web_service.py 4.4 KB
Newer Older
B
barriery 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
try:
15
    from paddle_serving_server_gpu.web_service import WebService, Op
W
fix  
wangjiawei04 已提交
16 17
except ImportError:
    from paddle_serving_server.web_service import WebService, Op
B
barriery 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
import logging
import numpy as np
import cv2
import base64
from paddle_serving_app.reader import OCRReader
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes

_LOGGER = logging.getLogger()


class DetOp(Op):
    def init_op(self):
        self.det_preprocess = Sequential([
            ResizeByFactor(32, 960), Div(255),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
                (2, 0, 1))
        ])
        self.filter_func = FilterBoxes(10, 10)
        self.post_func = DBPostProcess({
            "thresh": 0.3,
            "box_thresh": 0.5,
            "max_candidates": 1000,
            "unclip_ratio": 1.5,
            "min_size": 3
        })

46
    def preprocess(self, input_dicts, data_id, log_id):
B
barriery 已提交
47
        (_, input_dict), = input_dicts.items()
W
wangjiawei04 已提交
48 49 50
        imgs = []
        for key in input_dict.keys():
            data = base64.b64decode(input_dict[key].encode('utf8'))
51
            data = np.frombuffer(data, np.uint8)
W
wangjiawei04 已提交
52 53 54 55 56 57
            self.im = cv2.imdecode(data, cv2.IMREAD_COLOR)
            self.ori_h, self.ori_w, _ = self.im.shape
            det_img = self.det_preprocess(self.im)
            _, self.new_h, self.new_w = det_img.shape
            imgs.append(det_img[np.newaxis, :].copy())
        return {"image": np.concatenate(imgs, axis=0)}, False, None, ""
B
barriery 已提交
58

59
    def postprocess(self, input_dicts, fetch_dict, log_id):
60
        #        print(fetch_dict)
B
barriery 已提交
61 62 63 64 65 66 67
        det_out = fetch_dict["concat_1.tmp_0"]
        ratio_list = [
            float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
        ]
        dt_boxes_list = self.post_func(det_out, [ratio_list])
        dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
        out_dict = {"dt_boxes": dt_boxes, "image": self.im}
68
        return out_dict, None, ""
B
barriery 已提交
69 70 71 72 73 74 75 76


class RecOp(Op):
    def init_op(self):
        self.ocr_reader = OCRReader()
        self.get_rotate_crop_image = GetRotateCropImage()
        self.sorted_boxes = SortedBoxes()

77
    def preprocess(self, input_dicts, data_id, log_id):
B
barriery 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90
        (_, input_dict), = input_dicts.items()
        im = input_dict["image"]
        dt_boxes = input_dict["dt_boxes"]
        dt_boxes = self.sorted_boxes(dt_boxes)
        feed_list = []
        img_list = []
        max_wh_ratio = 0
        for i, dtbox in enumerate(dt_boxes):
            boximg = self.get_rotate_crop_image(im, dt_boxes[i])
            img_list.append(boximg)
            h, w = boximg.shape[0:2]
            wh_ratio = w * 1.0 / h
            max_wh_ratio = max(max_wh_ratio, wh_ratio)
W
wangjiawei04 已提交
91 92 93 94
        _, w, h = self.ocr_reader.resize_norm_img(img_list[0],
                                                  max_wh_ratio).shape
        imgs = np.zeros((len(img_list), 3, w, h)).astype('float32')
        for id, img in enumerate(img_list):
B
barriery 已提交
95
            norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
W
wangjiawei04 已提交
96 97
            imgs[id] = norm_img
        feed = {"image": imgs.copy()}
98
        return feed, False, None, ""
B
barriery 已提交
99

100
    def postprocess(self, input_dicts, fetch_dict, log_id):
B
barriery 已提交
101 102 103 104 105
        rec_res = self.ocr_reader.postprocess(fetch_dict, with_score=True)
        res_lst = []
        for res in rec_res:
            res_lst.append(res[0])
        res = {"res": str(res_lst)}
106
        return res, None, ""
B
barriery 已提交
107 108 109 110 111 112 113 114 115 116


class OcrService(WebService):
    def get_pipeline_response(self, read_op):
        det_op = DetOp(name="det", input_ops=[read_op])
        rec_op = RecOp(name="rec", input_ops=[det_op])
        return rec_op


uci_service = OcrService(name="ocr")
117
uci_service.prepare_pipeline_config("config.yml")
B
barriery 已提交
118
uci_service.run_service()