barrierye 已提交
1896
    def _actual_pred_op_names(self, op):
1897 1898 1899 1900 1901 1902 1903 1904 1905
        """
        Recursively find the front op which is a non-virtual op.
   
        Args:
            op: one op object
            
        Returns:
            names: the name of non-virtual pred ops.
        """
B
barriery 已提交
1906
        # can use disjoint-set, but it's not necessary
B
barrierye 已提交
1907 1908 1909 1910 1911 1912 1913
        if not isinstance(op, VirtualOp):
            return [op.name]
        names = []
        for x in op._virtual_pred_ops:
            names.extend(self._actual_pred_op_names(x))
        return names

1914
    def add_output_channel(self, channel):
1915 1916 1917 1918 1919 1920 1921 1922 1923
        """
        Adding the output channel of non-virtual pred ops.

        Args:
            channel: one channel.
          
        Returns:
            None.
        """
1924
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
1925
            _LOGGER.critical(
B
barriery 已提交
1926 1927 1928
                self._log("Failed to add output_channel: output_channel"
                          " must be Channel type, not {}".format(
                              type(channel))))
1929
            os._exit(-1)
1930
        for op in self._virtual_pred_ops:
B
barrierye 已提交
1931 1932
            for op_name in self._actual_pred_op_names(op):
                channel.add_producer(op_name)
1933
        self._outputs.append(channel)
D
dongdaxiang 已提交
1934

1935
    def _run(self, concurrency_idx, input_channel, output_channels, client_type,
1936
             is_thread_op):
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
        """
        The target function _run() only transfers data between OPs in one thread
        or process.

        Args:
            concurrency_idx: process id, not avaliable in thread mode.
            input_channel: input channel
            output_channels: output channels
            client_type: no use
            is_thread_op: True, thread mode; False, process mode

        Returns:
            None
        """
1951
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1952 1953 1954
        log = get_log_func(op_info_prefix)
        tid = threading.current_thread().ident

1955 1956 1957 1958 1959 1960 1961
        batch_generator = self._auto_batching_generator(
            input_channel=input_channel,
            op_name=self.name,
            batch_size=1,
            timeout=None,
            log_func=log)

B
barrierye 已提交
1962 1963
        while True:
            try:
1964
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1965
            except ChannelStopError:
B
barriery 已提交
1966
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1967
                self._finalize(is_thread_op)
B
barrierye 已提交
1968
                break
D
dongdaxiang 已提交
1969

B
barrierye 已提交
1970
            try:
1971 1972 1973 1974
                for channeldata_dict in channeldata_dict_batch:
                    for name, data in channeldata_dict.items():
                        self._push_to_output_channels(
                            data, channels=output_channels, name=name)
B
barrierye 已提交
1975
            except ChannelStopError:
B
barriery 已提交
1976
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1977
                self._finalize(is_thread_op)
B
barrierye 已提交
1978
                break