infer.h 26.6 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <pthread.h>
W
wangguibao 已提交
17
#include <sys/stat.h>
T
TeslaZhao 已提交
18
#include <sys/syscall.h>
W
wangguibao 已提交
19
#include <sys/types.h>
W
wangguibao 已提交
20
#include <unistd.h>
H
HexToString 已提交
21
#include <functional>
H
HexToString 已提交
22
#include <memory>
23
#include <numeric>
W
wangguibao 已提交
24
#include <string>
M
MRXLT 已提交
25
#include <utility>
W
wangguibao 已提交
26
#include <vector>
G
guru4elephant 已提交
27
#include "core/predictor/common/inner_common.h"
H
HexToString 已提交
28
#include "core/predictor/framework/bsf.h"
T
TeslaZhao 已提交
29
#include "core/predictor/framework/cache.h"
G
guru4elephant 已提交
30 31
#include "core/predictor/framework/factory.h"
#include "core/predictor/framework/infer_data.h"
32
#include "core/predictor/framework/memory.h"
W
wangjiawei04 已提交
33
#include "paddle_inference_api.h"  // NOLINT
W
wangguibao 已提交
34 35 36 37
namespace baidu {
namespace paddle_serving {
namespace predictor {

W
wangguibao 已提交
38 39
using configure::ModelToolkitConf;

T
TeslaZhao 已提交
40
// Auto mutex lock
Z
zhangjun 已提交
41 42 43 44 45 46 47 48 49 50 51
class AutoLock {
 public:
  explicit AutoLock(pthread_mutex_t& mutex) : _mut(mutex) {
    pthread_mutex_lock(&mutex);
  }
  ~AutoLock() { pthread_mutex_unlock(&_mut); }

 private:
  pthread_mutex_t& _mut;
};

T
TeslaZhao 已提交
52
// Gloabl singleton mutex lock
Z
update  
zhangjun 已提交
53
class GlobalCreateMutex {
Z
zhangjun 已提交
54 55 56 57
 public:
  pthread_mutex_t& mutex() { return _mut; }

  static pthread_mutex_t& instance() {
Z
update  
zhangjun 已提交
58
    static GlobalCreateMutex gmutex;
Z
zhangjun 已提交
59 60 61 62
    return gmutex.mutex();
  }

 private:
Z
update  
zhangjun 已提交
63
  GlobalCreateMutex() { pthread_mutex_init(&_mut, NULL); }
Z
zhangjun 已提交
64 65 66
  pthread_mutex_t _mut;
};

T
TeslaZhao 已提交
67
// InferEngine
W
wangguibao 已提交
68
class InferEngine {
W
wangguibao 已提交
69 70 71 72 73 74 75 76 77 78
 public:
  virtual ~InferEngine() {}

  virtual int proc_initialize(const configure::EngineDesc& conf, bool version) {
    return proc_initialize_impl(conf, version);
  }
  virtual int proc_finalize() { return proc_finalize_impl(); }
  virtual int thrd_initialize() { return thrd_initialize_impl(); }
  virtual int thrd_clear() { return thrd_clear_impl(); }
  virtual int thrd_finalize() { return thrd_finalize_impl(); }
H
HexToString 已提交
79 80 81
  virtual int infer(const void* in, void* out, uint32_t batch_size = -1) {
    return infer_impl(in, out, batch_size);
  }
H
HexToString 已提交
82
  virtual void set_model_index(uint32_t index) { _model_index = index; }
W
wangguibao 已提交
83 84 85 86 87 88 89 90 91 92 93
  virtual int reload() = 0;

  virtual uint64_t version() const = 0;

  // begin: framework inner call
  virtual int proc_initialize_impl(const configure::EngineDesc& conf,
                                   bool version) = 0;
  virtual int thrd_initialize_impl() = 0;
  virtual int thrd_finalize_impl() = 0;
  virtual int thrd_clear_impl() = 0;
  virtual int proc_finalize_impl() = 0;
H
HexToString 已提交
94
  virtual int infer_impl(const void* in,
95 96
                         void* out,
                         uint32_t batch_size = -1) = 0;
97
  virtual int task_infer_impl(const void* in, void* out) = 0;  // NOLINT
T
TeslaZhao 已提交
98
  virtual CubeCache* get_cube_cache() = 0;
H
HexToString 已提交
99

H
HexToString 已提交
100 101
 protected:
  uint32_t _model_index;
W
wangguibao 已提交
102 103
  // end: framework inner call
};
T
TeslaZhao 已提交
104

H
HexToString 已提交
105
typedef im::bsf::Task<paddle::PaddleTensor, paddle::PaddleTensor> TaskT;
W
wangguibao 已提交
106 107 108
class ReloadableInferEngine : public InferEngine {
 public:
  virtual ~ReloadableInferEngine() {}
W
wangguibao 已提交
109

110 111 112 113 114
  // Reloadable record
  union ReloadableRecord {
    time_t timestamp;
    uint64_t md5sum;
    uint64_t revision;
W
wangguibao 已提交
115
  };
W
wangguibao 已提交
116

Z
update  
zhangjun 已提交
117
  virtual int load(const configure::EngineDesc& conf) = 0;
W
wangguibao 已提交
118

119
  int proc_initialize_impl(const configure::EngineDesc& conf, bool version);
W
wangguibao 已提交
120

121
  int proc_initialize(const configure::EngineDesc& conf, bool version);
H
HexToString 已提交
122

123
  int infer(const void* in, void* out, uint32_t batch_size = -1);
W
wangguibao 已提交
124

125
  int thrd_initialize();
W
wangguibao 已提交
126

127
  int thrd_clear();
W
wangguibao 已提交
128

129
  int proc_finalize();
W
wangguibao 已提交
130

131
  int reload();
W
wangguibao 已提交
132 133 134

  uint64_t version() const { return _version; }
  uint32_t thread_num() const { return _infer_thread_num; }
W
wangguibao 已提交
135

W
wangguibao 已提交
136
 private:
137
  int parse_version_info(const configure::EngineDesc& config, bool version);
W
wangguibao 已提交
138

139
  bool check_need_reload();
W
wangguibao 已提交
140

141
  bool check_timestamp_ne();
W
wangguibao 已提交
142

143
  bool check_timestamp_gt();
W
wangguibao 已提交
144 145 146 147 148 149

  bool check_md5sum() { return false; }

  bool check_revision() { return false; }

 protected:
150 151 152 153
  // Model directory
  std::string _model_dir;

  // The description of inference engine
Z
update  
zhangjun 已提交
154
  configure::EngineDesc _conf;
W
wangguibao 已提交
155 156

 private:
157
  // Tag file of reloadable model
W
wangguibao 已提交
158
  std::string _reload_tag_file;
159 160 161 162 163 164 165 166

  // Type of reload, e.g. timestamp_ne, timestamp_gt, md5sum, reversion
  std::string _reload_type;

  // Record the last loading infermation
  ReloadableRecord _last_record;

  // Number of inference threads
W
wangguibao 已提交
167
  uint32_t _infer_thread_num;
168 169

  // Size of inference batch
W
wangguibao 已提交
170
  uint32_t _infer_batch_size;
171 172

  // Need to align batch_size in inferring
H
HexToString 已提交
173
  bool _infer_overrun;
174

H
HexToString 已提交
175 176
  // allow to split request in inferring
  bool _allow_split_request;
177
  // model version
W
wangguibao 已提交
178 179
  uint64_t _version;
};
W
wangguibao 已提交
180

T
TeslaZhao 已提交
181
// Lock free switching two models and cube caches
W
wangguibao 已提交
182 183 184
template <typename EngineCore>
struct ModelData {
  ModelData() : current_idx(1) {
T
TeslaZhao 已提交
185 186
    cores[0] = nullptr;
    cores[1] = nullptr;
T
TeslaZhao 已提交
187 188
    caches[0] = nullptr;
    caches[1] = nullptr;
W
wangguibao 已提交
189 190 191 192 193
  }

  ~ModelData() {
    delete cores[0];
    delete cores[1];
T
TeslaZhao 已提交
194 195
    delete caches[0];
    delete caches[1];
W
wangguibao 已提交
196 197
  }

T
TeslaZhao 已提交
198 199
  void* get_core() { return cores[current_idx]->get(); }

T
TeslaZhao 已提交
200
  CubeCache* get_cache() { return caches[current_idx]; }
201

W
wangguibao 已提交
202
  EngineCore* cores[2];
T
TeslaZhao 已提交
203
  CubeCache* caches[2];
W
wangguibao 已提交
204 205 206 207 208 209 210 211 212 213 214
  uint32_t current_idx;
};

template <typename EngineCore>
class DBReloadableInferEngine : public ReloadableInferEngine {
 public:
  virtual ~DBReloadableInferEngine() {}

  int proc_initialize(const configure::EngineDesc& conf, bool version) {
    THREAD_KEY_CREATE(&_skey, NULL);
    THREAD_MUTEX_INIT(&_mutex, NULL);
T
TeslaZhao 已提交
215
    _gpu_index = 0;
W
wangguibao 已提交
216 217 218
    return ReloadableInferEngine::proc_initialize(conf, version);
  }

219 220 221 222 223
  // 进程初始化会调用load,但由于未执行线程初始化,所以_reload_vec为空,不再继续执行。
  // 热加载的话会调用load,由于线程已经初始化,_reload_vec不为空,所以继续执行load_data操作加载数据。
  // 线程初始化会执行load_data操作加载数据,然后将engine加入_reload_vec中。
  // 每个模型只有一个CloneDBReloadableInferEngine对象。
  // 但一个CloneDBReloadableInferEngine对象,可以包含N个EngineCore。
Z
update  
zhangjun 已提交
224
  virtual int load(const configure::EngineDesc& conf) {
W
wangguibao 已提交
225 226
    if (_reload_vec.empty()) {
      return 0;
W
wangguibao 已提交
227
    }
T
TeslaZhao 已提交
228
    _gpu_index = 0;
W
wangguibao 已提交
229
    for (uint32_t ti = 0; ti < _reload_vec.size(); ++ti) {
Z
update  
zhangjun 已提交
230
      if (load_data(_reload_vec[ti], conf) != 0) {
W
wangguibao 已提交
231 232 233 234 235
        LOG(ERROR) << "Failed reload engine model: " << ti;
        return -1;
      }
    }

Z
update  
zhangjun 已提交
236
    LOG(WARNING) << "Succ load engine, path: " << conf.model_dir();
W
wangguibao 已提交
237 238
    return 0;
  }
W
wangguibao 已提交
239

240 241
  virtual int load_data(ModelData<EngineCore>* md,
                        const configure::EngineDesc& conf) {
W
wangguibao 已提交
242
    uint32_t next_idx = (md->current_idx + 1) % 2;
T
TeslaZhao 已提交
243 244

    // reload engine core
W
wangguibao 已提交
245 246
    if (md->cores[next_idx]) {
      delete md->cores[next_idx];
W
wangguibao 已提交
247
    }
W
wangguibao 已提交
248
    md->cores[next_idx] = new (std::nothrow) EngineCore;
T
TeslaZhao 已提交
249 250 251 252
    if (nullptr == md->cores[next_idx]) {
      LOG(ERROR) << "Allocating memory failed. ";
      return -1;
    }
253 254 255 256
    size_t gpu_ids_num = conf.gpu_ids_size();
    im::bsf::AutoMutex lock(_mutex);
    int gpu_id = -1;
    if (gpu_ids_num > 0) {
T
TeslaZhao 已提交
257
      gpu_id = conf.gpu_ids(_gpu_index % gpu_ids_num);
258
    }
T
TeslaZhao 已提交
259
    LOG(WARNING) << "Loading EngineCore[" << next_idx << "] ...";
260 261
    if (!md->cores[next_idx] ||
        md->cores[next_idx]->create(conf, gpu_id) != 0) {
Z
update  
zhangjun 已提交
262
      LOG(ERROR) << "Failed create model, path: " << conf.model_dir();
W
wangguibao 已提交
263
      return -1;
W
wangguibao 已提交
264
    }
T
TeslaZhao 已提交
265
    _gpu_index++;
T
TeslaZhao 已提交
266
    LOG(WARNING) << "Loading EngineCore[" << next_idx << "] done.";
T
TeslaZhao 已提交
267 268

    // reload cube cache
T
TeslaZhao 已提交
269 270 271 272 273 274 275 276 277
    if (nullptr == md->caches[next_idx]) {
      md->caches[next_idx] = new (std::nothrow) CubeCache;
    }

    if (nullptr == md->caches[next_idx]) {
      LOG(ERROR) << "Allocating memory failed.";
      return -1;
    }
    LOG(WARNING) << "Loading cube cache[" << next_idx << "] ...";
T
TeslaZhao 已提交
278 279
    std::string model_path = conf.model_dir();
    if (access(model_path.c_str(), F_OK) == 0) {
280
      std::string cube_cache_path = model_path + "/" + "cube_cache";
T
TeslaZhao 已提交
281 282
      int reload_cache_ret = md->caches[next_idx]->reload_data(cube_cache_path);
      LOG(WARNING) << "Loading cube cache[" << next_idx << "] done.";
T
TeslaZhao 已提交
283 284 285 286 287
    } else {
      LOG(ERROR) << "model_path " << model_path
                 << " is not exits. Ignore cube cache!";
    }

T
TeslaZhao 已提交
288
    // switch current_idx
W
wangguibao 已提交
289
    md->current_idx = next_idx;
T
TeslaZhao 已提交
290 291 292
    LOG(WARNING)
        << "Reload model and cube cache done. switching to current_idx["
        << next_idx << "]";
W
wangguibao 已提交
293 294
    return 0;
  }
W
wangguibao 已提交
295

W
wangguibao 已提交
296 297
  virtual int thrd_initialize_impl() {
    ModelData<EngineCore>* md = new (std::nothrow) ModelData<EngineCore>;
Z
update  
zhangjun 已提交
298
    if (!md || load_data(md, _conf) != 0) {
299
      LOG(ERROR) << "Failed create thread data from " << _conf.model_dir();
W
wangguibao 已提交
300
      return -1;
W
wangguibao 已提交
301 302
    }

W
wangguibao 已提交
303
    THREAD_SETSPECIFIC(_skey, md);
H
HexToString 已提交
304
    im::bsf::AutoMutex lock(_mutex);
W
wangguibao 已提交
305 306 307 308 309
    _reload_vec.push_back(md);
    return 0;
  }

  int thrd_clear_impl() {
310 311 312 313
    // actually, there are 2 kinds of multi-thread.
    // 1. brpc thread 2. bsf Task thread
    // each request is in 1-single brpc thread.
    // IF (bsf Task thread is not used)
H
HexToString 已提交
314 315 316 317 318 319 320 321 322 323
    // every single brpc thread corresponds to all the DBReloadableInferEngines.
    // each request runs all models in 1-single brpc thread.
    // every single brpc thread will create or clone N predictor.
    // N = the number of Model.
    // so if there are 2 models, and --thread 10.
    // each brpc thread will create predictor of Model-1 and Model-2.
    // there are totally 10 predictors of Model-1 and 10 predictors of Model-2
    // cause there are 10 brpc threads.

    // IF bsf Task thread is used。
324
    // there will be a ThreadPool called bsf TaskExecutor.
H
HexToString 已提交
325 326 327 328 329 330
    // TaskExecutorVector is the vector of TaskExecutor.
    // the number of TaskExecutor equals to the number of Model.
    // 1 TaskExecutor corresponding to 1 Model.
    // 1 TaskExecutor have N bsf threads.
    // 1 bsf thread corresponds to 1 predictor of
    // the Model corresponding to the TaskExecutor.
331 332 333 334 335 336
    // brpc thread only put the data into the task_queue(which is in
    // TaskExecutor)
    // EngineCore->infer() is running in bsf Task thread.

    // MempoolWrapper::instance() is actually a Thread-Local Mempool.
    // so it belongs to a single Thread.
W
wangguibao 已提交
337 338 339 340
    return 0;
  }

  int thrd_finalize_impl() { return 0; }
W
wangguibao 已提交
341

W
wangguibao 已提交
342 343 344 345 346
  int proc_finalize_impl() {
    THREAD_KEY_DELETE(_skey);
    THREAD_MUTEX_DESTROY(&_mutex);
    return 0;
  }
W
wangguibao 已提交
347

W
wangguibao 已提交
348 349 350 351 352 353
  EngineCore* get_core() {
    ModelData<EngineCore>* md =
        (ModelData<EngineCore>*)THREAD_GETSPECIFIC(_skey);
    if (!md) {
      LOG(ERROR) << "Failed get thread specific data";
      return NULL;
W
wangguibao 已提交
354
    }
W
wangguibao 已提交
355 356
    return md->cores[md->current_idx];
  }
W
wangguibao 已提交
357

T
TeslaZhao 已提交
358 359 360 361 362 363 364 365 366 367
  CubeCache* get_cube_cache() {
    ModelData<EngineCore>* md =
        (ModelData<EngineCore>*)THREAD_GETSPECIFIC(_skey);
    if (!md) {
      LOG(ERROR) << "Failed get thread specific data";
      return NULL;
    }
    return md->get_cache();
  }

W
wangguibao 已提交
368 369 370
 protected:
  THREAD_KEY_T _skey;
  THREAD_MUTEX_T _mutex;
T
TeslaZhao 已提交
371 372

  // vector of all model engines
W
wangguibao 已提交
373
  std::vector<ModelData<EngineCore>*> _reload_vec;
T
TeslaZhao 已提交
374 375 376

  // gpu card id
  int _gpu_index = 0;
W
wangguibao 已提交
377
};
W
wangguibao 已提交
378

W
wangguibao 已提交
379 380 381 382 383 384 385
// 多个EngineCore共用同一份模型数据
template <typename EngineCore>
class CloneDBReloadableInferEngine
    : public DBReloadableInferEngine<EngineCore> {
 public:
  virtual ~CloneDBReloadableInferEngine() {}

386 387 388 389 390
  // 进程初始化会调用load,但由于未执行线程初始化,所以_reload_vec为空,不再继续执行。
  // 热加载的话会调用load,由于线程已经初始化,_reload_vec不为空,所以继续执行load_data操作加载数据。
  // 线程初始化会执行load_data操作加载数据,然后将engine加入_reload_vec中。
  // 每个模型只有一个CloneDBReloadableInferEngine对象。
  // 但一个CloneDBReloadableInferEngine对象,可以包含N个EngineCore。
W
wangguibao 已提交
391

392 393
  virtual int load_data(ModelData<EngineCore>* md,
                        const configure::EngineDesc& conf) {
T
TeslaZhao 已提交
394
    int tid = syscall(SYS_gettid);
395 396 397
    uint32_t next_idx = (md->current_idx + 1) % 2;
    if (md->cores[next_idx]) {
      delete md->cores[next_idx];
W
wangguibao 已提交
398
    }
399
    md->cores[next_idx] = new (std::nothrow) EngineCore;
W
wangguibao 已提交
400

T
TeslaZhao 已提交
401 402 403 404 405 406 407
    if (nullptr == md->caches[next_idx]) {
      md->caches[next_idx] = new (std::nothrow) CubeCache;
    }
    if (nullptr == md->cores[next_idx] || nullptr == md->caches[next_idx]) {
      LOG(ERROR) << "Allocating memory fail.";
      return -1;
    }
408
    // params.dump();
H
HexToString 已提交
409 410 411 412 413
    // gpu_ids_num > 0 is always true.
    // if use CPU, gpu_ids = [-1].
    // if gpu_ids_num = 0, which means no gpuid is given.
    // so we should set gpu_ids_num = 1, and gpu_id = -1.
    // so that we can create at least 1 predictor.
414 415 416 417
    size_t gpu_ids_num = conf.gpu_ids_size();
    im::bsf::AutoMutex lock(DBReloadableInferEngine<EngineCore>::_mutex);
    int gpu_id = -1;
    if (gpu_ids_num > 0) {
T
TeslaZhao 已提交
418
      gpu_id = conf.gpu_ids(DBReloadableInferEngine<EngineCore>::_gpu_index %
419
                            gpu_ids_num);
H
HexToString 已提交
420 421
    } else {
      gpu_ids_num = 1;
W
wangguibao 已提交
422
    }
T
TeslaZhao 已提交
423

T
TeslaZhao 已提交
424 425
    // _gpu_index will be set to be 0, when load() or proc_initial() is called.
    // _gpu_index < gpu_ids_num, means there are predictors still not create
H
HexToString 已提交
426
    // on some GPU card.
427
    // so we need to create the predictor.
T
TeslaZhao 已提交
428
    // _gpu_index >= gpu_ids_num, means each GPU card has already create one.
429
    // so we need to clone the predictor.
T
TeslaZhao 已提交
430
    LOG(WARNING) << "tid:" << tid << " Loading clone model ...";
T
TeslaZhao 已提交
431
    if (DBReloadableInferEngine<EngineCore>::_gpu_index < gpu_ids_num) {
T
TeslaZhao 已提交
432 433
      // create cores
      if (md->cores[next_idx]->create(conf, gpu_id) != 0) {
434
        LOG(ERROR) << "Failed create model, path: " << conf.model_dir();
W
wangguibao 已提交
435 436
        return -1;
      }
T
TeslaZhao 已提交
437 438 439 440 441 442 443 444 445 446 447 448
      // create caches
      std::string model_path = conf.model_dir();
      if (access(model_path.c_str(), F_OK) == 0) {
        std::string cube_cache_path = model_path + "cube_cache";
        int reload_cache_ret =
            md->caches[next_idx]->reload_data(cube_cache_path);
        LOG(WARNING) << "create cube cache[" << next_idx << "] done.";
      } else {
        LOG(WARNING) << "model_path " << model_path
                     << " is not exits. Ignore cube cache!";
      }

T
TeslaZhao 已提交
449
      DBReloadableInferEngine<EngineCore>::_gpu_index++;
T
TeslaZhao 已提交
450
      // md->current_idx = next_idx;
451
      if (_cloneTemplate.size() <
T
TeslaZhao 已提交
452
          DBReloadableInferEngine<EngineCore>::_gpu_index) {
453 454
        _cloneTemplate.push_back(md);
      } else {
T
TeslaZhao 已提交
455 456
        _cloneTemplate[DBReloadableInferEngine<EngineCore>::_gpu_index - 1] =
            md;
457 458
      }
    } else {
T
TeslaZhao 已提交
459
      int template_index = DBReloadableInferEngine<EngineCore>::_gpu_index %
H
HexToString 已提交
460
                           _cloneTemplate.size();
T
TeslaZhao 已提交
461 462 463

      // clone cores
      if (md->cores[next_idx]->clone(
T
TeslaZhao 已提交
464
              _cloneTemplate[template_index]->get_core()) != 0) {
465 466 467
        LOG(ERROR) << "Failed clone model from core";
        return -1;
      }
T
TeslaZhao 已提交
468 469 470 471
      // clone caches
      md->caches[next_idx] = _cloneTemplate[template_index]->get_cache();
      LOG(WARNING) << "tid:" << tid << " clone caches done";

T
TeslaZhao 已提交
472
      DBReloadableInferEngine<EngineCore>::_gpu_index++;
W
wangguibao 已提交
473 474
    }

T
TeslaZhao 已提交
475 476 477 478 479 480 481
    // switch current_idx
    md->current_idx = next_idx;
    LOG(WARNING)
        << "[" << tid
        << "] Reload clone model and cube cache done. switching to current_idx["
        << next_idx << "]";

W
wangguibao 已提交
482 483
    return 0;
  }
W
wangguibao 已提交
484

W
wangguibao 已提交
485
 protected:
486
  // 模板EngineCore,如果已创建,则多个线程级EngineCore共用该对象的模型数据
H
HexToString 已提交
487
  std::vector<ModelData<EngineCore>*> _cloneTemplate;
W
wangguibao 已提交
488 489
};

H
HexToString 已提交
490
template <typename EngineCore>
M
bug fix  
MRXLT 已提交
491
#ifdef WITH_TRT
H
HexToString 已提交
492
class FluidInferEngine : public DBReloadableInferEngine<EngineCore> {
M
bug fix  
MRXLT 已提交
493
#else
H
HexToString 已提交
494
class FluidInferEngine : public CloneDBReloadableInferEngine<EngineCore> {
M
bug fix  
MRXLT 已提交
495 496
#endif
 public:  // NOLINT
W
wangguibao 已提交
497 498
  FluidInferEngine() {}
  ~FluidInferEngine() {}
H
HexToString 已提交
499
  typedef std::vector<paddle::PaddleTensor> TensorVector;
H
HexToString 已提交
500
  int infer_impl(const void* in, void* out, uint32_t batch_size = -1) {
H
HexToString 已提交
501 502 503
    // First of all, get the real core acording to the
    // Template parameter <EngineCore>.
    EngineCore* core = DBReloadableInferEngine<EngineCore>::get_core();
W
wangguibao 已提交
504 505 506
    if (!core || !core->get()) {
      LOG(ERROR) << "Failed get fluid core in infer_impl()";
      return -1;
W
wangguibao 已提交
507
    }
H
HexToString 已提交
508 509 510 511 512 513
    // We use the for loop to process the input data.
    // Inside each for loop, use the in[i]->name as inputName and call
    // 'core->GetInputHandle(inputName)' to get the pointer of InputData.
    // Set the lod and shape information of InputData first.
    // Then copy data from cpu to the core.
    const TensorVector* tensorVector_in_pointer =
514 515
        reinterpret_cast<const TensorVector*>(in);
    for (int i = 0; i < tensorVector_in_pointer->size(); ++i) {
H
HexToString 已提交
516
      auto lod_tensor_in =
517
          core->GetInputHandle((*tensorVector_in_pointer)[i].name);
H
HexToString 已提交
518 519 520
      lod_tensor_in->SetLoD((*tensorVector_in_pointer)[i].lod);
      lod_tensor_in->Reshape((*tensorVector_in_pointer)[i].shape);
      void* origin_data = (*tensorVector_in_pointer)[i].data.data();
H
HexToString 已提交
521 522 523 524
      // Because the core needs to determine the size of memory space
      // according to the data type passed in.
      // The pointer type of data must be one of
      // float *,int64_t*,int32_t* instead void*.
H
HexToString 已提交
525
      if ((*tensorVector_in_pointer)[i].dtype == paddle::PaddleDType::FLOAT32) {
H
HexToString 已提交
526
        float* data = static_cast<float*>(origin_data);
H
HexToString 已提交
527
        lod_tensor_in->CopyFromCpu(data);
H
HexToString 已提交
528
      } else if ((*tensorVector_in_pointer)[i].dtype ==
529
                 paddle::PaddleDType::INT64) {
H
HexToString 已提交
530
        int64_t* data = static_cast<int64_t*>(origin_data);
H
HexToString 已提交
531
        lod_tensor_in->CopyFromCpu(data);
H
HexToString 已提交
532
      } else if ((*tensorVector_in_pointer)[i].dtype ==
533
                 paddle::PaddleDType::INT32) {
H
HexToString 已提交
534
        int32_t* data = static_cast<int32_t*>(origin_data);
H
HexToString 已提交
535
        lod_tensor_in->CopyFromCpu(data);
S
ShiningZhang 已提交
536 537 538 539 540 541 542 543 544 545
      } else if ((*tensorVector_in_pointer)[i].dtype ==
                 paddle::PaddleDType::UINT8) {
        uint8_t* data = static_cast<uint8_t*>(origin_data);
        lod_tensor_in->CopyFromCpu(data);
      } else if ((*tensorVector_in_pointer)[i].dtype ==
                 paddle::PaddleDType::INT8) {
        int8_t* data = static_cast<int8_t*>(origin_data);
        lod_tensor_in->CopyFromCpu(data);
      } else {
        LOG(ERROR) << "Inference not support type["
546 547 548
                   << (*tensorVector_in_pointer)[i].dtype << "],name["
                   << (*tensorVector_in_pointer)[i].name << "]"
                   << " copy into core failed!";
H
HexToString 已提交
549
      }
S
ShiningZhang 已提交
550 551 552 553 554 555 556 557 558 559
      // Paddle inference will support FP16 in next version.
      // else if ((*tensorVector_in_pointer)[i].dtype ==
      //          paddle::PaddleDType::FLOAT16) {
      //   paddle::platform::float16* data =
      //       static_cast<paddle::platform::float16*>(origin_data);
      //   lod_tensor_in->CopyFromCpu(data);
      // }
      VLOG(2) << "Tensor:name=" << (*tensorVector_in_pointer)[i].name
              << ";in_dtype=" << (*tensorVector_in_pointer)[i].dtype
              << ";tensor_dtype=" << lod_tensor_in->type();
W
wangjiawei04 已提交
560
    }
H
HexToString 已提交
561 562
    // After the input data is passed in,
    // call 'core->Run()' perform the prediction process.
W
wangjiawei04 已提交
563
    if (!core->Run()) {
564 565
      LOG(ERROR) << "Failed run fluid family core";
      return -1;
W
wangjiawei04 已提交
566
    }
H
HexToString 已提交
567 568 569 570
    // In order to get the results,
    // first, call the 'core->GetOutputNames()' to get the name of output
    // (which is a dict like {OutputName:pointer of OutputValue}).
    // Then, use for-loop to get OutputValue by calling 'core->GetOutputHandle'.
H
HexToString 已提交
571
    std::vector<std::string> outnames = core->GetOutputNames();
H
HexToString 已提交
572
    std::vector<int> output_shape;
H
HexToString 已提交
573 574
    int out_num = 0;
    int dataType = 0;
H
HexToString 已提交
575 576 577
    void* databuf_data = NULL;
    char* databuf_char = NULL;
    size_t databuf_size = 0;
H
HexToString 已提交
578
    TensorVector* tensorVector_out_pointer =
579
        reinterpret_cast<TensorVector*>(out);
H
HexToString 已提交
580
    if (!tensorVector_out_pointer) {
H
HexToString 已提交
581
      LOG(ERROR) << "tensorVector_out_pointer is nullptr,error";
W
wangguibao 已提交
582 583
      return -1;
    }
H
HexToString 已提交
584 585 586 587
    // Get the type and shape information of OutputData first.
    // then copy data to cpu from the core.
    // The pointer type of data_out must be one of
    // float *,int64_t*,int32_t* instead void*.
588
    for (int i = 0; i < outnames.size(); ++i) {
H
HexToString 已提交
589
      auto lod_tensor_out = core->GetOutputHandle(outnames[i]);
H
HexToString 已提交
590
      output_shape = lod_tensor_out->shape();
H
HexToString 已提交
591 592
      out_num = std::accumulate(
          output_shape.begin(), output_shape.end(), 1, std::multiplies<int>());
H
HexToString 已提交
593
      dataType = lod_tensor_out->type();
H
HexToString 已提交
594
      if (dataType == paddle::PaddleDType::FLOAT32) {
595
        databuf_size = out_num * sizeof(float);
H
HexToString 已提交
596
        databuf_data = MempoolWrapper::instance().malloc(databuf_size);
H
HexToString 已提交
597
        if (!databuf_data) {
598 599
          LOG(ERROR) << "Malloc failed, size: " << databuf_size;
          return -1;
H
HexToString 已提交
600 601
        }
        float* data_out = reinterpret_cast<float*>(databuf_data);
H
HexToString 已提交
602
        lod_tensor_out->CopyToCpu(data_out);
H
HexToString 已提交
603
        databuf_char = reinterpret_cast<char*>(data_out);
H
HexToString 已提交
604
      } else if (dataType == paddle::PaddleDType::INT64) {
605
        databuf_size = out_num * sizeof(int64_t);
H
HexToString 已提交
606
        databuf_data = MempoolWrapper::instance().malloc(databuf_size);
H
HexToString 已提交
607
        if (!databuf_data) {
608 609
          LOG(ERROR) << "Malloc failed, size: " << databuf_size;
          return -1;
H
HexToString 已提交
610
        }
H
HexToString 已提交
611
        int64_t* data_out = reinterpret_cast<int64_t*>(databuf_data);
H
HexToString 已提交
612
        lod_tensor_out->CopyToCpu(data_out);
H
HexToString 已提交
613
        databuf_char = reinterpret_cast<char*>(data_out);
H
HexToString 已提交
614
      } else if (dataType == paddle::PaddleDType::INT32) {
615
        databuf_size = out_num * sizeof(int32_t);
H
HexToString 已提交
616
        databuf_data = MempoolWrapper::instance().malloc(databuf_size);
H
HexToString 已提交
617
        if (!databuf_data) {
618 619
          LOG(ERROR) << "Malloc failed, size: " << databuf_size;
          return -1;
H
HexToString 已提交
620 621 622 623
        }
        int32_t* data_out = reinterpret_cast<int32_t*>(databuf_data);
        lod_tensor_out->CopyToCpu(data_out);
        databuf_char = reinterpret_cast<char*>(data_out);
S
ShiningZhang 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
      } else if (dataType == paddle::PaddleDType::UINT8) {
        databuf_size = out_num * sizeof(uint8_t);
        databuf_data = MempoolWrapper::instance().malloc(databuf_size);
        if (!databuf_data) {
          LOG(ERROR) << "Malloc failed, size: " << databuf_size;
          return -1;
        }
        uint8_t* data_out = reinterpret_cast<uint8_t*>(databuf_data);
        lod_tensor_out->CopyToCpu(data_out);
        databuf_char = reinterpret_cast<char*>(data_out);
      } else if (dataType == paddle::PaddleDType::INT8) {
        databuf_size = out_num * sizeof(int8_t);
        databuf_data = MempoolWrapper::instance().malloc(databuf_size);
        if (!databuf_data) {
          LOG(ERROR) << "Malloc failed, size: " << databuf_size;
          return -1;
        }
        int8_t* data_out = reinterpret_cast<int8_t*>(databuf_data);
        lod_tensor_out->CopyToCpu(data_out);
        databuf_char = reinterpret_cast<char*>(data_out);
H
HexToString 已提交
644
      }
S
ShiningZhang 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658
      // Inference will support FP16 in next version
      //  else if (dataType == paddle::PaddleDType::FLOAT16) {
      //   using float16 = paddle::platform::float16;
      //   databuf_size = out_num * sizeof(float16);
      //   databuf_data = MempoolWrapper::instance().malloc(databuf_size);
      //   if (!databuf_data) {
      //     LOG(ERROR) << "Malloc failed, size: " << databuf_size;
      //     return -1;
      //   }
      //   float16* data_out = reinterpret_cast<float16*>(databuf_data);
      //   lod_tensor_out->CopyToCpu(data_out);
      //   databuf_char = reinterpret_cast<char*>(data_out);
      // }

H
HexToString 已提交
659 660 661 662 663
      // Because task scheduling requires OPs to use 'Channel'
      // (which is a data structure) to transfer data between OPs.
      // We need to copy the processed data to the 'Channel' for the next OP.
      // In this function, it means we should copy the 'databuf_char' to
      // 'void* out'.(which is also called ‘tensorVector_out_pointer’)
H
HexToString 已提交
664 665 666 667 668
      paddle::PaddleTensor tensor_out;
      tensor_out.name = outnames[i];
      tensor_out.dtype = paddle::PaddleDType(dataType);
      tensor_out.shape.assign(output_shape.begin(), output_shape.end());
      std::vector<std::vector<size_t>> out_lod = lod_tensor_out->lod();
669
      for (int li = 0; li < out_lod.size(); ++li) {
H
HexToString 已提交
670 671 672 673
        std::vector<size_t> lod_element;
        lod_element.assign(out_lod[li].begin(), out_lod[li].end());
        tensor_out.lod.push_back(lod_element);
      }
H
HexToString 已提交
674
      paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
H
HexToString 已提交
675 676
      tensor_out.data = paddleBuf;
      tensorVector_out_pointer->push_back(tensor_out);
H
HexToString 已提交
677
    }
W
wangguibao 已提交
678 679
    return 0;
  }
H
HexToString 已提交
680

681 682
  int task_infer_impl(const void* in, void* out) {  // NOLINT
    return infer_impl(in, out);
H
HexToString 已提交
683
  }
T
TeslaZhao 已提交
684 685 686 687

  CubeCache* get_cube_cache() {
    return DBReloadableInferEngine<EngineCore>::get_cube_cache();
  }
W
wangguibao 已提交
688 689
};

W
wangguibao 已提交
690 691 692 693 694 695 696
typedef FactoryPool<InferEngine> StaticInferFactory;

class VersionedInferEngine : public InferEngine {
 public:
  VersionedInferEngine() { _versions.clear(); }
  ~VersionedInferEngine() {}

697
  int proc_initialize(const configure::EngineDesc& conf);
W
wangguibao 已提交
698

699
  int proc_initialize(const configure::EngineDesc& conf, bool version);
W
wangguibao 已提交
700

701
  int proc_finalize();
W
wangguibao 已提交
702

703
  int thrd_initialize();
W
wangguibao 已提交
704

705
  int thrd_clear();
W
wangguibao 已提交
706

707
  int thrd_finalize();
W
wangguibao 已提交
708

709
  int reload();
W
wangguibao 已提交
710

711
  uint64_t version() const;
W
wangguibao 已提交
712 713

  // inference interface
714
  InferEngine* default_engine() const;
W
wangguibao 已提交
715

716
  int infer(const void* in, void* out, uint32_t batch_size);
W
wangguibao 已提交
717 718

  template <typename T>
719
  T* get_core();
W
wangguibao 已提交
720

T
TeslaZhao 已提交
721 722
  CubeCache* get_cube_cache();

W
wangguibao 已提交
723
  // versioned inference interface
724
  int infer(const void* in, void* out, uint32_t batch_size, uint64_t version);
W
wangguibao 已提交
725 726

  template <typename T>
727
  T* get_core(const uint64_t version);
W
wangguibao 已提交
728

729
  int proc_initialize_impl(const configure::EngineDesc& conf, bool);
W
wangguibao 已提交
730

731 732 733 734 735 736 737 738 739 740
  int thrd_initialize_impl();

  int thrd_finalize_impl();

  int thrd_clear_impl();

  int proc_finalize_impl();

  int infer_impl(const void* in, void* out, uint32_t batch_size = -1);

741
  int task_infer_impl(const void* in, void* out);
W
wangguibao 已提交
742 743 744

 private:
  boost::unordered_map<uint64_t, InferEngine*> _versions;
W
wangguibao 已提交
745 746
};

W
wangguibao 已提交
747 748 749 750 751 752 753
class InferManager {
 public:
  static InferManager& instance() {
    static InferManager ins;
    return ins;
  }

H
HexToString 已提交
754 755 756
  int proc_initialize(const char* path,
                      const char* file,
                      std::shared_ptr<int> engine_index_ptr);
W
wangguibao 已提交
757

H
HexToString 已提交
758 759
  int set_taskexecutor_num(size_t total_engine_num);

760
  int thrd_initialize();
W
wangguibao 已提交
761

762
  int thrd_clear();
W
wangguibao 已提交
763

764
  int reload();
W
wangguibao 已提交
765

766
  int thrd_finalize();
W
wangguibao 已提交
767

768
  int proc_finalize();
W
wangguibao 已提交
769 770

  // Inference interface
H
HexToString 已提交
771 772 773
  int infer(const char* model_name,
            const void* in,
            void* out,
774
            uint32_t batch_size = -1);
W
wangguibao 已提交
775

T
TeslaZhao 已提交
776
  // get engine core
W
wangguibao 已提交
777
  template <typename T>
778
  T* get_core(const char* model_name);
W
wangguibao 已提交
779

T
TeslaZhao 已提交
780 781 782
  // get cube cache
  CubeCache* get_cube_cache(const char* model_name);

W
wangguibao 已提交
783
  // Versioned inference interface
H
HexToString 已提交
784
  int infer(const char* model_name,
H
HexToString 已提交
785 786 787
            const void* in,
            void* out,
            uint32_t batch_size,
788
            uint64_t version);
W
wangguibao 已提交
789

T
TeslaZhao 已提交
790
  // Versioned get engine core
W
wangguibao 已提交
791
  template <typename T>
792
  T* get_core(const char* model_name, const uint64_t version);
W
wangguibao 已提交
793

T
TeslaZhao 已提交
794
  // query model version
795
  int query_version(const std::string& model, uint64_t& version);
W
wangguibao 已提交
796 797 798 799

 private:
  boost::unordered_map<std::string, VersionedInferEngine*> _map;
};
W
wangguibao 已提交
800

W
wangguibao 已提交
801 802 803
}  // namespace predictor
}  // namespace paddle_serving
}  // namespace baidu