# -*- coding: utf-8 -*- # # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing from __future__ import unicode_literals, absolute_import import os import sys import time from paddle_serving_client import Client from paddle_serving_client.utils import MultiThreadRunner from paddle_serving_client.utils import benchmark_args from batching import pad_batch_data import tokenization import requests import json from bert_reader import BertReader args = benchmark_args() def single_func(idx, resource): fin = open("data-c.txt") dataset = [] for line in fin: dataset.append(line.strip()) if args.request == "rpc": reader = BertReader(vocab_file="vocab.txt", max_seq_len=20) config_file = './serving_client_conf/serving_client_conf.prototxt' fetch = ["pooled_output"] client = Client() client.load_client_config(args.model) client.connect([resource["endpoint"][idx % len(resource["endpoint"])]]) start = time.time() for i in range(1000): if args.batch_size == 1: feed_dict = reader.process(dataset[i]) result = client.predict(feed=feed_dict, fetch=fetch) elif args.batch_size > 1: feed_batch = [] for bi in range(args.batch_size): feed_batch.append(reader.process(dataset[i])) result = client.batch_predict( feed_batch=feed_batch, fetch=fetch) else: print("unsupport batch size {}".format(args.batch_size)) end = time.time() elif args.request == "http": start = time.time() header = {"Content-Type": "application/json"} for i in range(1000): dict_data = {"words": dataset[i], "fetch": ["pooled_output"]} r = requests.post( 'http://{}/bert/prediction'.format(resource["endpoint"][ idx % len(resource["endpoint"])]), data=json.dumps(dict_data), headers=header) end = time.time() return [[end - start]] if __name__ == '__main__': multi_thread_runner = MultiThreadRunner() endpoint_list = ["127.0.0.1:9292"] #endpoint_list = endpoint_list + endpoint_list + endpoint_list result = multi_thread_runner.run(single_func, args.thread, {"endpoint": endpoint_list}) #result = single_func(0, {"endpoint": endpoint_list}) avg_cost = 0 for i in range(args.thread): avg_cost += result[0][i] avg_cost = avg_cost / args.thread print("average total cost {} s.".format(avg_cost))