web_service.py 7.0 KB
Newer Older
B
barriery 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from paddle_serving_server.web_service import WebService, Op
B
barriery 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
import logging
import numpy as np
import cv2
import base64
from paddle_serving_app.reader import OCRReader
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes

_LOGGER = logging.getLogger()


class DetOp(Op):
    def init_op(self):
        self.det_preprocess = Sequential([
            ResizeByFactor(32, 960), Div(255),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
                (2, 0, 1))
        ])
        self.filter_func = FilterBoxes(10, 10)
        self.post_func = DBPostProcess({
            "thresh": 0.3,
            "box_thresh": 0.5,
            "max_candidates": 1000,
            "unclip_ratio": 1.5,
            "min_size": 3
        })

43
    def preprocess(self, input_dicts, data_id, log_id):
B
barriery 已提交
44
        (_, input_dict), = input_dicts.items()
W
wangjiawei04 已提交
45 46 47
        imgs = []
        for key in input_dict.keys():
            data = base64.b64decode(input_dict[key].encode('utf8'))
48
            self.raw_im = data
49
            data = np.frombuffer(data, np.uint8)
W
wangjiawei04 已提交
50 51 52 53 54 55
            self.im = cv2.imdecode(data, cv2.IMREAD_COLOR)
            self.ori_h, self.ori_w, _ = self.im.shape
            det_img = self.det_preprocess(self.im)
            _, self.new_h, self.new_w = det_img.shape
            imgs.append(det_img[np.newaxis, :].copy())
        return {"image": np.concatenate(imgs, axis=0)}, False, None, ""
B
barriery 已提交
56

57
    def postprocess(self, input_dicts, fetch_dict, log_id):
58
        #        print(fetch_dict)
B
barriery 已提交
59 60 61 62 63 64
        det_out = fetch_dict["concat_1.tmp_0"]
        ratio_list = [
            float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
        ]
        dt_boxes_list = self.post_func(det_out, [ratio_list])
        dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
65
        out_dict = {"dt_boxes": dt_boxes, "image": self.raw_im}
66
        return out_dict, None, ""
B
barriery 已提交
67 68 69 70 71 72 73 74


class RecOp(Op):
    def init_op(self):
        self.ocr_reader = OCRReader()
        self.get_rotate_crop_image = GetRotateCropImage()
        self.sorted_boxes = SortedBoxes()

75
    def preprocess(self, input_dicts, data_id, log_id):
B
barriery 已提交
76
        (_, input_dict), = input_dicts.items()
77 78 79
        raw_im = input_dict["image"]
        data = np.frombuffer(raw_im, np.uint8)
        im = cv2.imdecode(data, cv2.IMREAD_COLOR)
B
barriery 已提交
80 81 82 83 84
        dt_boxes = input_dict["dt_boxes"]
        dt_boxes = self.sorted_boxes(dt_boxes)
        feed_list = []
        img_list = []
        max_wh_ratio = 0
T
TeslaZhao 已提交
85 86 87

        ## One batch, the type of feed_data is dict.
        """ 
B
barriery 已提交
88 89 90 91 92 93
        for i, dtbox in enumerate(dt_boxes):
            boximg = self.get_rotate_crop_image(im, dt_boxes[i])
            img_list.append(boximg)
            h, w = boximg.shape[0:2]
            wh_ratio = w * 1.0 / h
            max_wh_ratio = max(max_wh_ratio, wh_ratio)
W
wangjiawei04 已提交
94 95 96 97
        _, w, h = self.ocr_reader.resize_norm_img(img_list[0],
                                                  max_wh_ratio).shape
        imgs = np.zeros((len(img_list), 3, w, h)).astype('float32')
        for id, img in enumerate(img_list):
B
barriery 已提交
98
            norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
W
wangjiawei04 已提交
99 100
            imgs[id] = norm_img
        feed = {"image": imgs.copy()}
B
barriery 已提交
101

T
TeslaZhao 已提交
102 103 104
        """

        ## Many mini-batchs, the type of feed_data is list.
105
        max_batch_size = len(dt_boxes)
T
TeslaZhao 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

        # If max_batch_size is 0, skipping predict stage
        if max_batch_size == 0:
            return {}, True, None, ""
        boxes_size = len(dt_boxes)
        batch_size = boxes_size // max_batch_size
        rem = boxes_size % max_batch_size
        #_LOGGER.info("max_batch_len:{}, batch_size:{}, rem:{}, boxes_size:{}".format(max_batch_size, batch_size, rem, boxes_size))
        for bt_idx in range(0, batch_size + 1):
            imgs = None
            boxes_num_in_one_batch = 0
            if bt_idx == batch_size:
                if rem == 0:
                    continue
                else:
                    boxes_num_in_one_batch = rem
            elif bt_idx < batch_size:
                boxes_num_in_one_batch = max_batch_size
            else:
                _LOGGER.error("batch_size error, bt_idx={}, batch_size={}".
                              format(bt_idx, batch_size))
                break

            start = bt_idx * max_batch_size
            end = start + boxes_num_in_one_batch
            img_list = []
            for box_idx in range(start, end):
                boximg = self.get_rotate_crop_image(im, dt_boxes[box_idx])
                img_list.append(boximg)
                h, w = boximg.shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            _, w, h = self.ocr_reader.resize_norm_img(img_list[0],
                                                      max_wh_ratio).shape
            #_LOGGER.info("---- idx:{}, w:{}, h:{}".format(bt_idx, w, h))

            imgs = np.zeros((boxes_num_in_one_batch, 3, w, h)).astype('float32')
            for id, img in enumerate(img_list):
                norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
                imgs[id] = norm_img
            feed = {"image": imgs.copy()}
            feed_list.append(feed)
        #_LOGGER.info("feed_list : {}".format(feed_list))

        return feed_list, False, None, ""

    def postprocess(self, input_dicts, fetch_data, log_id):
        res_list = []
        if isinstance(fetch_data, dict):
            if len(fetch_data) > 0:
                rec_batch_res = self.ocr_reader.postprocess(
                    fetch_data, with_score=True)
                for res in rec_batch_res:
                    res_list.append(res[0])
        elif isinstance(fetch_data, list):
            for one_batch in fetch_data:
                one_batch_res = self.ocr_reader.postprocess(
                    one_batch, with_score=True)
                for res in one_batch_res:
                    res_list.append(res[0])

        res = {"res": str(res_list)}
168
        return res, None, ""
B
barriery 已提交
169 170 171 172 173 174 175 176 177 178


class OcrService(WebService):
    def get_pipeline_response(self, read_op):
        det_op = DetOp(name="det", input_ops=[read_op])
        rec_op = RecOp(name="rec", input_ops=[det_op])
        return rec_op


uci_service = OcrService(name="ocr")
179
uci_service.prepare_pipeline_config("config.yml")
B
barriery 已提交
180
uci_service.run_service()