operator.py 82.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
B
barriery 已提交
15
from time import time as _time
B
barriery 已提交
16
import time
17 18
import threading
import multiprocessing
H
HexToString 已提交
19
from paddle_serving_client import Client
20 21 22
from concurrent import futures
import logging
import func_timeout
23
import os
B
barrierye 已提交
24
import sys
25
import collections
B
barrierye 已提交
26
import numpy as np
T
TeslaZhao 已提交
27
import json
B
barrierye 已提交
28
from numpy import *
29
from io import BytesIO
B
barrierye 已提交
30 31 32 33 34 35
if sys.version_info.major == 2:
    import Queue
elif sys.version_info.major == 3:
    import queue as Queue
else:
    raise Exception("Error Python version")
36

37 38 39
from .error_catch import ErrorCatch, CustomException, CustomExceptionCode, ParamChecker, ParamVerify
check_feed_dict=ParamVerify.check_feed_dict
check_fetch_list=ParamVerify.check_fetch_list
B
barrierye 已提交
40
from .proto import pipeline_service_pb2
41 42 43 44
from .channel import (ThreadChannel, ProcessChannel,ChannelData, 
                      ChannelDataType, ChannelStopError, ChannelTimeoutError)
from .error_catch import  ProductErrCode
from .error_catch import CustomExceptionCode as ChannelDataErrcode
B
barrierye 已提交
45
from .util import NameGenerator
B
barriery 已提交
46
from .profiler import UnsafeTimeProfiler as TimeProfiler
W
wangjiawei04 已提交
47
from . import local_service_handler
48
from .pipeline_client import PipelineClient as PPClient
H
huangjianhui 已提交
49
from paddle_serving_server.util import kill_stop_process_by_pid
50

51
_LOGGER = logging.getLogger(__name__)
B
barrierye 已提交
52 53
_op_name_gen = NameGenerator("Op")

54 55 56 57 58 59 60 61 62 63 64 65 66 67
# data type of tensor to numpy_data
_TENSOR_DTYPE_2_NUMPY_DATA_DTYPE = {
    0: "int64",  # VarType.INT64
    1: "float32",  # VarType.FP32
    2: "int32",  # VarType.INT32
    3: "float64",  # VarType.FP64
    4: "int16",  # VarType.int16
    5: "float16",  # VarType.FP32
    6: "uint16",  # VarType.BF16
    7: "uint8",  # VarType.UINT8
    8: "int8",  # VarType.INT8
    9: "bool",  # VarType.BOOL
    10: "complex64",  # VarType.COMPLEX64
    11: "complex128",  # VarType.COMPLEX128
68 69
    12: "string",  # load by numpy
    13: "bytes",  # load by numpy
70 71
}

D
dongdaxiang 已提交
72 73 74

class Op(object):
    def __init__(self,
B
barrierye 已提交
75
                 name=None,
D
dongdaxiang 已提交
76
                 input_ops=[],
B
barriery 已提交
77 78
                 server_endpoints=None,
                 fetch_list=None,
B
barrierye 已提交
79
                 client_config=None,
W
wangjiawei04 已提交
80
                 client_type=None,
B
barriery 已提交
81 82
                 concurrency=None,
                 timeout=None,
T
TeslaZhao 已提交
83
                 retry=0,
B
barriery 已提交
84
                 batch_size=None,
85
                 auto_batching_timeout=None,
86 87
                 local_service_handler=None,
                 jump_to_ops=[]):
B
barriery 已提交
88
        # In __init__, all the parameters are just saved and Op is not initialized
B
barrierye 已提交
89
        if name is None:
B
barrierye 已提交
90
            name = _op_name_gen.next()
91
        self.name = name  # to identify the type of OP, it must be globally unique
B
barrierye 已提交
92
        self.concurrency = concurrency  # amount of concurrency
B
barrierye 已提交
93
        self.set_input_ops(input_ops)
94
        self.set_jump_to_ops(jump_to_ops)
B
barrierye 已提交
95

W
wangjiawei04 已提交
96
        self._local_service_handler = local_service_handler
B
barriery 已提交
97
        self._server_endpoints = server_endpoints
B
barrierye 已提交
98
        self._fetch_names = fetch_list
B
barriery 已提交
99
        self._client_config = client_config
W
wangjiawei04 已提交
100
        self.client_type = client_type
B
barriery 已提交
101
        self._timeout = timeout
102
        self._retry = max(1, retry)
B
barriery 已提交
103 104 105
        self._batch_size = batch_size
        self._auto_batching_timeout = auto_batching_timeout

106 107
        self._input = None
        self._outputs = []
B
barrierye 已提交
108

B
barriery 已提交
109 110 111
        self._server_use_profile = False
        self._tracer = None

112 113 114
        # for grpc_pipeline predict mode. False, string key/val; True, tensor format.
        self._pack_tensor_format = False

B
barriery 已提交
115 116 117 118 119
        # only for thread op
        self._for_init_op_lock = threading.Lock()
        self._for_close_op_lock = threading.Lock()
        self._succ_init_op = False
        self._succ_close_op = False
F
felixhjh 已提交
120 121 122 123
        self.dynamic_shape_info = {} 
        self.set_dynamic_shape_info()
    
    def set_dynamic_shape_info(self):
F
felixhjh 已提交
124 125 126 127 128
        """
        when opening tensorrt(configure in config.yml) and each time the input shape
        for inferring is different, using this method for configuring tensorrt
        dynamic shape to infer in each op model
        """
F
felixhjh 已提交
129
        pass
B
barriery 已提交
130

131 132 133 134 135 136 137 138 139 140 141 142 143
    # for feed/fetch dict cehck
    @staticmethod
    def get_feed_fetch_list(client):
        from paddle_serving_app.local_predict import LocalPredictor
        if isinstance(client, Client):
            feed_names = client.get_feed_names()
            fetch_names = client.get_fetch_names()
        if isinstance(client, LocalPredictor):
            feed_names = client.feed_names_
            fetch_names = client.fetch_names_
        return feed_names, fetch_names
              

B
barriery 已提交
144
    def init_from_dict(self, conf):
145 146 147 148 149 150 151 152 153 154 155
        """
        Initializing one Op from config.yaml. If server_endpoints exist,
        which is remote RPC mode, otherwise it is local RPC mode. There
        are three types of predictios in local RPC mode, brpc, grpc and
        local_predictor.

        Args:
            conf: config.yaml

        Returns:
        """
B
barriery 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        if self.concurrency is None:
            self.concurrency = conf["concurrency"]
        if self._retry is None:
            self._retry = conf["retry"]
        if self._fetch_names is None:
            self._fetch_names = conf.get("fetch_list")
        if self._client_config is None:
            self._client_config = conf.get("client_config")
        if self._timeout is None:
            self._timeout = conf["timeout"]
        if self._timeout > 0:
            self._timeout = self._timeout / 1000.0
        else:
            self._timeout = -1

        if self._batch_size is None:
            self._batch_size = conf["batch_size"]
        if self._auto_batching_timeout is None:
            self._auto_batching_timeout = conf["auto_batching_timeout"]
        if self._auto_batching_timeout <= 0 or self._batch_size == 1:
176
            _LOGGER.debug(
B
barriery 已提交
177 178 179 180 181 182 183
                self._log(
                    "Because auto_batching_timeout <= 0 or batch_size == 1,"
                    " set auto_batching_timeout to None."))
            self._auto_batching_timeout = None
        else:
            self._auto_batching_timeout = self._auto_batching_timeout / 1000.0

184 185 186
        self.model_config = None
        self.workdir = None
        self.thread_num = self.concurrency
187
        self.device_type = -1
188 189 190
        self.devices = ""
        self.mem_optim = False
        self.ir_optim = False
191
        self.precision = "fp32"
T
TeslaZhao 已提交
192 193 194 195
        self.use_mkldnn = False
        self.mkldnn_cache_capacity = 0
        self.mkldnn_op_list = None
        self.mkldnn_bf16_op_list = None
F
felixhjh 已提交
196
        self.min_subgraph_size = 3
197
        self.use_calib = False
T
TeslaZhao 已提交
198

B
barriery 已提交
199 200 201 202 203 204
        if self._server_endpoints is None:
            server_endpoints = conf.get("server_endpoints", [])
            if len(server_endpoints) != 0:
                # remote service
                self.with_serving = True
                self._server_endpoints = server_endpoints
205
                self.client_type = conf["client_type"]
206
            else:
W
wangjiawei04 已提交
207
                if self._local_service_handler is None:
B
barriery 已提交
208
                    local_service_conf = conf.get("local_service_conf")
B
barriery 已提交
209 210
                    _LOGGER.info("local_service_conf: {}".format(
                        local_service_conf))
211
                    self.model_config = local_service_conf.get("model_config")
W
wangjiawei04 已提交
212
                    self.client_type = local_service_conf.get("client_type")
213 214
                    self.workdir = local_service_conf.get("workdir")
                    self.thread_num = local_service_conf.get("thread_num")
215
                    self.device_type = local_service_conf.get("device_type")
216 217 218 219
                    self.devices = local_service_conf.get("devices")
                    self.mem_optim = local_service_conf.get("mem_optim")
                    self.ir_optim = local_service_conf.get("ir_optim")
                    self._fetch_names = local_service_conf.get("fetch_list")
220
                    self.precision = local_service_conf.get("precision")
221
                    self.use_calib = local_service_conf.get("use_calib")
T
TeslaZhao 已提交
222 223 224 225 226 227 228
                    self.use_mkldnn = local_service_conf.get("use_mkldnn")
                    self.mkldnn_cache_capacity = local_service_conf.get(
                        "mkldnn_cache_capacity")
                    self.mkldnn_op_list = local_service_conf.get(
                        "mkldnn_op_list")
                    self.mkldnn_bf16_op_list = local_service_conf.get(
                        "mkldnn_bf16_op_list")
F
felixhjh 已提交
229 230
                    self.min_subgraph_size = local_service_conf.get(
                        "min_subgraph_size")
T
TeslaZhao 已提交
231

232
                    if self.model_config is None:
B
barriery 已提交
233 234 235 236
                        self.with_serving = False
                    else:
                        # local rpc service
                        self.with_serving = True
W
wangjiawei04 已提交
237 238
                        if self.client_type == "brpc" or self.client_type == "grpc":
                            service_handler = local_service_handler.LocalServiceHandler(
239
                                model_config=self.model_config,
W
wangjiawei04 已提交
240
                                client_type=self.client_type,
241 242
                                workdir=self.workdir,
                                thread_num=self.thread_num,
243
                                device_type=self.device_type,
244 245
                                devices=self.devices,
                                mem_optim=self.mem_optim,
246
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
247 248 249 250 251
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_bf16_op_list,
F
felixhjh 已提交
252 253
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list,
                                min_subgraph_size=self.min_subgraph_size,
254 255
                                dynamic_shape_info=self.dynamic_shape_info,
                                use_calib=self.use_calib)
W
wangjiawei04 已提交
256 257 258 259 260 261 262 263 264 265 266 267
                            service_handler.prepare_server()  # get fetch_list
                            serivce_ports = service_handler.get_port_list()
                            self._server_endpoints = [
                                "127.0.0.1:{}".format(p) for p in serivce_ports
                            ]
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                            if self._fetch_names is None:
                                self._fetch_names = service_handler.get_fetch_list(
                                )
                        elif self.client_type == "local_predictor":
W
wangjiawei04 已提交
268
                            service_handler = local_service_handler.LocalServiceHandler(
269
                                model_config=self.model_config,
W
wangjiawei04 已提交
270
                                client_type=self.client_type,
271 272
                                workdir=self.workdir,
                                thread_num=self.thread_num,
273
                                device_type=self.device_type,
274
                                devices=self.devices,
275 276
                                fetch_names=self._fetch_names,
                                mem_optim=self.mem_optim,
277
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
278 279 280 281 282
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_op_list,
F
felixhjh 已提交
283 284
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list,
                                min_subgraph_size=self.min_subgraph_size,
285 286
                                dynamic_shape_info=self.dynamic_shape_info,
                                use_calib=self.use_calib)
W
wangjiawei04 已提交
287 288 289 290
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                        self._local_service_handler = service_handler
B
barriery 已提交
291
                else:
B
barriery 已提交
292
                    self.with_serving = True
W
wangjiawei04 已提交
293
                    self._local_service_handler.prepare_server(
B
barriery 已提交
294
                    )  # get fetch_list
W
wangjiawei04 已提交
295
                    serivce_ports = self._local_service_handler.get_port_list()
B
barriery 已提交
296 297 298
                    self._server_endpoints = [
                        "127.0.0.1:{}".format(p) for p in serivce_ports
                    ]
B
barriery 已提交
299
                    if self._client_config is None:
W
wangjiawei04 已提交
300
                        self._client_config = self._local_service_handler.get_client_config(
B
barriery 已提交
301
                        )
B
barriery 已提交
302
                    if self._fetch_names is None:
W
wangjiawei04 已提交
303
                        self._fetch_names = self._local_service_handler.get_fetch_list(
B
barriery 已提交
304
                        )
B
barriery 已提交
305 306
        else:
            self.with_serving = True
B
barriery 已提交
307

308 309 310 311 312 313 314 315 316 317 318
        if not isinstance(self, RequestOp) and not isinstance(self, ResponseOp):
            _LOGGER.info(
                self._log("\n\tinput_ops: {},"
                          "\n\tserver_endpoints: {}"
                          "\n\tfetch_list: {}"
                          "\n\tclient_config: {}"
                          "\n\tconcurrency: {},"
                          "\n\ttimeout(s): {},"
                          "\n\tretry: {},"
                          "\n\tbatch_size: {},"
                          "\n\tauto_batching_timeout(s): {}".format(
B
barriery 已提交
319
                              ", ".join([op.name for op in self._input_ops
320 321 322 323
                                         ]), self._server_endpoints,
                              self._fetch_names, self._client_config,
                              self.concurrency, self._timeout, self._retry,
                              self._batch_size, self._auto_batching_timeout)))
B
barriery 已提交
324

325
    def launch_local_rpc_service(self):
326 327 328 329 330 331 332 333 334
        """
        Launching multiple local rpc servers.

        Args:
            None

        Returns:
            None
        """
W
wangjiawei04 已提交
335
        if self._local_service_handler is None:
B
barriery 已提交
336 337
            _LOGGER.warning(
                self._log("Failed to launch local rpc"
W
wangjiawei04 已提交
338
                          " service: local_service_handler is None."))
B
barriery 已提交
339
            return
W
wangjiawei04 已提交
340
        port = self._local_service_handler.get_port_list()
W
wangjiawei04 已提交
341 342 343
        #if self._local_service_handler.client_type == "local_predictor":
        #    _LOGGER.info("Op({}) use local predictor.")
        #    return
W
wangjiawei04 已提交
344
        self._local_service_handler.start_server()
B
barriery 已提交
345
        _LOGGER.info("Op({}) use local rpc service at port: {}"
346 347
                     .format(self.name, port))

B
barriery 已提交
348
    def use_default_auto_batching_config(self):
349 350 351 352 353 354 355 356 357
        """
        Set the auto batching config default.

        Args:
            None

        Returns:
            None
        """
B
bug fix  
barriery 已提交
358
        if self._batch_size != 1:
359 360
            _LOGGER.warning("Op({}) reset batch_size=1 (original: {})"
                            .format(self.name, self._batch_size))
B
bug fix  
barriery 已提交
361 362
            self._batch_size = 1
        if self._auto_batching_timeout != None:
363
            _LOGGER.warning(
B
barriery 已提交
364 365
                "Op({}) reset auto_batching_timeout=None (original: {})"
                .format(self.name, self._auto_batching_timeout))
B
bug fix  
barriery 已提交
366
            self._auto_batching_timeout = None
B
barriery 已提交
367

B
barrierye 已提交
368
    def use_profiler(self, use_profile):
B
barrierye 已提交
369
        self._server_use_profile = use_profile
370

B
barriery 已提交
371 372 373
    def set_tracer(self, tracer):
        self._tracer = tracer

B
bjjwwang 已提交
374 375 376
    def set_use_prometheus(self, use_prometheus):
        self._use_prometheus = use_prometheus

W
wangjiawei04 已提交
377
    def init_client(self, client_config, server_endpoints):
378 379 380 381 382 383 384 385 386 387 388 389
        """
        Initialize the client object. There are three types of clients, brpc,
        grpc and local_predictor. In grpc or brpc mode, the client connects 
        endpoints.

        Args:
            client_config: client config info
            server_endpoints: server IP/Port list.

        Returns:
            client: client object.
        """
390
        if self.with_serving == False:
B
barriery 已提交
391
            _LOGGER.info("Op({}) has no client (and it also do not "
392
                         "run the process function)".format(self.name))
B
barrierye 已提交
393
            return None
W
wangjiawei04 已提交
394
        if self.client_type == 'brpc':
B
barrierye 已提交
395 396
            client = Client()
            client.load_client_config(client_config)
397
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client) 
398 399
        elif self.client_type == 'pipeline_grpc':
            client = PPClient()
W
wangjiawei04 已提交
400 401 402 403
        elif self.client_type == 'local_predictor':
            if self.local_predictor is None:
                raise ValueError("local predictor not yet created")
            client = self.local_predictor
404
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client)
405
        else:
B
barriery 已提交
406
            raise ValueError("Failed to init client: unknow client "
W
wangjiawei04 已提交
407
                             "type {}".format(self.client_type))
W
wangjiawei04 已提交
408 409 410
        if self._fetch_names is None:
            self._fetch_names = client.fetch_names_
            _LOGGER.info("Op({}) has no fetch name set. So fetch all vars")
W
wangjiawei04 已提交
411 412
        if self.client_type != "local_predictor":
            client.connect(server_endpoints)
413
        _LOGGER.info("init_client, feed_list:{}, fetch_list: {}".format(self.right_feed_names, self.right_fetch_names))
B
barrierye 已提交
414
        return client
415 416 417 418 419

    def get_input_ops(self):
        return self._input_ops

    def set_input_ops(self, ops):
420 421 422 423 424 425 426 427 428 429
        """
        Set input ops.Each op have many input ops, but only one input
        channel.

        Args:
            ops: op list

        Returns:
            None.
        """
430 431 432 433 434
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]
        self._input_ops = []
        for op in ops:
            if not isinstance(op, Op):
435
                _LOGGER.critical(
B
barriery 已提交
436 437
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
438
                os._exit(-1)
439
            self._input_ops.append(op)
D
dongdaxiang 已提交
440

441 442 443
    def set_pack_tensor_format(self, is_tensor_format=False):
        self._pack_tensor_format = is_tensor_format

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    def get_jump_to_ops(self):
        return self._jump_to_ops

    def set_jump_to_ops(self, ops):
        """
        Set jump to ops, then, this op can send channeldata to output channel.

        Args:
            ops: op list to be jumpped

        Returns:
            None.
        """
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]

        self._jump_to_ops = []
        for op in ops:
            if not isinstance(op, Op):
                _LOGGER.critical(
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
                os._exit(-1)
            self._jump_to_ops.append(op)

    def is_jump_op(self):
        """
        The op has _jump_to_ops members or not.

        Args:
            None

        Returns:
            True or False
        """
        return len(self._jump_to_ops) > 0

    def check_jumping(self, input_data):
        """
        Check whether to send data to jump ops.WhileOp needs to rewrite 
        this interface. this function returns False default.
     
        Args:
            input_data: input data to be preprocessed

        Returns:
            True, send data to the output channel of jump ops
            False, send data to output channel.
        """
        return False

    def get_output_channels_of_jump_ops(self):
        """
        Get output channels of jump ops

        Args:
            None

        Returns:
            list of channels
        """
        channels = []
        if self.is_jump_op() is False:
            return channels
        for op in self._jump_to_ops:
            _LOGGER.info("op:{} extend op._get_output_channels:{}".format(
                op.name, op._get_output_channels()))
            channels.extend(op._get_output_channels())

        _LOGGER.info("get_output_channels_of_jump_ops, channels:{}".format(
            channels))
        return channels

517
    def add_input_channel(self, channel):
518 519 520 521
        """
        Adding one input channel to the Op. Each op have many front op,
        but, only one input channel.
        """
522
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
523
            _LOGGER.critical(
B
barriery 已提交
524 525 526
                self._log("Failed to set input_channel: input "
                          "channel must be Channel type, not {}".format(
                              type(channel))))
527
            os._exit(-1)
528 529
        channel.add_consumer(self.name)
        self._input = channel
D
dongdaxiang 已提交
530

531
    def clean_input_channel(self):
B
barrierye 已提交
532 533 534 535
        self._input = None

    def _get_input_channel(self):
        return self._input
D
dongdaxiang 已提交
536

537
    def add_output_channel(self, channel):
538 539 540 541 542 543 544 545 546 547
        """
        Adding one output channel to the Op. Each op have many output channels,
        But only one front channel.

        Args:
            channel: an output channel object.

        Returns:
            None
        """
548
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
549
            _LOGGER.critical(
B
barriery 已提交
550 551
                self._log("Failed to add output_channel: output channel "
                          "must be Channel type, not {}".format(type(channel))))
552
            os._exit(-1)
553 554
        channel.add_producer(self.name)
        self._outputs.append(channel)
555
        _LOGGER.debug("op:{} add output_channel {}".format(self.name, channel))
D
dongdaxiang 已提交
556

557
    def clean_output_channels(self):
B
barrierye 已提交
558 559 560 561 562
        self._outputs = []

    def _get_output_channels(self):
        return self._outputs

563
    def preprocess(self, input_dicts, data_id=0, log_id=0):
T
TeslaZhao 已提交
564 565 566 567 568 569
        """
        In preprocess stage, assembling data for process stage. users can 
        override this function for model feed features.

        Args:
            input_dicts: input data to be preprocessed
570
            data_id: inner unique id, increase auto
571
            log_id: global unique id for RTT, 0 default
T
TeslaZhao 已提交
572 573

        Return:
T
TeslaZhao 已提交
574
            output_data: data for process stage
T
TeslaZhao 已提交
575 576 577 578 579
            is_skip_process: skip process stage or not, False default
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception. 
            prod_errinfo: "" default
        """
B
barrierye 已提交
580
        # multiple previous Op
B
barrierye 已提交
581
        if len(input_dicts) != 1:
582 583
            _LOGGER.critical(
                self._log(
B
barriery 已提交
584 585
                    "Failed to run preprocess: this Op has multiple previous "
                    "inputs. Please override this func."))
586
            os._exit(-1)
D
dongdaxiang 已提交
587

B
barrierye 已提交
588
        (_, input_dict), = input_dicts.items()
T
TeslaZhao 已提交
589
        return input_dict, False, None, ""
590
    
591
    def process(self, feed_batch, typical_logid=0):
T
TeslaZhao 已提交
592 593 594 595 596
        """
        In process stage, send requests to the inference server or predict locally.
        users do not need to inherit this function
        Args:
            feed_batch: data to be fed to inference server
597 598
            typical_logid: mark batch predicts, usually the first logid in batch,
                0 default.
T
TeslaZhao 已提交
599 600 601 602

        Returns:
            call_result: predict result
        """
603 604 605 606

        call_result = None
        err_code = ChannelDataErrcode.OK.value
        err_info = ""
607 608 609 610 611 612 613 614 615 616 617 618 619
        @ErrorCatch 
        @ParamChecker
        def feed_fetch_list_check_helper(feed_batch : lambda feed_batch: check_feed_dict(feed_batch[0], self.right_feed_names),
                                         fetch_list : lambda fetch_list: check_fetch_list(fetch_list, self.right_fetch_names),
                                         log_id):
            return None
        _, resp = feed_fetch_list_check_helper(feed_batch, self._fetch_names, log_id=typical_logid)
        if resp.err_no != CustomExceptionCode.OK.value:
            err_code = resp.err_no
            err_info = resp.err_msg
            call_result = None
            return call_result, err_code, err_info
                
W
wangjiawei04 已提交
620
        if self.client_type == "local_predictor":
621 622 623 624 625 626 627 628
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for local_predictor mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"

W
wangjiawei04 已提交
629 630
            call_result = self.client.predict(
                feed=feed_batch[0],
W
wangjiawei04 已提交
631
                fetch=self._fetch_names,
W
wangjiawei04 已提交
632 633
                batch=True,
                log_id=typical_logid)
634 635 636 637 638 639 640 641

        elif self.client_type == "brpc":
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for brpc mode.".format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"
W
wangjiawei04 已提交
642
            call_result = self.client.predict(
643
                feed=feed_batch[0],
W
wangjiawei04 已提交
644
                fetch=self._fetch_names,
W
wangjiawei04 已提交
645 646
                batch=True,
                log_id=typical_logid)
647 648 649 650 651 652 653 654 655 656 657 658 659 660

        elif self.client_type == "pipeline_grpc":
            err, err_info = ChannelData.check_dictdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                       npdata in process for pipeline_grpc mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be dict"

            call_result = self.client.predict(
                feed_dict=feed_batch[0],
                fetch=self._fetch_names,
                asyn=False,
661
                pack_tensor_format=self._pack_tensor_format,
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
                profile=False)
            if call_result is None:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. call_result is None."))
                return call_result, ChannelDataErrcode.UNKNOW.value, "pipeline_grpc error"
            if call_result.err_no != 0:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. err_no:{}, err_info:{}".
                              format(call_result.err_no, call_result.err_msg)))
                return call_result, ChannelDataErrcode(
                    call_result.err_no).value, call_result.err_msg

            new_dict = {}
            err_code = ChannelDataErrcode(call_result.err_no).value
            err_info = call_result.err_msg
            for idx, key in enumerate(call_result.key):
                new_dict[key] = [call_result.value[idx]]
            call_result = new_dict

        return call_result, err_code, err_info
682

683
    def postprocess(self, input_data, fetch_data, data_id=0, log_id=0):
T
TeslaZhao 已提交
684 685 686
        """
        In postprocess stage, assemble data for next op or output.
        Args:
T
TeslaZhao 已提交
687 688
            input_data: data returned in preprocess stage, dict(for single predict) or list(for batch predict)
            fetch_data: data returned in process stage, dict(for single predict) or list(for batch predict)
689
            data_id: inner unique id, increase auto
690
            log_id: logid, 0 default
T
TeslaZhao 已提交
691 692

        Returns: 
T
TeslaZhao 已提交
693
            fetch_dict: fetch result must be dict type.
T
TeslaZhao 已提交
694 695 696 697
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception.
            prod_errinfo: "" default
        """
T
TeslaZhao 已提交
698 699 700
        fetch_dict = {}
        if isinstance(fetch_data, dict):
            fetch_dict = fetch_data
T
TeslaZhao 已提交
701
        return fetch_dict, None, ""
D
dongdaxiang 已提交
702

B
barrierye 已提交
703
    def _parse_channeldata(self, channeldata_dict):
T
TeslaZhao 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716
        """
        Parse one channeldata 
        Args:
            channeldata_dict : channel data to be parsed, dict type
        
        Return:
            data_id: created by dag._id_generator, unique
            error_channeldata: error channeldata
            parsed_data: get np/dict data from channeldata
            client_need_profile: need profile info
            profile_set: profile info
            log_id: logid for tracing a request 
        """
717
        data_id, error_channeldata = None, None
B
barrierye 已提交
718
        client_need_profile, profile_set = False, set()
B
barrierye 已提交
719 720 721 722
        parsed_data = {}

        key = list(channeldata_dict.keys())[0]
        data_id = channeldata_dict[key].id
T
TeslaZhao 已提交
723
        log_id = channeldata_dict[key].log_id
B
barrierye 已提交
724
        client_need_profile = channeldata_dict[key].client_need_profile
B
barrierye 已提交
725 726

        for name, data in channeldata_dict.items():
T
TeslaZhao 已提交
727
            if data.error_code != ChannelDataErrcode.OK.value:
B
barrierye 已提交
728 729 730
                error_channeldata = data
                break
            parsed_data[name] = data.parse()
B
barrierye 已提交
731
            if client_need_profile:
B
barrierye 已提交
732
                profile_set |= data.profile_data_set
B
barrierye 已提交
733
        return (data_id, error_channeldata, parsed_data, client_need_profile,
T
TeslaZhao 已提交
734
                profile_set, log_id)
B
barrierye 已提交
735 736 737 738 739

    def _push_to_output_channels(self,
                                 data,
                                 channels,
                                 name=None,
B
barriery 已提交
740
                                 profile_str=None,
B
barrierye 已提交
741
                                 client_need_profile=False,
B
barrierye 已提交
742
                                 profile_set=None):
T
TeslaZhao 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756
        """
        Push data to output channels, Do not run the later stage(preprocess,
        process, postprocess)
        Args:
            data: channeldata, to be pushed
            channels: output channels
            name: op name  
            profile_str: one profile message
            client_need_profile: False default
            profile_set: profile message collections

        Returns:
            None
        """
757 758
        if name is None:
            name = self.name
B
barrierye 已提交
759

B
barriery 已提交
760
        # add profile into channeldata
B
barrierye 已提交
761
        if client_need_profile and profile_set is not None:
B
barriery 已提交
762 763
            if profile_str is not None:
                profile_set.add(profile_str)
B
barrierye 已提交
764
            data.add_profile(profile_set)
B
barrierye 已提交
765

B
barriery 已提交
766 767 768
        for channel in channels:
            channel.push(data, name)

W
wangjiawei04 已提交
769
    def start_with_process(self):
770 771 772 773 774 775 776 777 778 779
        """
        Each OP creates a process to run the main loop, initializes the CUDA
        environment in each individual process.

        Args:
            None

        Returns:
            process array
        """
B
barriery 已提交
780 781 782
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
W
wangjiawei04 已提交
783
        process = []
B
barrierye 已提交
784
        for concurrency_idx in range(self.concurrency):
785 786
            p = multiprocessing.Process(
                target=self._run,
B
barrierye 已提交
787
                args=(concurrency_idx, self._get_input_channel(),
788 789
                      self._get_output_channels(), False, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
790
                      self.device_type, self.devices, self.mem_optim,
T
TeslaZhao 已提交
791 792
                      self.ir_optim, self.precision, self.use_mkldnn,
                      self.mkldnn_cache_capacity, self.mkldnn_op_list,
793
                      self.mkldnn_bf16_op_list, self.is_jump_op(),
F
felixhjh 已提交
794
                      self.get_output_channels_of_jump_ops(),
795 796
                      self.min_subgraph_size, self.dynamic_shape_info, 
                      self.use_calib))
B
barriery 已提交
797
            p.daemon = True
798
            p.start()
W
wangjiawei04 已提交
799 800
            process.append(p)
        return process
801

W
wangjiawei04 已提交
802
    def start_with_thread(self):
803 804 805 806 807 808 809 810 811 812
        """
        Each OP creates a thread to run the main loop, initializes the CUDA 
        environment in the main thread.

        Args:
            None
 
        Returns:
            thread array
        """
B
barriery 已提交
813 814 815
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
816 817 818 819

        #Init cuda env in main thread
        if self.client_type == "local_predictor":
            _LOGGER.info("Init cuda env in main thread")
820
            self.local_predictor = self._local_service_handler.get_client(0)
821

822
        threads = []
B
barrierye 已提交
823
        for concurrency_idx in range(self.concurrency):
824 825
            t = threading.Thread(
                target=self._run,
B
barrierye 已提交
826
                args=(concurrency_idx, self._get_input_channel(),
827 828
                      self._get_output_channels(), True, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
829
                      self.device_type, self.devices, self.mem_optim,
830 831 832
                      self.ir_optim, self.precision, self.use_mkldnn, 
                      self.mkldnn_cache_capacity, self.mkldnn_op_list, 
                      self.mkldnn_bf16_op_list, self.is_jump_op(), 
F
felixhjh 已提交
833
                      self.get_output_channels_of_jump_ops(),
834 835
                      self.min_subgraph_size, self.dynamic_shape_info,
                      self.use_calib))
B
barriery 已提交
836 837 838
            # When a process exits, it attempts to terminate
            # all of its daemonic child processes.
            t.daemon = True
839 840 841 842
            t.start()
            threads.append(t)
        return threads

B
barrierye 已提交
843
    def init_op(self):
B
barrierye 已提交
844 845
        pass

T
TeslaZhao 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858 859
    def _run_preprocess(self, parsed_data_dict, op_info_prefix, logid_dict):
        """
        Run preprocess stage
        Args:
            parsed_data_dict: data to be pre-processed
            op_info_prefix: input op info
            logid_dict: logid dict

        Returns:
            preped_data_dict: data preprocessed, to be processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it.
            skip_process_dict: skip process stage or not

        """
B
barriery 已提交
860
        _LOGGER.debug("{} Running preprocess".format(op_info_prefix))
861 862
        preped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
863
        skip_process_dict = {}
864 865 866 867 868 869
        @ErrorCatch
        def preprocess_help(self, parsed_data, data_id, logid_dict):
            preped_data, is_skip_process, prod_errcode, prod_errinfo = self.preprocess(
                parsed_data, data_id, logid_dict.get(data_id))
            return preped_data, is_skip_process, prod_errcode, prod_errinfo
            
870 871
        for data_id, parsed_data in parsed_data_dict.items():
            preped_data, error_channeldata = None, None
T
TeslaZhao 已提交
872 873 874
            is_skip_process = False
            prod_errcode, prod_errinfo = None, None
            log_id = logid_dict.get(data_id)
F
felixhjh 已提交
875 876
            process_res, resp = preprocess_help(self, parsed_data, data_id = data_id,
            logid_dict = logid_dict)
F
felixhjh 已提交
877
            if resp.err_no == CustomExceptionCode.OK.value:
878
                preped_data, is_skip_process, prod_errcode, prod_errinfo = process_res
T
TeslaZhao 已提交
879 880
                if is_skip_process is True:
                    skip_process_dict[data_id] = True
881 882 883 884 885 886 887 888 889 890 891
                if prod_errcode is not None:
                    _LOGGER.error("data_id: {} return product error. Product ErrNo:{}, Product ErrMsg: {}".format(data_id, prod_errcode, prod_errinfo))
                    error_channeldata = ChannelData(
                      error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                      error_info="",
                      prod_error_code=prod_errcode,
                      prod_error_info=prod_errinfo,
                      data_id=data_id,
                      log_id=log_id)
            else:
                
T
TeslaZhao 已提交
892
                error_channeldata = ChannelData(
893 894 895 896 897
                  error_code=resp.err_no,
                  error_info=resp.err_msg,
                  data_id=data_id,
                  log_id=log_id)
                skip_process_dict[data_id] = True 
T
TeslaZhao 已提交
898

899 900 901 902
            if error_channeldata is not None:
                err_channeldata_dict[data_id] = error_channeldata
            else:
                preped_data_dict[data_id] = preped_data
B
barriery 已提交
903
        _LOGGER.debug("{} Succ preprocess".format(op_info_prefix))
T
TeslaZhao 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
        return preped_data_dict, err_channeldata_dict, skip_process_dict

    def _run_process(self, preped_data_dict, op_info_prefix, skip_process_dict,
                     logid_dict):
        """
        Run process stage
        Args:
            preped_data_dict: feed the data to be predicted by the model.  
            op_info_prefix: prefix op info
            skip_process_dict: skip process stage or not
            logid_dict: logid dict

        Returns:
            midped_data_dict: data midprocessed, to be post-processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it 
        """
B
barriery 已提交
920
        _LOGGER.debug("{} Running process".format(op_info_prefix))
921 922
        midped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
923
        is_skip_process = False
T
TeslaZhao 已提交
924
        data_ids = list(preped_data_dict.keys())
T
TeslaZhao 已提交
925 926

        # skip process stage
T
TeslaZhao 已提交
927 928
        if len(data_ids) == 1 and skip_process_dict.get(data_ids[0]) == True:
            is_skip_process = True
T
TeslaZhao 已提交
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
        if self.with_serving is False or is_skip_process is True:
            midped_data_dict = preped_data_dict
            _LOGGER.warning("(data_id={} log_id={}) OP={} skip process stage. " \
                "with_serving={}, is_skip_process={}".format(data_ids[0],
                logid_dict.get(data_ids[0]), self.name, self.with_serving,
                is_skip_process))
            return midped_data_dict, err_channeldata_dict

        # use typical_logid to mark batch data
        # data_ids is one self-increasing unique key. 
        typical_logid = data_ids[0]
        if len(data_ids) != 1:
            for data_id in data_ids:
                _LOGGER.info(
                    "(data_id={} logid={}) Auto-batching is On Op={}!!" \
                    "We selected logid={} (from batch: {}) as a " \
                    "representative for logging.".format(
                    data_id, logid_dict.get(data_id), self.name,
                    typical_logid, data_ids))

        one_input = preped_data_dict[data_ids[0]]
        feed_batch = []
        feed_dict = {}
        cur_offset = 0
        input_offset_dict = {}
        batch_input = False

        if isinstance(one_input, dict):
            # For dict type, data structure is dict.
            # Merge multiple dicts for data_ids into one dict.
            # feed_batch is the input param of predict func.
            # input_offset_dict is used for data restration[data_ids]
            if len(data_ids) == 1:
                feed_batch = [preped_data_dict[data_id] for data_id in data_ids]
            else:
964 965
                for data_id in data_ids:
                    for key, val in preped_data_dict[data_id].items():
T
TeslaZhao 已提交
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
                        has_val = feed_dict.get(key)
                        if has_val is None:
                            feed_dict[key] = val
                            continue
                        # merge 2 np.arrray
                        if isinstance(val, np.ndarray):
                            feed_dict[key] = np.append(
                                feed_dict[key], val, axis=0)
                feed_batch.append(feed_dict)

            for data_id in data_ids:
                start = cur_offset
                for key, val in preped_data_dict[data_id].items():
                    if isinstance(val, (list, np.ndarray)):
                        cur_offset += len(val)
                    else:
                        cur_offset += 1
                    break
                input_offset_dict[data_id] = [start, cur_offset]
        elif isinstance(one_input, list):
            # For list type, data structure of one_input is [dict, dict, ...]
            # Data structure of feed_batch is [dict1_1, dict1_2, dict2_1, ...]   
            # Data structure of input_offset_dict is { data_id : [start, end] }
            batch_input = True
            for data_id in data_ids:
                feed_batch.extend(preped_data_dict[data_id])
                data_size = len(preped_data_dict[data_id])
                start = cur_offset
                cur_offset = start + data_size
                input_offset_dict[data_id] = [start, cur_offset]
        else:
            _LOGGER.critical(
                "(data_id={} log_id={}){} Failed to process: expect input type is dict"
                " or list(batch input), but get {}".format(data_ids[
                    0], typical_logid, op_info_prefix, type(one_input)))
            for data_id in data_ids:
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = "expect input type is dict or list, but get {}".format(
                    type(one_input))
                err_channeldata_dict[data_id] = ChannelData(
                    error_code=error_code,
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict
B
barrierye 已提交
1011

T
TeslaZhao 已提交
1012 1013
        midped_batch = None
        error_code = ChannelDataErrcode.OK.value
1014
        error_info = ""
T
TeslaZhao 已提交
1015 1016 1017 1018
        if self._timeout <= 0:
            # No retry
            try:
                if batch_input is False:
1019 1020
                    midped_batch, error_code, error_info = self.process(
                        feed_batch, typical_logid)
T
TeslaZhao 已提交
1021 1022 1023
                else:
                    midped_batch = []
                    for idx in range(len(feed_batch)):
1024 1025 1026 1027
                        predict_res, error_code, error_info = self.process(
                            [feed_batch[idx]], typical_logid)
                        if error_code != ChannelDataErrcode.OK.value:
                            break
T
TeslaZhao 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
                        midped_batch.append(predict_res)
            except Exception as e:
                error_code = ChannelDataErrcode.UNKNOW.value
                error_info = "(data_id={} log_id={}) {} Failed to process(batch: {}): {}".format(
                    data_ids[0], typical_logid, op_info_prefix, data_ids, e)
                _LOGGER.error(error_info, exc_info=True)
        else:
            # retry N times configed in yaml files.
            for i in range(self._retry):
                try:
                    # time out for each process
                    if batch_input is False:
1040
                        midped_batch, error_code, error_info = func_timeout.func_timeout(
B
barriery 已提交
1041 1042 1043
                            self._timeout,
                            self.process,
                            args=(feed_batch, typical_logid))
1044
                    else:
T
TeslaZhao 已提交
1045 1046
                        midped_batch = []
                        for idx in range(len(feed_batch)):
1047
                            predict_res, error_code, error_info = func_timeout.func_timeout(
T
TeslaZhao 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
                                self._timeout,
                                self.process,
                                args=([feed_batch[idx]], typical_logid))
                            midped_batch[idx].append(predict_res)

                except func_timeout.FunctionTimedOut as e:
                    if i + 1 >= self._retry:
                        error_code = ChannelDataErrcode.TIMEOUT.value
                        error_info = "(log_id={}) {} Failed to process(batch: {}): " \
                            "exceeded retry count.".format(typical_logid, op_info_prefix, data_ids)
                        _LOGGER.error(error_info)
B
barrierye 已提交
1059
                    else:
T
TeslaZhao 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
                        _LOGGER.warning(
                            "(log_id={}) {} Failed to process(batch: {}): timeout,"
                            " and retrying({}/{})...".format(
                                typical_logid, op_info_prefix, data_ids, i + 1,
                                self._retry))
                except Exception as e:
                    error_code = ChannelDataErrcode.UNKNOW.value
                    error_info = "(log_id={}) {} Failed to process(batch: {}): {}".format(
                        typical_logid, op_info_prefix, data_ids, e)
                    _LOGGER.error(error_info, exc_info=True)
                    break
                else:
                    break

        # 2 kinds of errors
        if error_code != ChannelDataErrcode.OK.value or midped_batch is None:
1076 1077 1078
            error_info = "[{}] failed to predict. {}. Please check the input dict and checkout PipelineServingLogs/pipeline.log for more details.".format(
             self.name, error_info)
    
T
TeslaZhao 已提交
1079 1080 1081
            _LOGGER.error(error_info)
            for data_id in data_ids:
                err_channeldata_dict[data_id] = ChannelData(
1082
                    error_code=error_code,
T
TeslaZhao 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict

        # Split batch infer result to each data_ids
        if batch_input is False:
            var_names = midped_batch.keys()
            lod_var_names = set()
            lod_offset_names = set()
            # midped_batch is dict type for single input 
            for name in var_names:
                lod_offset_name = "{}.lod".format(name)
                if lod_offset_name in var_names:
                    _LOGGER.debug("(log_id={}) {} {} is LodTensor".format(
                        typical_logid, op_info_prefix, name))
                    lod_var_names.add(name)
                    lod_offset_names.add(lod_offset_name)

            for idx, data_id in enumerate(data_ids):
                midped_data_dict[data_id] = {}

            for name, value in midped_batch.items():
                if name in lod_offset_names:
                    continue
                if name in lod_var_names:
                    # lodtensor
                    lod_offset_name = "{}.lod".format(name)
                    lod_offset = midped_batch[lod_offset_name]
                    for idx, data_id in enumerate(data_ids):
                        data_offset_left = input_offset_dict[data_id][0]
                        data_offset_right = input_offset_dict[data_id][1]
                        lod_offset_left = lod_offset[data_offset_left]
                        lod_offset_right = lod_offset[data_offset_right]
                        midped_data_dict[data_id][name] = value[
                            lod_offset_left:lod_offset_right]
                        midped_data_dict[data_id][lod_offset_name] = \
                            lod_offset[data_offset_left:data_offset_right + 1] - lod_offset[data_offset_left]
                else:
                    # normal tensor
                    for idx, data_id in enumerate(data_ids):
                        start = input_offset_dict[data_id][0]
                        end = input_offset_dict[data_id][1]
                        midped_data_dict[data_id][name] = value[start:end]
1127
        else:
T
TeslaZhao 已提交
1128 1129 1130 1131 1132
            # midped_batch is list type for batch input
            for idx, data_id in enumerate(data_ids):
                start = input_offset_dict[data_id][0]
                end = input_offset_dict[data_id][1]
                midped_data_dict[data_id] = midped_batch[start:end]
1133 1134
        return midped_data_dict, err_channeldata_dict

B
barriery 已提交
1135
    def _run_postprocess(self, parsed_data_dict, midped_data_dict,
T
TeslaZhao 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
                         op_info_prefix, logid_dict):
        """
        Run postprocess stage.
        Args:
            parsed_data_dict: data returned in preprocess stage 
            midped_data_dict: data returned in process stage
            op_info_prefix: prefix op info
            logid_dict: logid dict

        Returns:
            postped_data_dict: data postprocessed 
            err_channeldata_dict: when exceptions occurred, putting errors in it
 
        """
B
barriery 已提交
1150
        _LOGGER.debug("{} Running postprocess".format(op_info_prefix))
1151 1152
        postped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
1153 1154 1155 1156 1157
        @ErrorCatch
        def postprocess_help(self, parsed_data_dict, midped_data, data_id, logid_dict):
            postped_data, prod_errcode, prod_errinfo = self.postprocess(parsed_data_dict[data_id], 
              midped_data, data_id, logid_dict.get(data_id))
            if not isinstance(postped_data, dict):
F
felixhjh 已提交
1158
                raise CustomException(CustomExceptionCode.TYPE_ERROR, "postprocess should return dict", True)
1159 1160
            return postped_data, prod_errcode, prod_errinfo

B
bug fix  
barriery 已提交
1161
        for data_id, midped_data in midped_data_dict.items():
T
TeslaZhao 已提交
1162
            log_id = logid_dict.get(data_id)
1163
            postped_data, err_channeldata = None, None
T
TeslaZhao 已提交
1164 1165
            prod_errcode, prod_errinfo = None, None

F
felixhjh 已提交
1166 1167
            post_res, resp = postprocess_help(self, parsed_data_dict, midped_data, data_id
            = data_id, logid_dict = logid_dict)
H
huangjianhui 已提交
1168
            if resp.err_no == CustomExceptionCode.OK.value:
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
                postped_data, prod_errcode, prod_errinfo = post_res
                if prod_errcode is not None:
                  # product errors occured
                    err_channeldata = ChannelData(
                      error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                      error_info="",
                      prod_error_code=prod_errcode,
                      prod_error_info=prod_errinfo,
                      data_id=data_id,
                      log_id=log_id)
            else:
T
TeslaZhao 已提交
1180
                err_channeldata = ChannelData(
1181 1182
                    error_code=resp.err_no,
                    error_info=resp.err_msg,
T
TeslaZhao 已提交
1183 1184 1185
                    data_id=data_id,
                    log_id=log_id)

1186 1187 1188 1189
            if err_channeldata is not None:
                err_channeldata_dict[data_id] = err_channeldata
                continue

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
            output_data = None
            err, _ = ChannelData.check_npdata(postped_data)
            if err == 0:
                output_data = ChannelData(
                  ChannelDataType.CHANNEL_NPDATA.value,
                  npdata=postped_data,
                  data_id=data_id,
                  log_id=log_id)
            else:
                output_data = ChannelData(
                  ChannelDataType.DICT.value,
                  dictdata=postped_data,
                  data_id=data_id,
                  log_id=log_id)
            postped_data_dict[data_id] = output_data
B
barriery 已提交
1205
        _LOGGER.debug("{} Succ postprocess".format(op_info_prefix))
1206
        return postped_data_dict, err_channeldata_dict
B
barriery 已提交
1207 1208

    def _auto_batching_generator(self, input_channel, op_name, batch_size,
B
barriery 已提交
1209
                                 timeout, op_info_prefix):
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
        """
        Merge batch_size requests for one prediction.Taking one piece of data 
        from the input channel each time until equals batch_size, or the waiting 
        time exceeds auto_batching_timeout.

        Args:
            input_channel: the input channel of Op
            op_name: op name
            batch_size: batch size, Less than worker_num
            timeout: batch timeout, seconds, If timeout is None, and the quantity 
                taken from the front is less than batch_size, blocking occured.
            op_info_prefix: op link info.

        Returns:
            None
        """
B
barriery 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234
        while True:
            batch = []
            while len(batch) == 0:
                endtime = None
                if timeout is not None:
                    endtime = _time() + timeout
                for idx in range(batch_size):
                    try:
                        channeldata_dict = None
1235
                        front_start_time = int(round(_time() * 1000000))
B
barriery 已提交
1236 1237 1238
                        if timeout is not None:
                            remaining = endtime - _time()
                            if remaining <= 0.0:
B
barriery 已提交
1239 1240
                                _LOGGER.debug("{} Failed to generate batch: "
                                              "timeout".format(op_info_prefix))
B
barriery 已提交
1241
                                break
B
barriery 已提交
1242 1243
                            channeldata_dict = input_channel.front(op_name,
                                                                   timeout)
B
barriery 已提交
1244 1245 1246
                        else:
                            channeldata_dict = input_channel.front(op_name)
                        batch.append(channeldata_dict)
1247
                        _LOGGER.debug(
1248 1249
                            "_auto_batching_generator get {} channeldata from op:{} input channel. time={}".
                            format(idx, op_name, front_start_time))
B
barriery 已提交
1250
                    except ChannelTimeoutError:
B
barriery 已提交
1251 1252
                        _LOGGER.debug("{} Failed to generate batch: "
                                      "timeout".format(op_info_prefix))
B
barriery 已提交
1253
                        break
B
barriery 已提交
1254 1255
            _LOGGER.debug("{} Got actual batch_size: {}".format(op_info_prefix,
                                                                len(batch)))
B
barriery 已提交
1256
            yield batch
1257

1258
    def _parse_channeldata_batch(self, batch, output_channels):
T
TeslaZhao 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
        """
        Parse channeldatas batch
        Args:
            batch: auto-batching batch datas
            output_channels: output channels 

        Returns:
            parsed_data_dict: parsed from channeldata in batch
            need_profile_dict: need profile dict in batch 
            profile_dict: profile info dict in batch
            logid_dict: trace each request in batch
        """
1271
        parsed_data_dict = collections.OrderedDict()
1272 1273
        need_profile_dict = {}
        profile_dict = {}
T
TeslaZhao 已提交
1274
        logid_dict = {}
B
bug fix  
barriery 已提交
1275
        for channeldata_dict in batch:
1276
            (data_id, error_channeldata, parsed_data,
T
TeslaZhao 已提交
1277
                    client_need_profile, profile_set, log_id) = \
1278 1279 1280 1281 1282
                            self._parse_channeldata(channeldata_dict)
            if error_channeldata is None:
                parsed_data_dict[data_id] = parsed_data
                need_profile_dict[data_id] = client_need_profile
                profile_dict[data_id] = profile_set
T
TeslaZhao 已提交
1283
                logid_dict[data_id] = log_id
1284 1285 1286
            else:
                # error data in predecessor Op
                # (error_channeldata with profile info)
B
barriery 已提交
1287 1288
                self._push_to_output_channels(error_channeldata,
                                              output_channels)
1289

T
TeslaZhao 已提交
1290
        return parsed_data_dict, need_profile_dict, profile_dict, logid_dict
B
barriery 已提交
1291

W
wangjiawei04 已提交
1292
    def _run(self, concurrency_idx, input_channel, output_channels,
1293
             is_thread_op, trace_buffer, model_config, workdir, thread_num,
1294 1295 1296 1297
             device_type, devices, mem_optim, ir_optim, precision,
             use_mkldnn, mkldnn_cache_capacity, mkldnn_op_list, 
             mkldnn_bf16_op_list, is_jump_op, output_channels_of_jump_ops, 
             min_subgraph_size, dynamic_shape_info, use_calib):
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
        """
        _run() is the entry function of OP process / thread model.When client 
        type is local_predictor in process mode, the CUDA environment needs to 
        be initialized by LocalServiceHandler[child process], otherwise, Cuda
        error(3), initialization error is occured. Preprocess, process and 
        postprocess are executed in the main loop. The preprocess and postprocess
        function is usually rewrited by users. Trace data is recorded by trace_que.

        Args:
            concurrency_idx: thread/process index
            input_channel: input channel, take the data to be processed
            output_channels: output channel, store processed data
            is_thread_op: False, It's process op; True, It's thread op
            trace_buffer: store trace infomations
            model_config: model config path
            workdir: work directory
            thread_num: number of threads, concurrent quantity
1315
            device_type: support multiple devices
1316 1317
            devices: gpu id list[gpu], "" default[cpu]
            mem_optim: use memory/graphics memory optimization, True default.
1318
            ir_optim: use calculation chart optimization, False default.
T
TeslaZhao 已提交
1319 1320 1321 1322 1323
            precision: inference precision, e.g. "fp32", "fp16", "int8", "bf16"
            use_mkldnn: use mkldnn, default False.
            mkldnn_cache_capacity: cache capacity of mkldnn, 0 means no limit.
            mkldnn_op_list: OP list optimized by mkldnn, None default.
            mkldnn_bf16_op_list: OP list optimized by mkldnn bf16, None default.
1324 1325
            is_jump_op: OP has jump op list or not, False default.
            output_channels_of_jump_ops: all output channels of jump ops.
1326
            use_calib: use calib mode of paddle inference, False default.
1327 1328 1329 1330

        Returns:
            None
        """
1331
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1332

1333
        # init ops
B
barriery 已提交
1334
        profiler = None
1335 1336 1337 1338 1339 1340
        @ErrorCatch
        def check_helper(self, is_thread_op, model_config, workdir, 
             thread_num, device_type, devices, mem_optim, ir_optim, 
             precision, use_mkldnn, mkldnn_cache_capacity, mkldnn_op_list, 
             mkldnn_bf16_op_list, min_subgraph_size, dynamic_shape_info):
            
1341 1342 1343 1344 1345 1346
            if is_thread_op == False and self.client_type == "local_predictor":
                self.service_handler = local_service_handler.LocalServiceHandler(
                    model_config=model_config,
                    client_type="local_predictor",
                    workdir=workdir,
                    thread_num=thread_num,
1347
                    device_type=device_type,
1348 1349
                    devices=devices,
                    mem_optim=mem_optim,
1350
                    ir_optim=ir_optim,
T
TeslaZhao 已提交
1351 1352 1353 1354
                    precision=precision,
                    use_mkldnn=use_mkldnn,
                    mkldnn_cache_capacity=mkldnn_cache_capacity,
                    mkldnn_op_list=mkldnn_op_list,
F
felixhjh 已提交
1355 1356
                    mkldnn_bf16_op_list=mkldnn_bf16_op_list,
                    min_subgraph_size=min_subgraph_size,
1357 1358
                    dynamic_shape_info=dynamic_shape_info,
                    use_calib=use_calib)
1359 1360 1361

                _LOGGER.info("Init cuda env in process {}".format(
                    concurrency_idx))
1362 1363
                self.local_predictor = self.service_handler.get_client(
                    concurrency_idx)
1364
            # check all ops initialized successfully.
W
wangjiawei04 已提交
1365
            profiler = self._initialize(is_thread_op, concurrency_idx)
F
felixhjh 已提交
1366
            return profiler
1367

F
felixhjh 已提交
1368
        profiler, resp = check_helper(self, is_thread_op, model_config, workdir,
1369 1370 1371 1372 1373
             thread_num, device_type, devices, mem_optim, ir_optim,
             precision, use_mkldnn, mkldnn_cache_capacity, mkldnn_op_list,
             mkldnn_bf16_op_list, min_subgraph_size, dynamic_shape_info)

        if resp.err_no != CustomExceptionCode.OK.value:
B
barriery 已提交
1374
            _LOGGER.critical(
H
huangjianhui 已提交
1375
                "{} failed to init op: {}".format(op_info_prefix, resp.err_msg),
H
huangjianhui 已提交
1376
                exc_info=False)
1377

H
huangjianhui 已提交
1378
            print("{} failed to init op: {}".format(op_info_prefix, resp.err_msg))
H
huangjianhui 已提交
1379
            kill_stop_process_by_pid("kill", os.getpgid(os.getpid()))
1380

B
barriery 已提交
1381
        _LOGGER.info("{} Succ init".format(op_info_prefix))
1382

B
barriery 已提交
1383
        batch_generator = self._auto_batching_generator(
B
barriery 已提交
1384 1385 1386 1387
            input_channel=input_channel,
            op_name=self.name,
            batch_size=self._batch_size,
            timeout=self._auto_batching_timeout,
B
barriery 已提交
1388
            op_info_prefix=op_info_prefix)
B
barriery 已提交
1389

B
barriery 已提交
1390
        start, end = None, None
B
barrierye 已提交
1391
        trace_que = collections.deque()
B
barrierye 已提交
1392
        while True:
B
barriery 已提交
1393
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1394
            try:
B
barriery 已提交
1395
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1396
            except ChannelStopError:
B
barriery 已提交
1397
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
B
barriery 已提交
1398
                self._finalize(is_thread_op)
B
barrierye 已提交
1399
                break
B
barriery 已提交
1400
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1401
            in_time = end - start
1402 1403
            _LOGGER.debug("op:{} in_time_end:{}".format(op_info_prefix,
                                                        time.time()))
1404

B
barriery 已提交
1405 1406
            # parse channeldata batch
            try:
T
TeslaZhao 已提交
1407
                parsed_data_dict, need_profile_dict, profile_dict, logid_dict\
1408 1409
                        = self._parse_channeldata_batch(
                                channeldata_dict_batch, output_channels)
B
barriery 已提交
1410
            except ChannelStopError:
B
barriery 已提交
1411
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1412
                self._finalize(is_thread_op)
B
barriery 已提交
1413
                break
1414 1415 1416
            if len(parsed_data_dict) == 0:
                # data in the whole batch is all error data
                continue
1417 1418
            _LOGGER.debug("op:{} parse_end:{}".format(op_info_prefix,
                                                      time.time()))
1419

1420 1421 1422 1423 1424 1425
            front_cost = int(round(_time() * 1000000)) - start
            for data_id, parsed_data in parsed_data_dict.items():
                _LOGGER.debug(
                    "(data_id={}) POP INPUT CHANNEL! op:{}, cost:{} ms".format(
                        data_id, self.name, front_cost / 1000.0))

1426
            # preprecess
B
barriery 已提交
1427
            start = profiler.record("prep#{}_0".format(op_info_prefix))
T
TeslaZhao 已提交
1428 1429
            preped_data_dict, err_channeldata_dict, skip_process_dict \
                    = self._run_preprocess(parsed_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1430
            end = profiler.record("prep#{}_1".format(op_info_prefix))
B
barrierye 已提交
1431
            prep_time = end - start
1432 1433
            _LOGGER.debug("op:{} preprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), prep_time))
1434
            try:
T
TeslaZhao 已提交
1435
                # put error requests into output channel, skip process and postprocess stage
1436
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1437
                    self._push_to_output_channels(
B
barriery 已提交
1438 1439
                        data=err_channeldata,
                        channels=output_channels,
1440 1441 1442
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
            except ChannelStopError:
B
barriery 已提交
1443
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1444 1445
                self._finalize(is_thread_op)
                break
B
bug fix  
barrierye 已提交
1446
            if len(preped_data_dict) == 0:
1447 1448
                continue

B
barrierye 已提交
1449
            # process
B
barriery 已提交
1450
            start = profiler.record("midp#{}_0".format(op_info_prefix))
1451
            midped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1452
                    = self._run_process(preped_data_dict, op_info_prefix, skip_process_dict, logid_dict)
B
barriery 已提交
1453
            end = profiler.record("midp#{}_1".format(op_info_prefix))
B
bjjwwang 已提交
1454
            _LOGGER.info("prometheus inf count +1")
B
barrierye 已提交
1455
            midp_time = end - start
1456 1457
            _LOGGER.debug("op:{} process_end:{}, cost:{}".format(
                op_info_prefix, time.time(), midp_time))
1458 1459
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1460
                    self._push_to_output_channels(
B
barriery 已提交
1461 1462
                        data=err_channeldata,
                        channels=output_channels,
B
barriery 已提交
1463 1464
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1465
            except ChannelStopError:
B
barriery 已提交
1466
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1467 1468 1469
                self._finalize(is_thread_op)
                break
            if len(midped_data_dict) == 0:
1470
                continue
1471 1472

            # postprocess
B
barriery 已提交
1473
            start = profiler.record("postp#{}_0".format(op_info_prefix))
1474
            postped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1475
                    = self._run_postprocess(parsed_data_dict, midped_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1476
            end = profiler.record("postp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1477
            postp_time = end - start
1478
            after_postp_time = _time()
1479 1480
            _LOGGER.debug("op:{} postprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), postp_time))
1481 1482
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1483
                    self._push_to_output_channels(
B
bug fix  
barrierye 已提交
1484
                        data=err_channeldata,
B
barriery 已提交
1485
                        channels=output_channels,
B
barriery 已提交
1486 1487
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1488
            except ChannelStopError:
B
barriery 已提交
1489
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1490 1491 1492
                self._finalize(is_thread_op)
                break
            if len(postped_data_dict) == 0:
1493
                continue
1494

1495
            # push data to channel (if run succ)
B
barriery 已提交
1496
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1497
            try:
B
barriery 已提交
1498
                profile_str = profiler.gen_profile_str()
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
                if self.is_jump_op() is True and self.check_jumping(
                        postped_data_dict) is True:
                    # push data to output channel of ops to be jumped 
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels_of_jump_ops,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL OF JUMP OPs! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
                else:
                    # push data to output channel.
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
B
barrierye 已提交
1534
            except ChannelStopError:
B
barriery 已提交
1535
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1536
                self._finalize(is_thread_op)
B
barrierye 已提交
1537
                break
B
barriery 已提交
1538
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1539
            out_time = end - start
1540
            after_outchannel_time = int(round(_time() * 1000000))
B
barriery 已提交
1541
            if trace_buffer is not None:
B
barrierye 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
                trace_que.append({
                    "name": self.name,
                    "actions": {
                        "in": in_time,
                        "prep": prep_time,
                        "midp": midp_time,
                        "postp": postp_time,
                        "out": out_time,
                    }
                })
                while trace_que:
                    info = trace_que[0]
                    try:
                        trace_buffer.put_nowait(info)
                        trace_que.popleft()
                    except Queue.Full:
                        break
B
barriery 已提交
1559

W
wangjiawei04 已提交
1560
    def _initialize(self, is_thread_op, concurrency_idx):
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
        """
        Initialize one OP object in the target function of a thread or porcess.
        Initialize the client object with _client_config and _server_endpoints.
        Create a TimeProfiler per thread or process for recording profiler info.

        Args:
            is_thread_op: True, one op runs in one thread; False, one op runs
                in one process.
            concurrency_idx: process id, Thread mode does not use this param.

        Returns:
            TimeProfiler
        """
1574 1575 1576 1577 1578 1579 1580 1581 1582
        @ErrorCatch
        def init_helper(self, is_thread_op, concurrency_idx):
            if is_thread_op:
                with self._for_init_op_lock:
                    if not self._succ_init_op:
                        # for the threaded version of Op, each thread cannot get its concurrency_idx
                        self.concurrency_idx = None
                        # init client
                        self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1583
                                                   self._server_endpoints)
1584 1585 1586 1587 1588 1589 1590 1591
                        # user defined
                        self.init_op()
                        self._succ_init_op = True
                        self._succ_close_op = False
            else:
                self.concurrency_idx = concurrency_idx
                # init client
                self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1592
                                           self._server_endpoints)
1593 1594 1595 1596
                # user defined
                self.init_op() 
        
        init_helper(self, is_thread_op, concurrency_idx)
F
felixhjh 已提交
1597
        print("[OP Object] init success")
B
barriery 已提交
1598 1599 1600 1601 1602
        # use a separate TimeProfiler per thread or process
        profiler = TimeProfiler()
        profiler.enable(True)
        return profiler

B
barriery 已提交
1603 1604 1605 1606 1607 1608 1609 1610
    def _finalize(self, is_thread_op):
        if is_thread_op:
            with self._for_close_op_lock:
                if not self._succ_close_op:
                    self._profiler = None
                    self.client = None
                    self._succ_init_op = False
                    self._succ_close_op = True
1611 1612 1613 1614 1615

    def _log(self, info):
        return "{} {}".format(self.name, info)


B
barrierye 已提交
1616
class RequestOp(Op):
1617 1618 1619 1620 1621 1622
    """
    RequestOp is a special Op, for unpacking one request package. If the
    request needs one special unpackaging method, you need to inherit class
    RequestOp and rewrite function unpack_request_package.Notice!!! Class
    RequestOp does not run preprocess, process, postprocess.
    """
B
barrierye 已提交
1623

B
barrierye 已提交
1624
    def __init__(self):
1625 1626 1627
        """
        Initialize the RequestOp
        """
B
barriery 已提交
1628 1629
        # PipelineService.name = "@DAGExecutor"
        super(RequestOp, self).__init__(name="@DAGExecutor", input_ops=[])
B
barrierye 已提交
1630
        # init op
1631
        try:
1632
            self.init_op()
1633
        except Exception as e:
B
barriery 已提交
1634
            _LOGGER.critical("Op(Request) Failed to init: {}".format(e))
1635
            os._exit(-1)
B
barrierye 已提交
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
    def proto_tensor_2_numpy(self, tensor):
        """
        Convert proto tensor to numpy array, The supported types are as follows:
                INT64
                FP32
		INT32
		FP64
		INT16
		FP16
		BF16
		UINT8
		INT8
		BOOL
1650
                BYTES
1651
        Unsupported type:
1652
                STRING
1653 1654 1655 1656 1657 1658 1659
                COMPLEX64
                COMPLEX128

        Args:
            tensor: one tensor in request.tensors.

        Returns:
T
TeslaZhao 已提交
1660 1661
            np_data: np.ndnumpy, the tensor data is converted to numpy.
            lod_info: np.ndnumpy, lod info of the tensor data, None default.
1662 1663 1664 1665 1666 1667
        """
        if tensor is None or tensor.elem_type is None or tensor.name is None:
            _LOGGER.error("input params of tensor is wrong. tensor: {}".format(
                tensor))
            return None

T
TeslaZhao 已提交
1668
        # Set dim shape
1669 1670 1671 1672 1673 1674 1675
        dims = []
        if tensor.shape is None:
            dims.append(1)
        else:
            for one_dim in tensor.shape:
                dims.append(one_dim)

T
TeslaZhao 已提交
1676 1677 1678 1679 1680
        # Set up 2-d lod tensor
        np_lod = None
        if len(tensor.lod) > 0:
            np_lod = np.array(tensor.lod).astype(int32).reshape(2, -1)

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
        np_data = None
        _LOGGER.info("proto_to_numpy, name:{}, type:{}, dims:{}".format(
            tensor.name, tensor.elem_type, dims))
        if tensor.elem_type == 0:
            # VarType: INT64
            np_data = np.array(tensor.int64_data).astype(int64).reshape(dims)
        elif tensor.elem_type == 1:
            # VarType: FP32
            np_data = np.array(tensor.float_data).astype(float32).reshape(dims)
        elif tensor.elem_type == 2:
            # VarType: INT32
            np_data = np.array(tensor.int_data).astype(int32).reshape(dims)
        elif tensor.elem_type == 3:
            # VarType: FP64
            np_data = np.array(tensor.float64_data).astype(float64).reshape(
                dims)
        elif tensor.elem_type == 4:
            # VarType: INT16
            np_data = np.array(tensor.int_data).astype(int16).reshape(dims)
        elif tensor.elem_type == 5:
            # VarType: FP16
            np_data = np.array(tensor.float_data).astype(float16).reshape(dims)
        elif tensor.elem_type == 6:
            # VarType: BF16
            np_data = np.array(tensor.uint32_data).astype(uint16).reshape(dims)
        elif tensor.elem_type == 7:
            # VarType: UINT8
            np_data = np.array(tensor.uint32_data).astype(uint8).reshape(dims)
        elif tensor.elem_type == 8:
            # VarType: INT8
            np_data = np.array(tensor.int_data).astype(int8).reshape(dims)
        elif tensor.elem_type == 9:
            # VarType: BOOL
            np_data = np.array(tensor.bool_data).astype(bool).reshape(dims)
1715 1716 1717 1718
        elif tensor.elem_type == 13:
            # VarType: BYTES
            byte_data = BytesIO(tensor.byte_data)
            np_data = np.load(byte_data, allow_pickle=True)
1719 1720 1721 1722 1723 1724 1725
        else:
            _LOGGER.error("Sorry, the type {} of tensor {} is not supported.".
                          format(tensor.elem_type, tensor.name))
            raise ValueError(
                "Sorry, the type {} of tensor {} is not supported.".format(
                    tensor.elem_type, tensor.name))

T
TeslaZhao 已提交
1726
        return np_data, np_lod
1727

B
barrierye 已提交
1728
    def unpack_request_package(self, request):
T
TeslaZhao 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
        """
        Unpack request package by gateway.proto
        Args:
            request: HTTP body, JSON format

        Returns:
            dict_data: json fields in HTTP body
            log_id: log_id
            prod_errcode: None or ProductErrCode.SUCC.value default, otherwise,
                          product errores occured.It is handled in the same way
                          as exception.
            prod_errinfo: "" default 
        """
        dict_data = {}
        log_id = None
        if request is None:
            _LOGGER.critical("request is None")
            raise ValueError("request is None")
1747

1748
        # unpack key/value string list
1749
        for idx, key in enumerate(request.key):
1750
            dict_data[key] = request.value[idx]
T
TeslaZhao 已提交
1751
        log_id = request.logid
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782

        # unpack proto.tensors data.
        for one_tensor in request.tensors:
            name = one_tensor.name
            elem_type = one_tensor.elem_type

            if one_tensor.name is None:
                _LOGGER.error("Tensor name is None.")
                raise ValueError("Tensor name is None.")

            numpy_dtype = _TENSOR_DTYPE_2_NUMPY_DATA_DTYPE.get(elem_type)
            if numpy_dtype is None:
                _LOGGER.error(
                    "elem_type:{} is dismatch in unpack_request_package.",
                    format(elem_type))
                raise ValueError("elem_type:{} error".format(elem_type))

            if numpy_dtype == "string":
                new_string = ""
                if one_tensor.str_data is None:
                    _LOGGER.error(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                    raise ValueError(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                for one_str in one_tensor.str_data:
                    new_string += one_str

                dict_data[name] = new_string
            else:
T
TeslaZhao 已提交
1783 1784 1785 1786
                np_data, np_lod = self.proto_tensor_2_numpy(one_tensor)
                dict_data[name] = np_data
                if np_lod is not None:
                    dict_data[name + ".lod"] = np_lod
1787

1788 1789 1790 1791
        _LOGGER.info("RequestOp unpack one request. log_id:{}, clientip:{} \
            name:{}, method:{}, time:{}"
                     .format(log_id, request.clientip, request.name,
                             request.method, time.time()))
T
TeslaZhao 已提交
1792 1793

        return dict_data, log_id, None, ""
B
barrierye 已提交
1794 1795 1796


class ResponseOp(Op):
1797 1798 1799 1800 1801 1802
    """ 
    ResponseOp is a special Op, for packing one response package. If the channeldata 
    needs a special packaging method, you need to inherit class ReponseOp and rewrite
    pack_response_package function. Notice!!! Class ResponseOp does not run preprocess,
    process, postprocess.
    """
B
barrierye 已提交
1803

B
barrierye 已提交
1804
    def __init__(self, input_ops):
1805 1806 1807
        """
        Initialize the ResponseOp
        """
B
barriery 已提交
1808 1809
        super(ResponseOp, self).__init__(
            name="@DAGExecutor", input_ops=input_ops)
1810

B
barrierye 已提交
1811
        # init op
1812
        try:
1813
            self.init_op()
1814
        except Exception as e:
B
barriery 已提交
1815 1816
            _LOGGER.critical("Op(ResponseOp) Failed to init: {}".format(
                e, exc_info=True))
1817
            os._exit(-1)
B
barrierye 已提交
1818

1819 1820 1821 1822 1823 1824
        # init ResponseOp
        self.is_pack_tensor = False

    def set_pack_format(self, isTensor=False):
        self.is_pack_tensor = isTensor

B
barrierye 已提交
1825
    def pack_response_package(self, channeldata):
T
TeslaZhao 已提交
1826
        """
1827 1828 1829 1830 1831 1832 1833 1834
        Getting channeldata from the last channel, packting the response 
        package serialized by protobuf.  

        Args:
            channeldata: Type ChannelData

        Returns:
            resp: pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1835
        """
B
barrierye 已提交
1836
        resp = pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1837 1838 1839
        error_code = channeldata.error_code
        error_info = ""
        if error_code == ChannelDataErrcode.OK.value:
1840
            # Framework level errors
B
barrierye 已提交
1841 1842 1843 1844
            if channeldata.datatype == ChannelDataType.CHANNEL_NPDATA.value:
                feed = channeldata.parse()
                # ndarray to string:
                # https://stackoverflow.com/questions/30167538/convert-a-numpy-ndarray-to-stringor-bytes-and-convert-it-back-to-numpy-ndarray
B
barrierye 已提交
1845
                np.set_printoptions(threshold=sys.maxsize)
B
barrierye 已提交
1846
                for name, var in feed.items():
1847 1848
                    resp.value.append(var.__repr__())
                    resp.key.append(name)
B
barrierye 已提交
1849 1850 1851 1852
            elif channeldata.datatype == ChannelDataType.DICT.value:
                feed = channeldata.parse()
                for name, var in feed.items():
                    if not isinstance(var, str):
T
TeslaZhao 已提交
1853 1854
                        error_code = ChannelDataErrcode.TYPE_ERROR.value
                        error_info = self._log(
B
barrierye 已提交
1855 1856
                            "fetch var type must be str({}).".format(
                                type(var)))
B
barriery 已提交
1857 1858
                        _LOGGER.error("(logid={}) Failed to pack RPC "
                                      "response package: {}".format(
W
wangjiawei04 已提交
1859
                                          channeldata.id, resp.err_msg))
B
barrierye 已提交
1860
                        break
1861 1862
                    resp.value.append(var)
                    resp.key.append(name)
B
barrierye 已提交
1863
            else:
T
TeslaZhao 已提交
1864 1865 1866
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = self._log("error type({}) in datatype.".format(
                    channeldata.datatype))
B
barriery 已提交
1867
                _LOGGER.error("(logid={}) Failed to pack RPC response"
T
TeslaZhao 已提交
1868
                              " package: {}".format(channeldata.id, error_info))
B
barrierye 已提交
1869
        else:
1870
            # Product level errors
T
TeslaZhao 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
            error_info = channeldata.error_info
            if error_code == ChannelDataErrcode.PRODUCT_ERROR.value:
                #rewrite error_code when product errors occured
                error_code = channeldata.prod_error_code
                error_info = channeldata.prod_error_info

        # pack results
        if error_code is None:
            error_code = 0
        resp.err_no = error_code
        resp.err_msg = error_info

B
barrierye 已提交
1883
        return resp
1884 1885 1886


class VirtualOp(Op):
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
    """ 
    To connect 2 ops across levels in dag view, we create virtual ops
    between non-virtual ops, and transfer data only. For examples, 
    the pred ops of F are D & E.In the process of building DAG, we will
    create channels layer by layer according to dag views.Op F is not 
    in the next layer view of [B, E], so we will create a virtual OP 
    'V1' whose pred OP is E. And so on, we create two virtual op 'V2'
    and 'V3', Finally, we find the non-virtual op F. we create 4 channels
    among E, V1, V2, V3 and F, the producer of V1, V2, V3 and F is E.
    
        DAG: [A -> B -> C -> D -> F]
               \-> E ----------/

        DAG view: [[A], [B, E], [C], [D], [F]]
        BUILD DAG: [A -> B -> C -> D -> E -> F]
                     \-> E -> V1-> V2-> V3/
    """
1904 1905 1906

    def __init__(self, name, concurrency=1):
        super(VirtualOp, self).__init__(
B
barrierye 已提交
1907
            name=name, input_ops=None, concurrency=concurrency)
1908 1909 1910
        self._virtual_pred_ops = []

    def add_virtual_pred_op(self, op):
1911 1912 1913 1914 1915 1916 1917 1918 1919
        """
        Add the front op of current vritual op.
        
        Args:
            op: one op object, may be a virtual op or not.

        Returns:
            None
        """
1920 1921
        self._virtual_pred_ops.append(op)

B
barrierye 已提交
1922
    def _actual_pred_op_names(self, op):
1923 1924 1925 1926 1927 1928 1929 1930 1931
        """
        Recursively find the front op which is a non-virtual op.
   
        Args:
            op: one op object
            
        Returns:
            names: the name of non-virtual pred ops.
        """
B
barriery 已提交
1932
        # can use disjoint-set, but it's not necessary
B
barrierye 已提交
1933 1934 1935 1936 1937 1938 1939
        if not isinstance(op, VirtualOp):
            return [op.name]
        names = []
        for x in op._virtual_pred_ops:
            names.extend(self._actual_pred_op_names(x))
        return names

1940
    def add_output_channel(self, channel):
1941 1942 1943 1944 1945 1946 1947 1948 1949
        """
        Adding the output channel of non-virtual pred ops.

        Args:
            channel: one channel.
          
        Returns:
            None.
        """
1950
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
1951
            _LOGGER.critical(
B
barriery 已提交
1952 1953 1954
                self._log("Failed to add output_channel: output_channel"
                          " must be Channel type, not {}".format(
                              type(channel))))
1955
            os._exit(-1)
1956
        for op in self._virtual_pred_ops:
B
barrierye 已提交
1957 1958
            for op_name in self._actual_pred_op_names(op):
                channel.add_producer(op_name)
1959
        self._outputs.append(channel)
D
dongdaxiang 已提交
1960

1961
    def _run(self, concurrency_idx, input_channel, output_channels, client_type,
1962
             is_thread_op):
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
        """
        The target function _run() only transfers data between OPs in one thread
        or process.

        Args:
            concurrency_idx: process id, not avaliable in thread mode.
            input_channel: input channel
            output_channels: output channels
            client_type: no use
            is_thread_op: True, thread mode; False, process mode

        Returns:
            None
        """
1977
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1978 1979 1980
        log = get_log_func(op_info_prefix)
        tid = threading.current_thread().ident

1981 1982 1983 1984 1985 1986 1987
        batch_generator = self._auto_batching_generator(
            input_channel=input_channel,
            op_name=self.name,
            batch_size=1,
            timeout=None,
            log_func=log)

B
barrierye 已提交
1988 1989
        while True:
            try:
1990
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1991
            except ChannelStopError:
B
barriery 已提交
1992
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1993
                self._finalize(is_thread_op)
B
barrierye 已提交
1994
                break
D
dongdaxiang 已提交
1995

B
barrierye 已提交
1996
            try:
1997 1998 1999 2000
                for channeldata_dict in channeldata_dict_batch:
                    for name, data in channeldata_dict.items():
                        self._push_to_output_channels(
                            data, channels=output_channels, name=name)
B
barrierye 已提交
2001
            except ChannelStopError:
B
barriery 已提交
2002
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
2003
                self._finalize(is_thread_op)
B
barrierye 已提交
2004
                break