Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
3fc08321
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3fc08321
编写于
2月 27, 2020
作者:
M
MRXLT
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add bert demo
上级
29d36668
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
456 addition
and
9 deletion
+456
-9
python/examples/bert/benchmark.py
python/examples/bert/benchmark.py
+65
-0
python/examples/bert/benchmark.sh
python/examples/bert/benchmark.sh
+7
-0
python/examples/bert/benchmark_batch.py
python/examples/bert/benchmark_batch.py
+71
-0
python/examples/bert/benchmark_batch.sh
python/examples/bert/benchmark_batch.sh
+8
-0
python/examples/bert/prepare_model.py
python/examples/bert/prepare_model.py
+43
-0
python/examples/bert/test_bert_client.py
python/examples/bert/test_bert_client.py
+141
-0
python/examples/bert/test_gpu_server.py
python/examples/bert/test_gpu_server.py
+40
-0
python/examples/bert/test_server.py
python/examples/bert/test_server.py
+40
-0
python/examples/imdb/benchmark.py
python/examples/imdb/benchmark.py
+4
-9
python/examples/imdb/show_profile.py
python/examples/imdb/show_profile.py
+37
-0
未找到文件。
python/examples/bert/benchmark.py
0 → 100644
浏览文件 @
3fc08321
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
from
paddle_serving_client
import
Client
from
paddle_serving_client.metric
import
auc
from
paddle_serving_client.utils
import
MultiThreadRunner
import
time
from
test_bert_client
import
BertService
def
predict
(
thr_id
,
resource
):
bc
=
BertService
(
model_name
=
"bert_chinese_L-12_H-768_A-12"
,
max_seq_len
=
20
,
do_lower_case
=
True
)
bc
.
load_client
(
resource
[
"conf_file"
],
resource
[
"server_endpoint"
])
thread_num
=
resource
[
"thread_num"
]
file_list
=
resource
[
"filelist"
]
line_id
=
0
result
=
[]
label_list
=
[]
dataset
=
[]
for
fn
in
file_list
:
fin
=
open
(
fn
)
for
line
in
fin
:
if
line_id
%
thread_num
==
thr_id
-
1
:
dataset
.
append
(
line
.
strip
())
line_id
+=
1
fin
.
close
()
start
=
time
.
time
()
fetch
=
[
"pooled_output"
]
for
inst
in
dataset
:
fetch_map
=
bc
.
run_general
([[
inst
]],
fetch
)
result
.
append
(
fetch_map
[
"pooled_output"
])
end
=
time
.
time
()
return
[
result
,
label_list
,
[
end
-
start
]]
if
__name__
==
'__main__'
:
conf_file
=
sys
.
argv
[
1
]
data_file
=
sys
.
argv
[
2
]
thread_num
=
sys
.
argv
[
3
]
resource
=
{}
resource
[
"conf_file"
]
=
conf_file
resource
[
"server_endpoint"
]
=
[
"127.0.0.1:9293"
]
resource
[
"filelist"
]
=
[
data_file
]
resource
[
"thread_num"
]
=
int
(
thread_num
)
thread_runner
=
MultiThreadRunner
()
result
=
thread_runner
.
run
(
predict
,
int
(
sys
.
argv
[
3
]),
resource
)
print
(
"total time {} s"
.
format
(
sum
(
result
[
-
1
])
/
len
(
result
[
-
1
])))
python/examples/bert/benchmark.sh
0 → 100644
浏览文件 @
3fc08321
rm
profile_log
for
thread_num
in
1 4 8 12 16 20 24
do
$PYTHONROOT
/bin/python benchmark.py serving_client_conf/serving_client_conf.prototxt data.txt
$thread_num
$batch_size
>
profile 2>&1
$PYTHONROOT
/bin/python ../imdb/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
1 profile
>>
profile_log
done
python/examples/bert/benchmark_batch.py
0 → 100644
浏览文件 @
3fc08321
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
from
paddle_serving_client
import
Client
from
paddle_serving_client.metric
import
auc
from
paddle_serving_client.utils
import
MultiThreadRunner
import
time
from
test_bert_client
import
BertService
def
predict
(
thr_id
,
resource
,
batch_size
):
bc
=
BertService
(
model_name
=
"bert_chinese_L-12_H-768_A-12"
,
max_seq_len
=
20
,
do_lower_case
=
True
)
bc
.
load_client
(
resource
[
"conf_file"
],
resource
[
"server_endpoint"
])
thread_num
=
resource
[
"thread_num"
]
file_list
=
resource
[
"filelist"
]
line_id
=
0
result
=
[]
label_list
=
[]
dataset
=
[]
for
fn
in
file_list
:
fin
=
open
(
fn
)
for
line
in
fin
:
if
line_id
%
thread_num
==
thr_id
-
1
:
dataset
.
append
(
line
.
strip
())
line_id
+=
1
fin
.
close
()
start
=
time
.
time
()
fetch
=
[
"pooled_output"
]
batch
=
[]
for
inst
in
dataset
:
if
len
(
batch
)
<
batch_size
:
batch
.
append
([
inst
])
else
:
fetch_map_batch
=
bc
.
run_batch_general
(
batch
,
fetch
)
batch
=
[]
result
.
append
(
fetch_map_batch
)
end
=
time
.
time
()
return
[
result
,
label_list
,
[
end
-
start
]]
if
__name__
==
'__main__'
:
conf_file
=
sys
.
argv
[
1
]
data_file
=
sys
.
argv
[
2
]
thread_num
=
sys
.
argv
[
3
]
batch_size
=
sys
.
ragv
[
4
]
resource
=
{}
resource
[
"conf_file"
]
=
conf_file
resource
[
"server_endpoint"
]
=
[
"127.0.0.1:9293"
]
resource
[
"filelist"
]
=
[
data_file
]
resource
[
"thread_num"
]
=
int
(
thread_num
)
thread_runner
=
MultiThreadRunner
()
result
=
thread_runner
.
run
(
predict
,
int
(
sys
.
argv
[
3
]),
resource
,
batch_size
)
print
(
"total time {} s"
.
format
(
sum
(
result
[
-
1
])
/
len
(
result
[
-
1
])))
python/examples/bert/benchmark_batch.sh
0 → 100644
浏览文件 @
3fc08321
rm
profile_log
thread_num
=
1
for
batch_size
in
1 4 8 16 32 64 128 256
do
$PYTHONROOT
/bin/python benchmark_batch.py serving_client_conf/serving_client_conf.prototxt data.txt
$thread_num
$batch_size
>
profile 2>&1
$PYTHONROOT
/bin/python ../imdb/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
1 profile
>>
profile_log
done
python/examples/bert/prepare_model.py
0 → 100644
浏览文件 @
3fc08321
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddlehub
as
hub
import
paddle.fluid
as
fluid
import
paddle_serving_client.io
as
serving_io
model_name
=
"bert_chinese_L-12_H-768_A-12"
module
=
hub
.
Module
(
model_name
)
inputs
,
outputs
,
program
=
module
.
context
(
trainable
=
True
,
max_seq_len
=
20
)
place
=
fluid
.
core_avx
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
input_ids
=
inputs
[
"input_ids"
]
position_ids
=
inputs
[
"position_ids"
]
segment_ids
=
inputs
[
"segment_ids"
]
input_mask
=
inputs
[
"input_mask"
]
pooled_output
=
outputs
[
"pooled_output"
]
sequence_output
=
outputs
[
"sequence_output"
]
feed_var_names
=
[
input_ids
.
name
,
position_ids
.
name
,
segment_ids
.
name
,
input_mask
.
name
]
target_vars
=
[
pooled_output
,
sequence_output
]
serving_io
.
save_model
(
"serving_server_model"
,
"serving_client_conf"
,
{
"input_ids"
:
input_ids
,
"position_ids"
:
position_ids
,
"segment_ids"
:
segment_ids
,
"input_mask"
:
input_mask
,
},
{
"pooled_output"
:
pooled_output
,
"sequence_output"
:
sequence_output
},
program
)
python/examples/bert/test_bert_client.py
0 → 100644
浏览文件 @
3fc08321
# coding:utf-8
import
sys
import
numpy
as
np
import
paddlehub
as
hub
import
ujson
import
random
from
paddlehub.common.logger
import
logger
import
socket
from
paddle_serving_client
import
Client
_ver
=
sys
.
version_info
is_py2
=
(
_ver
[
0
]
==
2
)
is_py3
=
(
_ver
[
0
]
==
3
)
if
is_py2
:
import
httplib
if
is_py3
:
import
http.client
as
httplib
class
BertService
():
def
__init__
(
self
,
profile
=
False
,
max_seq_len
=
128
,
model_name
=
"bert_uncased_L-12_H-768_A-12"
,
show_ids
=
False
,
do_lower_case
=
True
,
process_id
=
0
,
retry
=
3
,
load_balance
=
'round_robin'
):
self
.
process_id
=
process_id
self
.
reader_flag
=
False
self
.
batch_size
=
0
self
.
max_seq_len
=
max_seq_len
self
.
profile
=
profile
self
.
model_name
=
model_name
self
.
show_ids
=
show_ids
self
.
do_lower_case
=
do_lower_case
self
.
con_list
=
[]
self
.
con_index
=
0
self
.
load_balance
=
load_balance
self
.
server_list
=
[]
self
.
serving_list
=
[]
self
.
feed_var_names
=
''
self
.
retry
=
retry
module
=
hub
.
Module
(
name
=
self
.
model_name
)
inputs
,
outputs
,
program
=
module
.
context
(
trainable
=
True
,
max_seq_len
=
self
.
max_seq_len
)
input_ids
=
inputs
[
"input_ids"
]
position_ids
=
inputs
[
"position_ids"
]
segment_ids
=
inputs
[
"segment_ids"
]
input_mask
=
inputs
[
"input_mask"
]
self
.
feed_var_names
=
input_ids
.
name
+
';'
+
position_ids
.
name
+
';'
+
segment_ids
.
name
+
';'
+
input_mask
.
name
self
.
reader
=
hub
.
reader
.
ClassifyReader
(
vocab_path
=
module
.
get_vocab_path
(),
dataset
=
None
,
max_seq_len
=
self
.
max_seq_len
,
do_lower_case
=
self
.
do_lower_case
)
self
.
reader_flag
=
True
def
load_client
(
self
,
config_file
,
server_addr
):
self
.
client
=
Client
()
self
.
client
.
load_client_config
(
config_file
)
self
.
client
.
connect
(
server_addr
)
def
run_general
(
self
,
text
,
fetch
):
self
.
batch_size
=
len
(
text
)
data_generator
=
self
.
reader
.
data_generator
(
batch_size
=
self
.
batch_size
,
phase
=
'predict'
,
data
=
text
)
result
=
[]
for
run_step
,
batch
in
enumerate
(
data_generator
(),
start
=
1
):
token_list
=
batch
[
0
][
0
].
reshape
(
-
1
).
tolist
()
pos_list
=
batch
[
0
][
1
].
reshape
(
-
1
).
tolist
()
sent_list
=
batch
[
0
][
2
].
reshape
(
-
1
).
tolist
()
mask_list
=
batch
[
0
][
3
].
reshape
(
-
1
).
tolist
()
for
si
in
range
(
self
.
batch_size
):
feed
=
{
"input_ids"
:
token_list
,
"position_ids"
:
pos_list
,
"segment_ids"
:
sent_list
,
"input_mask"
:
mask_list
}
fetch_map
=
self
.
client
.
predict
(
feed
=
feed
,
fetch
=
fetch
)
return
fetch_map
def
run_batch_general
(
self
,
text
,
fetch
):
self
.
batch_size
=
len
(
text
)
data_generator
=
self
.
reader
.
data_generator
(
batch_size
=
self
.
batch_size
,
phase
=
'predict'
,
data
=
text
)
result
=
[]
for
run_step
,
batch
in
enumerate
(
data_generator
(),
start
=
1
):
token_list
=
batch
[
0
][
0
].
reshape
(
-
1
).
tolist
()
pos_list
=
batch
[
0
][
1
].
reshape
(
-
1
).
tolist
()
sent_list
=
batch
[
0
][
2
].
reshape
(
-
1
).
tolist
()
mask_list
=
batch
[
0
][
3
].
reshape
(
-
1
).
tolist
()
feed_batch
=
[]
for
si
in
range
(
self
.
batch_size
):
feed
=
{
"input_ids"
:
token_list
[
si
*
self
.
max_seq_len
:(
si
+
1
)
*
self
.
max_seq_len
],
"position_ids"
:
pos_list
[
si
*
self
.
max_seq_len
:(
si
+
1
)
*
self
.
max_seq_len
],
"segment_ids"
:
sent_list
[
si
*
self
.
max_seq_len
:(
si
+
1
)
*
self
.
max_seq_len
],
"input_mask"
:
mask_list
[
si
*
self
.
max_seq_len
:(
si
+
1
)
*
self
.
max_seq_len
]
}
feed_batch
.
append
(
feed
)
fetch_map_batch
=
self
.
client
.
batch_predict
(
feed_batch
=
feed_batch
,
fetch
=
fetch
)
return
fetch_map_batch
def
test
():
bc
=
BertService
(
model_name
=
'bert_uncased_L-12_H-768_A-12'
,
max_seq_len
=
20
,
show_ids
=
False
,
do_lower_case
=
True
)
server_addr
=
[
"127.0.0.1:9293"
]
config_file
=
'./serving_client_conf/serving_client_conf.prototxt'
fetch
=
[
"pooled_output"
]
bc
.
load_client
(
config_file
,
server_addr
)
batch_size
=
4
batch
=
[]
for
line
in
sys
.
stdin
:
if
len
(
batch
)
<
batch_size
:
batch
.
append
([
line
.
strip
()])
else
:
result
=
bc
.
run_batch_general
(
batch
,
fetch
)
batch
=
[]
for
r
in
result
:
for
e
in
r
[
"pooled_output"
]:
print
(
e
)
if
__name__
==
'__main__'
:
test
()
python/examples/bert/test_gpu_server.py
0 → 100644
浏览文件 @
3fc08321
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
from
paddle_serving_server_gpu
import
OpMaker
from
paddle_serving_server_gpu
import
OpSeqMaker
from
paddle_serving_server_gpu
import
Server
op_maker
=
OpMaker
()
read_op
=
op_maker
.
create
(
'general_reader'
)
general_infer_op
=
op_maker
.
create
(
'general_infer'
)
general_response_op
=
op_maker
.
create
(
'general_response'
)
op_seq_maker
=
OpSeqMaker
()
op_seq_maker
.
add_op
(
read_op
)
op_seq_maker
.
add_op
(
general_infer_op
)
op_seq_maker
.
add_op
(
general_response_op
)
server
=
Server
()
server
.
set_op_sequence
(
op_seq_maker
.
get_op_sequence
())
server
.
set_num_threads
(
8
)
server
.
set_memory_optimize
(
True
)
server
.
set_gpuid
(
1
)
server
.
load_model_config
(
sys
.
argv
[
1
])
port
=
int
(
sys
.
argv
[
2
])
server
.
prepare_server
(
workdir
=
"work_dir1"
,
port
=
port
,
device
=
"gpu"
)
server
.
run_server
()
python/examples/bert/test_server.py
0 → 100644
浏览文件 @
3fc08321
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
from
paddle_serving_server
import
OpMaker
from
paddle_serving_server
import
OpSeqMaker
from
paddle_serving_server
import
Server
op_maker
=
OpMaker
()
read_op
=
op_maker
.
create
(
'general_reader'
)
general_infer_op
=
op_maker
.
create
(
'general_infer'
)
general_response_op
=
op_maker
.
create
(
'general_response'
)
op_seq_maker
=
OpSeqMaker
()
op_seq_maker
.
add_op
(
read_op
)
op_seq_maker
.
add_op
(
general_infer_op
)
op_seq_maker
.
add_op
(
general_response_op
)
server
=
Server
()
server
.
set_op_sequence
(
op_seq_maker
.
get_op_sequence
())
server
.
set_num_threads
(
4
)
server
.
set_local_bin
(
"~/github/Serving/build_server/core/general-server/serving"
)
server
.
load_model_config
(
sys
.
argv
[
1
])
port
=
int
(
sys
.
argv
[
2
])
server
.
prepare_server
(
workdir
=
"work_dir1"
,
port
=
port
,
device
=
"cpu"
)
server
.
run_server
()
python/examples/imdb/benchmark.py
浏览文件 @
3fc08321
...
...
@@ -43,15 +43,13 @@ def predict(thr_id, resource):
start
=
time
.
time
()
fetch
=
[
"acc"
,
"cost"
,
"prediction"
]
infer_time_list
=
[]
for
inst
in
dataset
:
fetch_map
=
client
.
predict
(
feed
=
inst
,
fetch
=
fetch
,
profile
=
True
)
fetch_map
=
client
.
predict
(
feed
=
inst
,
fetch
=
fetch
)
prob
.
append
(
fetch_map
[
"prediction"
][
1
])
label_list
.
append
(
label
[
0
])
infer_time_list
.
append
(
fetch_map
[
"infer_time"
])
end
=
time
.
time
()
client
.
release
()
return
[
prob
,
label_list
,
[
sum
(
infer_time_list
)],
[
end
-
start
]]
return
[
prob
,
label_list
,
[
end
-
start
]]
if
__name__
==
'__main__'
:
...
...
@@ -59,14 +57,11 @@ if __name__ == '__main__':
data_file
=
sys
.
argv
[
2
]
resource
=
{}
resource
[
"conf_file"
]
=
conf_file
resource
[
"server_endpoint"
]
=
[
"127.0.0.1:929
2
"
]
resource
[
"server_endpoint"
]
=
[
"127.0.0.1:929
3
"
]
resource
[
"filelist"
]
=
[
data_file
]
resource
[
"thread_num"
]
=
int
(
sys
.
argv
[
3
])
thread_runner
=
MultiThreadRunner
()
result
=
thread_runner
.
run
(
predict
,
int
(
sys
.
argv
[
3
]),
resource
)
print
(
"thread num {}
\t
total time {}"
.
format
(
sys
.
argv
[
3
],
sum
(
result
[
-
1
])
/
len
(
result
[
-
1
])))
print
(
"thread num {}
\t
total time {}"
.
format
(
sys
.
argv
[
3
],
sum
(
result
[
2
])
/
1000.0
/
1000.0
/
len
(
result
[
2
])))
print
(
"total time {} s"
.
format
(
sum
(
result
[
-
1
])
/
len
(
result
[
-
1
])))
python/examples/imdb/show_profile.py
0 → 100644
浏览文件 @
3fc08321
#coding=utf-8
import
sys
import
collections
profile_file
=
sys
.
argv
[
1
]
thread_num
=
sys
.
argv
[
2
]
time_dict
=
collections
.
OrderedDict
()
def
prase
(
line
):
profile_list
=
line
.
split
(
" "
)
num
=
len
(
profile_list
)
for
idx
in
range
(
num
/
2
):
profile_0_list
=
profile_list
[
idx
*
2
].
split
(
":"
)
profile_1_list
=
profile_list
[
idx
*
2
+
1
].
split
(
":"
)
if
len
(
profile_0_list
[
0
].
split
(
"_"
))
==
2
:
name
=
profile_0_list
[
0
].
split
(
"_"
)[
0
]
else
:
name
=
profile_0_list
[
0
].
split
(
"_"
)[
0
]
+
"_"
+
profile_0_list
[
0
].
split
(
"_"
)[
1
]
cost
=
long
(
profile_1_list
[
1
])
-
long
(
profile_0_list
[
1
])
if
name
not
in
time_dict
:
time_dict
[
name
]
=
cost
else
:
time_dict
[
name
]
+=
cost
with
open
(
profile_file
)
as
f
:
for
line
in
f
.
readlines
():
line
=
line
.
strip
().
split
(
"
\t
"
)
if
line
[
0
]
==
"PROFILE"
:
prase
(
line
[
1
])
print
(
"thread num {}"
.
format
(
thread_num
))
for
name
in
time_dict
:
print
(
"{} cost {} s per thread "
.
format
(
name
,
time_dict
[
name
]
/
(
1000000.0
*
float
(
thread_num
))))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录