benchmark.py 3.2 KB
Newer Older
1 2
# -*- coding: utf-8 -*-
#
M
MRXLT 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
B
barrierye 已提交
16
# pylint: disable=doc-string-missing
M
MRXLT 已提交
17

18 19
from __future__ import unicode_literals, absolute_import
import os
M
MRXLT 已提交
20
import sys
21
import time
M
MRXLT 已提交
22 23
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
24 25 26 27 28 29
from paddle_serving_client.utils import benchmark_args
from batching import pad_batch_data
import tokenization
import requests
import json
from bert_reader import BertReader
M
MRXLT 已提交
30

31
args = benchmark_args()
M
MRXLT 已提交
32

B
barrierye 已提交
33

34 35
def single_func(idx, resource):
    fin = open("data-c.txt")
M
MRXLT 已提交
36 37 38
    dataset = []
    for line in fin:
        dataset.append(line.strip())
39 40 41 42 43 44
    if args.request == "rpc":
        reader = BertReader(vocab_file="vocab.txt", max_seq_len=20)
        config_file = './serving_client_conf/serving_client_conf.prototxt'
        fetch = ["pooled_output"]
        client = Client()
        client.load_client_config(args.model)
M
MRXLT 已提交
45
        client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])
B
barrierye 已提交
46

47
        start = time.time()
M
MRXLT 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60
        for i in range(1000):
            if args.batch_size == 1:
                feed_dict = reader.process(dataset[i])
                result = client.predict(feed=feed_dict, fetch=fetch)
            elif args.batch_size > 1:
                feed_batch = []
                for bi in range(args.batch_size):
                    feed_batch.append(reader.process(dataset[i]))
                result = client.batch_predict(
                    feed_batch=feed_batch, fetch=fetch)
            else:
                print("unsupport batch size {}".format(args.batch_size))

61 62 63
        end = time.time()
    elif args.request == "http":
        start = time.time()
B
barrierye 已提交
64
        header = {"Content-Type": "application/json"}
M
MRXLT 已提交
65 66
        for i in range(1000):
            dict_data = {"words": dataset[i], "fetch": ["pooled_output"]}
B
barrierye 已提交
67
            r = requests.post(
M
MRXLT 已提交
68 69
                'http://{}/bert/prediction'.format(resource["endpoint"][
                    idx % len(resource["endpoint"])]),
B
barrierye 已提交
70 71
                data=json.dumps(dict_data),
                headers=header)
72 73
        end = time.time()
    return [[end - start]]
M
MRXLT 已提交
74

B
barrierye 已提交
75

M
MRXLT 已提交
76
if __name__ == '__main__':
77
    multi_thread_runner = MultiThreadRunner()
M
MRXLT 已提交
78
    endpoint_list = ["127.0.0.1:9292"]
79
    #endpoint_list = endpoint_list + endpoint_list + endpoint_list
M
MRXLT 已提交
80 81 82 83 84 85 86 87
    result = multi_thread_runner.run(single_func, args.thread,
                                     {"endpoint": endpoint_list})
    #result = single_func(0, {"endpoint": endpoint_list})
    avg_cost = 0
    for i in range(args.thread):
        avg_cost += result[0][i]
    avg_cost = avg_cost / args.thread
    print("average total cost {} s.".format(avg_cost))