提交 888ea8a2 编写于 作者: F FlyingQianMM

fix conflicts

# 模型部署
本目录为PaddleX模型部署代码。
# This file is used by clang-format to autoformat paddle source code
#
# The clang-format is part of llvm toolchain.
# It need to install llvm and clang to format source code style.
#
# The basic usage is,
# clang-format -i -style=file PATH/TO/SOURCE/CODE
#
# The -style=file implicit use ".clang-format" file located in one of
# parent directory.
# The -i means inplace change.
#
# The document of clang-format is
# http://clang.llvm.org/docs/ClangFormat.html
# http://clang.llvm.org/docs/ClangFormatStyleOptions.html
---
Language: Cpp
BasedOnStyle: Google
IndentWidth: 2
TabWidth: 2
ContinuationIndentWidth: 4
AccessModifierOffset: -1 # The private/protected/public has no indent in class
Standard: Cpp11
AllowAllParametersOfDeclarationOnNextLine: true
BinPackParameters: false
BinPackArguments: false
...
cmake_minimum_required(VERSION 3.0)
project(PaddleX CXX C)
option(WITH_MKL "Compile demo with MKL/OpenBlas support,defaultuseMKL." ON)
option(WITH_GPU "Compile demo with GPU/CPU, default use CPU." ON)
option(WITH_STATIC_LIB "Compile demo with static/shared library, default use static." ON)
option(WITH_TENSORRT "Compile demo with TensorRT." OFF)
SET(PADDLE_DIR "" CACHE PATH "Location of libraries")
SET(OPENCV_DIR "" CACHE PATH "Location of libraries")
SET(CUDA_LIB "" CACHE PATH "Location of libraries")
include(cmake/yaml-cpp.cmake)
include_directories("${CMAKE_SOURCE_DIR}/")
include_directories("${CMAKE_CURRENT_BINARY_DIR}/ext/yaml-cpp/src/ext-yaml-cpp/include")
link_directories("${CMAKE_CURRENT_BINARY_DIR}/ext/yaml-cpp/lib")
macro(safe_set_static_flag)
foreach(flag_var
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO)
if(${flag_var} MATCHES "/MD")
string(REGEX REPLACE "/MD" "/MT" ${flag_var} "${${flag_var}}")
endif(${flag_var} MATCHES "/MD")
endforeach(flag_var)
endmacro()
if (WITH_MKL)
ADD_DEFINITIONS(-DUSE_MKL)
endif()
if (NOT DEFINED PADDLE_DIR OR ${PADDLE_DIR} STREQUAL "")
message(FATAL_ERROR "please set PADDLE_DIR with -DPADDLE_DIR=/path/paddle_influence_dir")
endif()
if (NOT DEFINED OPENCV_DIR OR ${OPENCV_DIR} STREQUAL "")
message(FATAL_ERROR "please set OPENCV_DIR with -DOPENCV_DIR=/path/opencv")
endif()
include_directories("${CMAKE_SOURCE_DIR}/")
include_directories("${PADDLE_DIR}/")
include_directories("${PADDLE_DIR}/third_party/install/protobuf/include")
include_directories("${PADDLE_DIR}/third_party/install/glog/include")
include_directories("${PADDLE_DIR}/third_party/install/gflags/include")
include_directories("${PADDLE_DIR}/third_party/install/xxhash/include")
if (EXISTS "${PADDLE_DIR}/third_party/install/snappy/include")
include_directories("${PADDLE_DIR}/third_party/install/snappy/include")
endif()
if(EXISTS "${PADDLE_DIR}/third_party/install/snappystream/include")
include_directories("${PADDLE_DIR}/third_party/install/snappystream/include")
endif()
include_directories("${PADDLE_DIR}/third_party/install/zlib/include")
include_directories("${PADDLE_DIR}/third_party/boost")
include_directories("${PADDLE_DIR}/third_party/eigen3")
if (EXISTS "${PADDLE_DIR}/third_party/install/snappy/lib")
link_directories("${PADDLE_DIR}/third_party/install/snappy/lib")
endif()
if(EXISTS "${PADDLE_DIR}/third_party/install/snappystream/lib")
link_directories("${PADDLE_DIR}/third_party/install/snappystream/lib")
endif()
link_directories("${PADDLE_DIR}/third_party/install/zlib/lib")
link_directories("${PADDLE_DIR}/third_party/install/protobuf/lib")
link_directories("${PADDLE_DIR}/third_party/install/glog/lib")
link_directories("${PADDLE_DIR}/third_party/install/gflags/lib")
link_directories("${PADDLE_DIR}/third_party/install/xxhash/lib")
link_directories("${PADDLE_DIR}/paddle/lib/")
link_directories("${CMAKE_CURRENT_BINARY_DIR}")
if (WIN32)
include_directories("${PADDLE_DIR}/paddle/fluid/inference")
include_directories("${PADDLE_DIR}/paddle/include")
link_directories("${PADDLE_DIR}/paddle/fluid/inference")
find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/build/ NO_DEFAULT_PATH)
unset(OpenCV_DIR CACHE)
else ()
find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/share/OpenCV NO_DEFAULT_PATH)
include_directories("${PADDLE_DIR}/paddle/include")
link_directories("${PADDLE_DIR}/paddle/lib")
endif ()
include_directories(${OpenCV_INCLUDE_DIRS})
if (WIN32)
add_definitions("/DGOOGLE_GLOG_DLL_DECL=")
set(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} /bigobj /MTd")
set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} /bigobj /MT")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /bigobj /MTd")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /bigobj /MT")
if (WITH_STATIC_LIB)
safe_set_static_flag()
add_definitions(-DSTATIC_LIB)
endif()
else()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -o2 -fopenmp -std=c++11")
set(CMAKE_STATIC_LIBRARY_PREFIX "")
endif()
if (WITH_GPU)
if (NOT DEFINED CUDA_LIB OR ${CUDA_LIB} STREQUAL "")
message(FATAL_ERROR "please set CUDA_LIB with -DCUDA_LIB=/path/cuda/lib64")
endif()
if (NOT WIN32)
if (NOT DEFINED CUDNN_LIB)
message(FATAL_ERROR "please set CUDNN_LIB with -DCUDNN_LIB=/path/cudnn/")
endif()
endif(NOT WIN32)
endif()
if (NOT WIN32)
if (WITH_TENSORRT AND WITH_GPU)
include_directories("${PADDLE_DIR}/third_party/install/tensorrt/include")
link_directories("${PADDLE_DIR}/third_party/install/tensorrt/lib")
endif()
endif(NOT WIN32)
if (NOT WIN32)
set(NGRAPH_PATH "${PADDLE_DIR}/third_party/install/ngraph")
if(EXISTS ${NGRAPH_PATH})
include(GNUInstallDirs)
include_directories("${NGRAPH_PATH}/include")
link_directories("${NGRAPH_PATH}/${CMAKE_INSTALL_LIBDIR}")
set(NGRAPH_LIB ${NGRAPH_PATH}/${CMAKE_INSTALL_LIBDIR}/libngraph${CMAKE_SHARED_LIBRARY_SUFFIX})
endif()
endif()
if(WITH_MKL)
include_directories("${PADDLE_DIR}/third_party/install/mklml/include")
if (WIN32)
set(MATH_LIB ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.lib
${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.lib)
else ()
set(MATH_LIB ${PADDLE_DIR}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX}
${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX})
execute_process(COMMAND cp -r ${PADDLE_DIR}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX} /usr/lib)
endif ()
set(MKLDNN_PATH "${PADDLE_DIR}/third_party/install/mkldnn")
if(EXISTS ${MKLDNN_PATH})
include_directories("${MKLDNN_PATH}/include")
if (WIN32)
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/mkldnn.lib)
else ()
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/libmkldnn.so.0)
endif ()
endif()
else()
set(MATH_LIB ${PADDLE_DIR}/third_party/install/openblas/lib/libopenblas${CMAKE_STATIC_LIBRARY_SUFFIX})
endif()
if (WIN32)
if(EXISTS "${PADDLE_DIR}/paddle/fluid/inference/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX}")
set(DEPS
${PADDLE_DIR}/paddle/fluid/inference/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX})
else()
set(DEPS
${PADDLE_DIR}/paddle/lib/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX})
endif()
endif()
if(WITH_STATIC_LIB)
set(DEPS
${PADDLE_DIR}/paddle/lib/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX})
else()
set(DEPS
${PADDLE_DIR}/paddle/lib/libpaddle_fluid${CMAKE_SHARED_LIBRARY_SUFFIX})
endif()
if (NOT WIN32)
set(DEPS ${DEPS}
${MATH_LIB} ${MKLDNN_LIB}
glog gflags protobuf z xxhash yaml-cpp
)
if(EXISTS "${PADDLE_DIR}/third_party/install/snappystream/lib")
set(DEPS ${DEPS} snappystream)
endif()
if (EXISTS "${PADDLE_DIR}/third_party/install/snappy/lib")
set(DEPS ${DEPS} snappy)
endif()
else()
set(DEPS ${DEPS}
${MATH_LIB} ${MKLDNN_LIB}
glog gflags_static libprotobuf zlibstatic xxhash libyaml-cppmt)
set(DEPS ${DEPS} libcmt shlwapi)
if (EXISTS "${PADDLE_DIR}/third_party/install/snappy/lib")
set(DEPS ${DEPS} snappy)
endif()
if(EXISTS "${PADDLE_DIR}/third_party/install/snappystream/lib")
set(DEPS ${DEPS} snappystream)
endif()
endif(NOT WIN32)
if(WITH_GPU)
if(NOT WIN32)
if (WITH_TENSORRT)
set(DEPS ${DEPS} ${PADDLE_DIR}/third_party/install/tensorrt/lib/libnvinfer${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${PADDLE_DIR}/third_party/install/tensorrt/lib/libnvinfer_plugin${CMAKE_STATIC_LIBRARY_SUFFIX})
endif()
set(DEPS ${DEPS} ${CUDA_LIB}/libcudart${CMAKE_SHARED_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${CUDNN_LIB}/libcudnn${CMAKE_SHARED_LIBRARY_SUFFIX})
else()
set(DEPS ${DEPS} ${CUDA_LIB}/cudart${CMAKE_STATIC_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDA_LIB}/cublas${CMAKE_STATIC_LIBRARY_SUFFIX} )
set(DEPS ${DEPS} ${CUDA_LIB}/cudnn${CMAKE_STATIC_LIBRARY_SUFFIX})
endif()
endif()
if (NOT WIN32)
set(EXTERNAL_LIB "-ldl -lrt -lgomp -lz -lm -lpthread")
set(DEPS ${DEPS} ${EXTERNAL_LIB})
endif()
set(DEPS ${DEPS} ${OpenCV_LIBS})
add_executable(classifier src/classifier.cpp src/transforms.cpp src/paddlex.cpp)
ADD_DEPENDENCIES(classifier ext-yaml-cpp)
target_link_libraries(classifier ${DEPS})
add_executable(detector src/detector.cpp src/transforms.cpp src/paddlex.cpp src/visualize.cpp)
ADD_DEPENDENCIES(detector ext-yaml-cpp)
target_link_libraries(detector ${DEPS})
add_executable(segmenter src/segmenter.cpp src/transforms.cpp src/paddlex.cpp src/visualize.cpp)
ADD_DEPENDENCIES(segmenter ext-yaml-cpp)
target_link_libraries(segmenter ${DEPS})
if (WIN32 AND WITH_MKL)
add_custom_command(TARGET classifier POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.dll ./mklml.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mkldnn/lib/mkldnn.dll ./release/mkldnn.dll
)
add_custom_command(TARGET detector POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.dll ./mklml.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll
)
add_custom_command(TARGET segmenter POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.dll ./mklml.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mkldnn/lib/mkldnn.dll ./release/mkldnn.dll
)
endif()
{
"configurations": [
{
"name": "x64-Release",
"generator": "Ninja",
"configurationType": "RelWithDebInfo",
"inheritEnvironments": [ "msvc_x64_x64" ],
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "-v",
"ctestCommandArgs": "",
"variables": [
{
"name": "OPENCV_DIR",
"value": "C:/projects/opencv",
"type": "PATH"
},
{
"name": "PADDLE_DIR",
"value": "C:/projects/fluid_install_dir_win_cpu_1.6/fluid_install_dir_win_cpu_1.6",
"type": "PATH"
},
{
"name": "CMAKE_BUILD_TYPE",
"value": "Release",
"type": "STRING"
},
{
"name": "WITH_STATIC_LIB",
"value": "True",
"type": "BOOL"
},
{
"name": "WITH_MKL",
"value": "True",
"type": "BOOL"
},
{
"name": "WITH_GPU",
"value": "False",
"type": "BOOL"
}
]
}
]
}
\ No newline at end of file
find_package(Git REQUIRED)
include(ExternalProject)
message("${CMAKE_BUILD_TYPE}")
ExternalProject_Add(
ext-yaml-cpp
URL https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip
URL_MD5 9542d6de397d1fbd649ed468cb5850e6
CMAKE_ARGS
-DYAML_CPP_BUILD_TESTS=OFF
-DYAML_CPP_BUILD_TOOLS=OFF
-DYAML_CPP_INSTALL=OFF
-DYAML_CPP_BUILD_CONTRIB=OFF
-DMSVC_SHARED_RT=OFF
-DBUILD_SHARED_LIBS=OFF
-DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_CXX_FLAGS_DEBUG=${CMAKE_CXX_FLAGS_DEBUG}
-DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE}
-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=${CMAKE_BINARY_DIR}/ext/yaml-cpp/lib
-DCMAKE_ARCHIVE_OUTPUT_DIRECTORY=${CMAKE_BINARY_DIR}/ext/yaml-cpp/lib
PREFIX "${CMAKE_BINARY_DIR}/ext/yaml-cpp"
# Disable install step
INSTALL_COMMAND ""
LOG_DOWNLOAD ON
LOG_BUILD 1
)
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iostream>
#include <map>
#include <string>
#include <vector>
#include "yaml-cpp/yaml.h"
#ifdef _WIN32
#define OS_PATH_SEP "\\"
#else
#define OS_PATH_SEP "/"
#endif
namespace PaddleX {
// Inference model configuration parser
class ConfigPaser {
public:
ConfigPaser() {}
~ConfigPaser() {}
bool load_config(const std::string& model_dir,
const std::string& cfg = "model.yml") {
// Load as a YAML::Node
YAML::Node config;
config = YAML::LoadFile(model_dir + OS_PATH_SEP + cfg);
if (config["Transforms"].IsDefined()) {
YAML::Node transforms_ = config["Transforms"];
} else {
std::cerr << "There's no field 'Transforms' in model.yml" << std::endl;
return false;
}
return true;
}
YAML::Node Transforms_;
};
} // namespace PaddleDetection
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <functional>
#include <iostream>
#include <numeric>
#include "yaml-cpp/yaml.h"
#ifdef _WIN32
#define OS_PATH_SEP "\\"
#else
#define OS_PATH_SEP "/"
#endif
#include "paddle_inference_api.h" // NOLINT
#include "include/paddlex/config_parser.h"
#include "include/paddlex/results.h"
#include "include/paddlex/transforms.h"
namespace PaddleX {
class Model {
public:
void Init(const std::string& model_dir,
bool use_gpu = false,
int gpu_id = 0) {
create_predictor(model_dir, use_gpu, gpu_id);
}
void create_predictor(const std::string& model_dir,
bool use_gpu = false,
int gpu_id = 0);
bool load_config(const std::string& model_dir);
bool preprocess(const cv::Mat& input_im, ImageBlob* blob);
bool predict(const cv::Mat& im, ClsResult* result);
bool predict(const cv::Mat& im, DetResult* result);
bool predict(const cv::Mat& im, SegResult* result);
bool postprocess(SegResult* result);
bool postprocess(DetResult* result);
std::string type;
std::string name;
std::map<int, std::string> labels;
Transforms transforms_;
ImageBlob inputs_;
std::vector<float> outputs_;
std::unique_ptr<paddle::PaddlePredictor> predictor_;
};
} // namespce of PaddleX
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iostream>
#include <string>
#include <vector>
namespace PaddleX {
template <class T>
struct Mask {
std::vector<T> data;
std::vector<int> shape;
void clear() {
data.clear();
shape.clear();
}
};
struct Box {
int category_id;
std::string category;
float score;
std::vector<float> coordinate;
Mask<float> mask;
};
class BaseResult {
public:
std::string type = "base";
};
class ClsResult : public BaseResult {
public:
int category_id;
std::string category;
float score;
std::string type = "cls";
};
class DetResult : public BaseResult {
public:
std::vector<Box> boxes;
int mask_resolution;
std::string type = "det";
void clear() { boxes.clear(); }
};
class SegResult : public BaseResult {
public:
Mask<int64_t> label_map;
Mask<float> score_map;
void clear() {
label_map.clear();
score_map.clear();
}
};
} // namespce of PaddleX
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <yaml-cpp/yaml.h>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
namespace PaddleX {
// Object for storing all preprocessed data
class ImageBlob {
public:
// Original image height and width
std::vector<int> ori_im_size_ = std::vector<int>(2);
// Newest image height and width after process
std::vector<int> new_im_size_ = std::vector<int>(2);
// Image height and width before padding
std::vector<int> im_size_before_padding_ = std::vector<int>(2);
// Image height and width before resize
std::vector<int> im_size_before_resize_ = std::vector<int>(2);
// Reshape order
std::vector<std::string> reshape_order_;
// Resize scale
float scale = 1.0;
// Buffer for image data after preprocessing
std::vector<float> im_data_;
void clear() {
ori_im_size_.clear();
new_im_size_.clear();
im_size_before_padding_.clear();
im_size_before_resize_.clear();
reshape_order_.clear();
im_data_.clear();
}
};
// Abstraction of preprocessing opration class
class Transform {
public:
virtual void Init(const YAML::Node& item) = 0;
virtual bool Run(cv::Mat* im, ImageBlob* data) = 0;
};
class Normalize : public Transform {
public:
virtual void Init(const YAML::Node& item) {
mean_ = item["mean"].as<std::vector<float>>();
std_ = item["std"].as<std::vector<float>>();
}
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
std::vector<float> mean_;
std::vector<float> std_;
};
class ResizeByShort : public Transform {
public:
virtual void Init(const YAML::Node& item) {
short_size_ = item["short_size"].as<int>();
if (item["max_size"].IsDefined()) {
max_size_ = item["max_size"].as<int>();
} else {
max_size_ = -1;
}
};
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
float GenerateScale(const cv::Mat& im);
int short_size_;
int max_size_;
};
class ResizeByLong : public Transform {
public:
virtual void Init(const YAML::Node& item) {
long_size_ = item["long_size"].as<int>();
};
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
int long_size_;
};
class Resize : public Transform {
public:
virtual void Init(const YAML::Node& item) {
if (item["target_size"].IsScalar()) {
height_ = item["target_size"].as<int>();
width_ = item["target_size"].as<int>();
interp_ = item["interp"].as<std::string>();
} else if (item["target_size"].IsSequence()) {
std::vector<int> target_size = item["target_size"].as<std::vector<int>>();
width_ = target_size[0];
height_ = target_size[1];
}
if (height_ <= 0 || width_ <= 0) {
std::cerr << "[Resize] target_size should greater than 0" << std::endl;
exit(-1);
}
}
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
int height_;
int width_;
std::string interp_;
};
class CenterCrop : public Transform {
public:
virtual void Init(const YAML::Node& item) {
if (item["crop_size"].IsScalar()) {
height_ = item["crop_size"].as<int>();
width_ = item["crop_size"].as<int>();
} else if (item["crop_size"].IsSequence()) {
std::vector<int> crop_size = item["crop_size"].as<std::vector<int>>();
width_ = crop_size[0];
height_ = crop_size[1];
}
}
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
int height_;
int width_;
};
class Padding : public Transform {
public:
virtual void Init(const YAML::Node& item) {
if (item["coarsest_stride"].IsDefined()) {
coarsest_stride_ = item["coarsest_stride"].as<int>();
if (coarsest_stride_ <= 1) {
std::cerr << "[Padding] coarest_stride should greater than 0"
<< std::endl;
exit(-1);
}
} else {
if (item["target_size"].IsScalar()) {
width_ = item["target_size"].as<int>();
height_ = item["target_size"].as<int>();
} else if (item["target_size"].IsSequence()) {
width_ = item["target_size"].as<std::vector<int>>()[0];
height_ = item["target_size"].as<std::vector<int>>()[1];
}
}
if (item["im_padding_value"].IsDefined()) {
value_ = item["im_padding_value"].as<std::vector<float>>();
}
}
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
int coarsest_stride_ = -1;
int width_ = 0;
int height_ = 0;
std::vector<float> value_;
};
class Transforms {
public:
void Init(const YAML::Node& node, bool to_rgb = true);
std::shared_ptr<Transform> CreateTransform(const std::string& name);
bool Run(cv::Mat* im, ImageBlob* data);
private:
std::vector<std::shared_ptr<Transform>> transforms_;
bool to_rgb_ = true;
};
} // namespace PaddleX
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iostream>
#include <map>
#include <vector>
#ifdef _WIN32
#include <direct.h>
#include <io.h>
#else // Linux/Unix
#include <dirent.h>
#include <sys/io.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#endif
#include <string>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "include/paddlex/results.h"
#ifdef _WIN32
#define OS_PATH_SEP "\\"
#else
#define OS_PATH_SEP "/"
#endif
namespace PaddleX {
// Generate visualization colormap for each class
std::vector<int> GenerateColorMap(int num_class);
cv::Mat VisualizeDet(const cv::Mat& img,
const DetResult& results,
const std::map<int, std::string>& labels,
const std::vector<int>& colormap,
float threshold = 0.5);
cv::Mat VisualizeSeg(const cv::Mat& img,
const SegResult& result,
const std::map<int, std::string>& labels,
const std::vector<int>& colormap);
std::string generate_save_path(const std::string& save_dir,
const std::string& file_path);
} // namespce of PaddleX
# download pre-compiled opencv lib
OPENCV_URL=https://paddleseg.bj.bcebos.com/deploy/docker/opencv3gcc4.8.tar.bz2
if [ ! -d "./deps/opencv3gcc4.8" ]; then
mkdir -p deps
cd deps
wget -c ${OPENCV_URL}
tar xvfj opencv3gcc4.8.tar.bz2
rm -rf opencv3gcc4.8.tar.bz2
cd ..
fi
# 是否使用GPU(即是否使用 CUDA)
WITH_GPU=ON
# 是否集成 TensorRT(仅WITH_GPU=ON 有效)
WITH_TENSORRT=OFF
# Paddle 预测库路径
PADDLE_DIR=/path/to/fluid_inference/
# CUDA 的 lib 路径
CUDA_LIB=/path/to/cuda/lib/
# CUDNN 的 lib 路径
CUDNN_LIB=/path/to/cudnn/lib/
# OPENCV 路径, 如果使用自带预编译版本可不修改
OPENCV_DIR=$(pwd)/deps/opencv3gcc4.8/
sh $(pwd)/scripts/bootstrap.sh
# 以下无需改动
rm -rf build
mkdir -p build
cd build
cmake .. \
-DWITH_GPU=${WITH_GPU} \
-DWITH_TENSORRT=${WITH_TENSORRT} \
-DPADDLE_DIR=${PADDLE_DIR} \
-DCUDA_LIB=${CUDA_LIB} \
-DCUDNN_LIB=${CUDNN_LIB} \
-DOPENCV_DIR=${OPENCV_DIR}
make
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <glog/logging.h>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include "include/paddlex/paddlex.h"
DEFINE_string(model_dir, "", "Path of inference model");
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
DEFINE_int32(gpu_id, 0, "GPU card id");
DEFINE_string(image, "", "Path of test image file");
DEFINE_string(image_list, "", "Path of test image list file");
int main(int argc, char** argv) {
// Parsing command-line
google::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_model_dir == "") {
std::cerr << "--model_dir need to be defined" << std::endl;
return -1;
}
if (FLAGS_image == "" & FLAGS_image_list == "") {
std::cerr << "--image or --image_list need to be defined" << std::endl;
return -1;
}
// 加载模型
PaddleX::Model model;
model.Init(FLAGS_model_dir, FLAGS_use_gpu, FLAGS_gpu_id);
// 进行预测
if (FLAGS_image_list != "") {
std::ifstream inf(FLAGS_image_list);
if (!inf) {
std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
return -1;
}
std::string image_path;
while (getline(inf, image_path)) {
PaddleX::ClsResult result;
cv::Mat im = cv::imread(image_path, 1);
model.predict(im, &result);
std::cout << "Predict label: " << result.category
<< ", label_id:" << result.category_id
<< ", score: " << result.score << std::endl;
}
} else {
PaddleX::ClsResult result;
cv::Mat im = cv::imread(FLAGS_image, 1);
model.predict(im, &result);
std::cout << "Predict label: " << result.category
<< ", label_id:" << result.category_id
<< ", score: " << result.score << std::endl;
}
return 0;
}
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <glog/logging.h>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include "include/paddlex/paddlex.h"
#include "include/paddlex/visualize.h"
DEFINE_string(model_dir, "", "Path of inference model");
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
DEFINE_int32(gpu_id, 0, "GPU card id");
DEFINE_string(image, "", "Path of test image file");
DEFINE_string(image_list, "", "Path of test image list file");
DEFINE_string(save_dir, "output", "Path to save visualized image");
int main(int argc, char** argv) {
// 解析命令行参数
google::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_model_dir == "") {
std::cerr << "--model_dir need to be defined" << std::endl;
return -1;
}
if (FLAGS_image == "" & FLAGS_image_list == "") {
std::cerr << "--image or --image_list need to be defined" << std::endl;
return -1;
}
// 加载模型
PaddleX::Model model;
model.Init(FLAGS_model_dir, FLAGS_use_gpu, FLAGS_gpu_id);
auto colormap = PaddleX::GenerateColorMap(model.labels.size());
std::string save_dir = "output";
// 进行预测
if (FLAGS_image_list != "") {
std::ifstream inf(FLAGS_image_list);
if (!inf) {
std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
return -1;
}
std::string image_path;
while (getline(inf, image_path)) {
PaddleX::DetResult result;
cv::Mat im = cv::imread(image_path, 1);
model.predict(im, &result);
for (int i = 0; i < result.boxes.size(); ++i) {
std::cout << "image file: " << image_path
<< ", predict label: " << result.boxes[i].category
<< ", label_id:" << result.boxes[i].category_id
<< ", score: " << result.boxes[i].score << ", box:("
<< result.boxes[i].coordinate[0] << ", "
<< result.boxes[i].coordinate[1] << ", "
<< result.boxes[i].coordinate[2] << ", "
<< result.boxes[i].coordinate[3] << std::endl;
}
// 可视化
cv::Mat vis_img =
PaddleX::VisualizeDet(im, result, model.labels, colormap, 0.5);
std::string save_path =
PaddleX::generate_save_path(FLAGS_save_dir, image_path);
cv::imwrite(save_path, vis_img);
result.clear();
std::cout << "Visualized output saved as " << save_path << std::endl;
}
} else {
PaddleX::DetResult result;
cv::Mat im = cv::imread(FLAGS_image, 1);
model.predict(im, &result);
for (int i = 0; i < result.boxes.size(); ++i) {
std::cout << ", predict label: " << result.boxes[i].category
<< ", label_id:" << result.boxes[i].category_id
<< ", score: " << result.boxes[i].score << ", box:("
<< result.boxes[i].coordinate[0] << ", "
<< result.boxes[i].coordinate[1] << ", "
<< result.boxes[i].coordinate[2] << ", "
<< result.boxes[i].coordinate[3] << std::endl;
}
// 可视化
cv::Mat vis_img =
PaddleX::VisualizeDet(im, result, model.labels, colormap, 0.5);
std::string save_path =
PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image);
cv::imwrite(save_path, vis_img);
result.clear();
std::cout << "Visualized output saved as " << save_path << std::endl;
}
return 0;
}
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "include/paddlex/paddlex.h"
namespace PaddleX {
void Model::create_predictor(const std::string& model_dir,
bool use_gpu,
int gpu_id) {
// 读取配置文件
if (!load_config(model_dir)) {
std::cerr << "Parse file 'model.yml' failed!" << std::endl;
exit(-1);
}
paddle::AnalysisConfig config;
std::string model_file = model_dir + OS_PATH_SEP + "__model__";
std::string params_file = model_dir + OS_PATH_SEP + "__params__";
config.SetModel(model_file, params_file);
if (use_gpu) {
config.EnableUseGpu(100, gpu_id);
} else {
config.DisableGpu();
}
config.SwitchUseFeedFetchOps(false);
config.SwitchSpecifyInputNames(true);
// 开启内存优化
config.EnableMemoryOptim();
predictor_ = std::move(CreatePaddlePredictor(config));
}
bool Model::load_config(const std::string& model_dir) {
std::string yaml_file = model_dir + OS_PATH_SEP + "model.yml";
YAML::Node config = YAML::LoadFile(yaml_file);
type = config["_Attributes"]["model_type"].as<std::string>();
name = config["Model"].as<std::string>();
bool to_rgb = true;
if (config["TransformsMode"].IsDefined()) {
std::string mode = config["TransformsMode"].as<std::string>();
if (mode == "BGR") {
to_rgb = false;
} else if (mode != "RGB") {
std::cerr << "[Init] Only 'RGB' or 'BGR' is supported for TransformsMode"
<< std::endl;
return false;
}
}
// 构建数据处理流
transforms_.Init(config["Transforms"], to_rgb);
// 读入label list
labels.clear();
for (const auto& item : config["_Attributes"]["labels"]) {
int index = labels.size();
labels[index] = item.as<std::string>();
}
return true;
}
bool Model::preprocess(const cv::Mat& input_im, ImageBlob* blob) {
cv::Mat im = input_im.clone();
if (!transforms_.Run(&im, &inputs_)) {
return false;
}
return true;
}
bool Model::predict(const cv::Mat& im, ClsResult* result) {
inputs_.clear();
if (type == "detector") {
std::cerr << "Loading model is a 'detector', DetResult should be passed to "
"function predict()!"
<< std::endl;
return false;
} else if (type == "segmenter") {
std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
"to function predict()!"
<< std::endl;
return false;
}
// 处理输入图像
if (!preprocess(im, &inputs_)) {
std::cerr << "Preprocess failed!" << std::endl;
return false;
}
// 使用加载的模型进行预测
auto in_tensor = predictor_->GetInputTensor("image");
int h = inputs_.new_im_size_[0];
int w = inputs_.new_im_size_[1];
in_tensor->Reshape({1, 3, h, w});
in_tensor->copy_from_cpu(inputs_.im_data_.data());
predictor_->ZeroCopyRun();
// 取出模型的输出结果
auto output_names = predictor_->GetOutputNames();
auto output_tensor = predictor_->GetOutputTensor(output_names[0]);
std::vector<int> output_shape = output_tensor->shape();
int size = 1;
for (const auto& i : output_shape) {
size *= i;
}
outputs_.resize(size);
output_tensor->copy_to_cpu(outputs_.data());
// 对模型输出结果进行后处理
auto ptr = std::max_element(std::begin(outputs_), std::end(outputs_));
result->category_id = std::distance(std::begin(outputs_), ptr);
result->score = *ptr;
result->category = labels[result->category_id];
}
bool Model::predict(const cv::Mat& im, DetResult* result) {
result->clear();
inputs_.clear();
if (type == "classifier") {
std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
"to function predict()!"
<< std::endl;
return false;
} else if (type == "segmenter") {
std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
"to function predict()!"
<< std::endl;
return false;
}
// 处理输入图像
if (!preprocess(im, &inputs_)) {
std::cerr << "Preprocess failed!" << std::endl;
return false;
}
int h = inputs_.new_im_size_[0];
int w = inputs_.new_im_size_[1];
auto im_tensor = predictor_->GetInputTensor("image");
im_tensor->Reshape({1, 3, h, w});
im_tensor->copy_from_cpu(inputs_.im_data_.data());
if (name == "YOLOv3") {
auto im_size_tensor = predictor_->GetInputTensor("im_size");
im_size_tensor->Reshape({1, 2});
im_size_tensor->copy_from_cpu(inputs_.ori_im_size_.data());
} else if (name == "FasterRCNN" || name == "MaskRCNN") {
auto im_info_tensor = predictor_->GetInputTensor("im_info");
auto im_shape_tensor = predictor_->GetInputTensor("im_shape");
im_info_tensor->Reshape({1, 3});
im_shape_tensor->Reshape({1, 3});
float ori_h = static_cast<float>(inputs_.ori_im_size_[0]);
float ori_w = static_cast<float>(inputs_.ori_im_size_[1]);
float new_h = static_cast<float>(inputs_.new_im_size_[0]);
float new_w = static_cast<float>(inputs_.new_im_size_[1]);
float im_info[] = {new_h, new_w, inputs_.scale};
float im_shape[] = {ori_h, ori_w, 1.0};
im_info_tensor->copy_from_cpu(im_info);
im_shape_tensor->copy_from_cpu(im_shape);
}
// 使用加载的模型进行预测
predictor_->ZeroCopyRun();
std::vector<float> output_box;
auto output_names = predictor_->GetOutputNames();
auto output_box_tensor = predictor_->GetOutputTensor(output_names[0]);
std::vector<int> output_box_shape = output_box_tensor->shape();
int size = 1;
for (const auto& i : output_box_shape) {
size *= i;
}
output_box.resize(size);
output_box_tensor->copy_to_cpu(output_box.data());
if (size < 6) {
std::cerr << "[WARNING] There's no object detected." << std::endl;
return true;
}
int num_boxes = size / 6;
// 解析预测框box
for (int i = 0; i < num_boxes; ++i) {
Box box;
box.category_id = static_cast<int>(round(output_box[i * 6]));
box.category = labels[box.category_id];
box.score = output_box[i * 6 + 1];
float xmin = output_box[i * 6 + 2];
float ymin = output_box[i * 6 + 3];
float xmax = output_box[i * 6 + 4];
float ymax = output_box[i * 6 + 5];
float w = xmax - xmin + 1;
float h = ymax - ymin + 1;
box.coordinate = {xmin, ymin, w, h};
result->boxes.push_back(std::move(box));
}
// 实例分割需解析mask
if (name == "MaskRCNN") {
std::vector<float> output_mask;
auto output_mask_tensor = predictor_->GetOutputTensor(output_names[1]);
std::vector<int> output_mask_shape = output_mask_tensor->shape();
int masks_size = 1;
for (const auto& i : output_mask_shape) {
masks_size *= i;
}
int mask_pixels = output_mask_shape[2] * output_mask_shape[3];
int classes = output_mask_shape[1];
output_mask.resize(masks_size);
output_mask_tensor->copy_to_cpu(output_mask.data());
result->mask_resolution = output_mask_shape[2];
for (int i = 0; i < result->boxes.size(); ++i) {
Box* box = &result->boxes[i];
auto begin_mask =
output_mask.begin() + (i * classes + box->category_id) * mask_pixels;
auto end_mask = begin_mask + mask_pixels;
box->mask.data.assign(begin_mask, end_mask);
box->mask.shape = {static_cast<int>(box->coordinate[2]),
static_cast<int>(box->coordinate[3])};
}
}
}
bool Model::predict(const cv::Mat& im, SegResult* result) {
result->clear();
inputs_.clear();
if (type == "classifier") {
std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
"to function predict()!"
<< std::endl;
return false;
} else if (type == "detector") {
std::cerr << "Loading model is a 'detector', DetResult should be passed to "
"function predict()!"
<< std::endl;
return false;
}
// 处理输入图像
if (!preprocess(im, &inputs_)) {
std::cerr << "Preprocess failed!" << std::endl;
return false;
}
int h = inputs_.new_im_size_[0];
int w = inputs_.new_im_size_[1];
auto im_tensor = predictor_->GetInputTensor("image");
im_tensor->Reshape({1, 3, h, w});
im_tensor->copy_from_cpu(inputs_.im_data_.data());
std::cout << "input image: " << h << " " << w << std::endl;
// 使用加载的模型进行预测
predictor_->ZeroCopyRun();
// 获取预测置信度,经过argmax后的labelmap
auto output_names = predictor_->GetOutputNames();
auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]);
std::vector<int> output_label_shape = output_label_tensor->shape();
int size = 1;
for (const auto& i : output_label_shape) {
size *= i;
result->label_map.shape.push_back(i);
}
result->label_map.data.resize(size);
output_label_tensor->copy_to_cpu(result->label_map.data.data());
// 获取预测置信度scoremap
auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]);
std::vector<int> output_score_shape = output_score_tensor->shape();
size = 1;
for (const auto& i : output_score_shape) {
size *= i;
result->score_map.shape.push_back(i);
}
result->score_map.data.resize(size);
output_score_tensor->copy_to_cpu(result->score_map.data.data());
// 解析输出结果到原图大小
std::vector<uint8_t> label_map(result->label_map.data.begin(),
result->label_map.data.end());
cv::Mat mask_label(result->label_map.shape[1],
result->label_map.shape[2],
CV_8UC1,
label_map.data());
cv::Mat mask_score(result->score_map.shape[2],
result->score_map.shape[3],
CV_32FC1,
result->score_map.data.data());
for (std::vector<std::string>::reverse_iterator iter =
inputs_.reshape_order_.rbegin();
iter != inputs_.reshape_order_.rend();
++iter) {
if (*iter == "padding") {
auto padding_w = inputs_.im_size_before_padding_[0];
auto padding_h = inputs_.im_size_before_padding_[1];
mask_label = mask_label(cv::Rect(0, 0, padding_w, padding_h));
mask_score = mask_score(cv::Rect(0, 0, padding_w, padding_h));
} else if (*iter == "resize") {
auto resize_w = inputs_.im_size_before_resize_[0];
auto resize_h = inputs_.im_size_before_resize_[1];
cv::resize(mask_label,
mask_label,
cv::Size(resize_h, resize_w),
0,
0,
cv::INTER_NEAREST);
cv::resize(mask_score,
mask_score,
cv::Size(resize_h, resize_w),
0,
0,
cv::INTER_NEAREST);
}
}
result->label_map.data.assign(mask_label.begin<uint8_t>(),
mask_label.end<uint8_t>());
result->label_map.shape = {mask_label.rows, mask_label.cols};
result->score_map.data.assign(mask_score.begin<float>(),
mask_score.end<float>());
result->score_map.shape = {mask_score.rows, mask_score.cols};
}
} // namespce of PaddleX
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <glog/logging.h>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include "include/paddlex/paddlex.h"
#include "include/paddlex/visualize.h"
DEFINE_string(model_dir, "", "Path of inference model");
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
DEFINE_int32(gpu_id, 0, "GPU card id");
DEFINE_string(image, "", "Path of test image file");
DEFINE_string(image_list, "", "Path of test image list file");
DEFINE_string(save_dir, "output", "Path to save visualized image");
int main(int argc, char** argv) {
// 解析命令行参数
google::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_model_dir == "") {
std::cerr << "--model_dir need to be defined" << std::endl;
return -1;
}
if (FLAGS_image == "" & FLAGS_image_list == "") {
std::cerr << "--image or --image_list need to be defined" << std::endl;
return -1;
}
// 加载模型
PaddleX::Model model;
model.Init(FLAGS_model_dir, FLAGS_use_gpu, FLAGS_gpu_id);
auto colormap = PaddleX::GenerateColorMap(model.labels.size());
// 进行预测
if (FLAGS_image_list != "") {
std::ifstream inf(FLAGS_image_list);
if (!inf) {
std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
return -1;
}
std::string image_path;
while (getline(inf, image_path)) {
PaddleX::SegResult result;
cv::Mat im = cv::imread(image_path, 1);
model.predict(im, &result);
// 可视化
cv::Mat vis_img =
PaddleX::VisualizeSeg(im, result, model.labels, colormap);
std::string save_path =
PaddleX::generate_save_path(FLAGS_save_dir, image_path);
cv::imwrite(save_path, vis_img);
result.clear();
std::cout << "Visualized output saved as " << save_path << std::endl;
}
} else {
PaddleX::SegResult result;
cv::Mat im = cv::imread(FLAGS_image, 1);
model.predict(im, &result);
// 可视化
cv::Mat vis_img = PaddleX::VisualizeSeg(im, result, model.labels, colormap);
std::string save_path =
PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image);
cv::imwrite(save_path, vis_img);
result.clear();
std::cout << "Visualized output saved as " << save_path << std::endl;
}
return 0;
}
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <string>
#include <vector>
#include "include/paddlex/transforms.h"
namespace PaddleX {
std::map<std::string, int> interpolations = {{"LINEAR", cv::INTER_LINEAR},
{"NEAREST", cv::INTER_NEAREST},
{"AREA", cv::INTER_AREA},
{"CUBIC", cv::INTER_CUBIC},
{"LANCZOS4", cv::INTER_LANCZOS4}};
bool Normalize::Run(cv::Mat* im, ImageBlob* data) {
for (int h = 0; h < im->rows; h++) {
for (int w = 0; w < im->cols; w++) {
im->at<cv::Vec3f>(h, w)[0] =
(im->at<cv::Vec3f>(h, w)[0] / 255.0 - mean_[0]) / std_[0];
im->at<cv::Vec3f>(h, w)[1] =
(im->at<cv::Vec3f>(h, w)[1] / 255.0 - mean_[1]) / std_[1];
im->at<cv::Vec3f>(h, w)[2] =
(im->at<cv::Vec3f>(h, w)[2] / 255.0 - mean_[2]) / std_[2];
}
}
return true;
}
float ResizeByShort::GenerateScale(const cv::Mat& im) {
int origin_w = im.cols;
int origin_h = im.rows;
int im_size_max = std::max(origin_w, origin_h);
int im_size_min = std::min(origin_w, origin_h);
float scale =
static_cast<float>(short_size_) / static_cast<float>(im_size_min);
if (max_size_ > 0) {
if (round(scale * im_size_max) > max_size_) {
scale = static_cast<float>(max_size_) / static_cast<float>(im_size_max);
}
}
return scale;
}
bool ResizeByShort::Run(cv::Mat* im, ImageBlob* data) {
data->im_size_before_resize_[0] = im->rows;
data->im_size_before_resize_[1] = im->cols;
data->reshape_order_.push_back("resize");
float scale = GenerateScale(*im);
int width = static_cast<int>(scale * im->cols);
int height = static_cast<int>(scale * im->rows);
cv::resize(*im, *im, cv::Size(width, height), 0, 0, cv::INTER_LINEAR);
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
data->scale = scale;
return true;
}
bool CenterCrop::Run(cv::Mat* im, ImageBlob* data) {
int height = static_cast<int>(im->rows);
int width = static_cast<int>(im->cols);
if (height < height_ || width < width_) {
std::cerr << "[CenterCrop] Image size less than crop size" << std::endl;
return false;
}
int offset_x = static_cast<int>((width - width_) / 2);
int offset_y = static_cast<int>((height - height_) / 2);
cv::Rect crop_roi(offset_x, offset_y, width_, height_);
*im = (*im)(crop_roi);
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
return true;
}
bool Padding::Run(cv::Mat* im, ImageBlob* data) {
data->im_size_before_padding_[0] = im->rows;
data->im_size_before_padding_[1] = im->cols;
data->reshape_order_.push_back("padding");
int padding_w = 0;
int padding_h = 0;
if (width_ > 0 & height_ > 0) {
padding_w = width_ - im->cols;
padding_h = height_ - im->rows;
} else if (coarsest_stride_ > 0) {
padding_h =
ceil(im->rows * 1.0 / coarsest_stride_) * coarsest_stride_ - im->rows;
padding_w =
ceil(im->cols * 1.0 / coarsest_stride_) * coarsest_stride_ - im->cols;
}
if (padding_h < 0 || padding_w < 0) {
std::cerr << "[Padding] Computed padding_h=" << padding_h
<< ", padding_w=" << padding_w
<< ", but they should be greater than 0." << std::endl;
return false;
}
cv::copyMakeBorder(
*im, *im, 0, padding_h, 0, padding_w, cv::BORDER_CONSTANT, cv::Scalar(0));
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
return true;
}
bool ResizeByLong::Run(cv::Mat* im, ImageBlob* data) {
if (long_size_ <= 0) {
std::cerr << "[ResizeByLong] long_size should be greater than 0"
<< std::endl;
return false;
}
data->im_size_before_resize_[0] = im->rows;
data->im_size_before_resize_[1] = im->cols;
data->reshape_order_.push_back("resize");
int origin_w = im->cols;
int origin_h = im->rows;
int im_size_max = std::max(origin_w, origin_h);
float scale =
static_cast<float>(long_size_) / static_cast<float>(im_size_max);
cv::resize(*im, *im, cv::Size(), scale, scale, cv::INTER_NEAREST);
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
data->scale = scale;
return true;
}
bool Resize::Run(cv::Mat* im, ImageBlob* data) {
if (width_ <= 0 || height_ <= 0) {
std::cerr << "[Resize] width and height should be greater than 0"
<< std::endl;
return false;
}
if (interpolations.count(interp_) <= 0) {
std::cerr << "[Resize] Invalid interpolation method: '" << interp_ << "'"
<< std::endl;
return false;
}
data->im_size_before_resize_[0] = im->rows;
data->im_size_before_resize_[1] = im->cols;
data->reshape_order_.push_back("resize");
cv::resize(
*im, *im, cv::Size(width_, height_), 0, 0, interpolations[interp_]);
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
return true;
}
void Transforms::Init(const YAML::Node& transforms_node, bool to_rgb) {
transforms_.clear();
to_rgb_ = to_rgb;
for (const auto& item : transforms_node) {
std::string name = item.begin()->first.as<std::string>();
std::cout << "trans name: " << name << std::endl;
std::shared_ptr<Transform> transform = CreateTransform(name);
transform->Init(item.begin()->second);
transforms_.push_back(transform);
}
}
std::shared_ptr<Transform> Transforms::CreateTransform(
const std::string& transform_name) {
if (transform_name == "Normalize") {
return std::make_shared<Normalize>();
} else if (transform_name == "ResizeByShort") {
return std::make_shared<ResizeByShort>();
} else if (transform_name == "CenterCrop") {
return std::make_shared<CenterCrop>();
} else if (transform_name == "Resize") {
return std::make_shared<Resize>();
} else if (transform_name == "Padding") {
return std::make_shared<Padding>();
} else if (transform_name == "ResizeByLong") {
return std::make_shared<ResizeByLong>();
} else {
std::cerr << "There's unexpected transform(name='" << transform_name
<< "')." << std::endl;
exit(-1);
}
}
bool Transforms::Run(cv::Mat* im, ImageBlob* data) {
// 按照transforms中预处理算子顺序处理图像
if (to_rgb_) {
cv::cvtColor(*im, *im, cv::COLOR_BGR2RGB);
}
(*im).convertTo(*im, CV_32FC3);
data->ori_im_size_[0] = im->rows;
data->ori_im_size_[1] = im->cols;
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
for (int i = 0; i < transforms_.size(); ++i) {
if (!transforms_[i]->Run(im, data)) {
std::cerr << "Apply transforms to image failed!" << std::endl;
return false;
}
}
// 将图像由NHWC转为NCHW格式
// 同时转为连续的内存块存储到ImageBlob
int h = im->rows;
int w = im->cols;
int c = im->channels();
(data->im_data_).resize(c * h * w);
float* ptr = (data->im_data_).data();
for (int i = 0; i < c; ++i) {
cv::extractChannel(*im, cv::Mat(h, w, CV_32FC1, ptr + i * h * w), i);
}
return true;
}
} // namespace PaddleX
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "include/paddlex/visualize.h"
namespace PaddleX {
std::vector<int> GenerateColorMap(int num_class) {
auto colormap = std::vector<int>(3 * num_class, 0);
for (int i = 0; i < num_class; ++i) {
int j = 0;
int lab = i;
while (lab) {
colormap[i * 3] |= (((lab >> 0) & 1) << (7 - j));
colormap[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
colormap[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
++j;
lab >>= 3;
}
}
return colormap;
}
cv::Mat VisualizeDet(const cv::Mat& img,
const DetResult& result,
const std::map<int, std::string>& labels,
const std::vector<int>& colormap,
float threshold) {
cv::Mat vis_img = img.clone();
auto boxes = result.boxes;
for (int i = 0; i < boxes.size(); ++i) {
if (boxes[i].score < threshold) {
continue;
}
cv::Rect roi = cv::Rect(boxes[i].coordinate[0],
boxes[i].coordinate[1],
boxes[i].coordinate[2],
boxes[i].coordinate[3]);
// 生成预测框和标题
std::string text = boxes[i].category;
int c1 = colormap[3 * boxes[i].category_id + 0];
int c2 = colormap[3 * boxes[i].category_id + 1];
int c3 = colormap[3 * boxes[i].category_id + 2];
cv::Scalar roi_color = cv::Scalar(c1, c2, c3);
text += std::to_string(static_cast<int>(boxes[i].score * 100)) + "%";
int font_face = cv::FONT_HERSHEY_SIMPLEX;
double font_scale = 0.5f;
float thickness = 0.5;
cv::Size text_size =
cv::getTextSize(text, font_face, font_scale, thickness, nullptr);
cv::Point origin;
origin.x = roi.x;
origin.y = roi.y;
// 生成预测框标题的背景
cv::Rect text_back = cv::Rect(boxes[i].coordinate[0],
boxes[i].coordinate[1] - text_size.height,
text_size.width,
text_size.height);
// 绘图和文字
cv::rectangle(vis_img, roi, roi_color, 2);
cv::rectangle(vis_img, text_back, roi_color, -1);
cv::putText(vis_img,
text,
origin,
font_face,
font_scale,
cv::Scalar(255, 255, 255),
thickness);
// 生成实例分割mask
if (boxes[i].mask.data.size() == 0) {
continue;
}
cv::Mat bin_mask(result.mask_resolution,
result.mask_resolution,
CV_32FC1,
boxes[i].mask.data.data());
cv::resize(bin_mask,
bin_mask,
cv::Size(boxes[i].mask.shape[0], boxes[i].mask.shape[1]));
cv::threshold(bin_mask, bin_mask, 0.5, 1, cv::THRESH_BINARY);
cv::Mat full_mask = cv::Mat::zeros(vis_img.size(), CV_8UC1);
bin_mask.copyTo(full_mask(roi));
cv::Mat mask_ch[3];
mask_ch[0] = full_mask * c1;
mask_ch[1] = full_mask * c2;
mask_ch[2] = full_mask * c3;
cv::Mat mask;
cv::merge(mask_ch, 3, mask);
cv::addWeighted(vis_img, 1, mask, 0.5, 0, vis_img);
}
return vis_img;
}
cv::Mat VisualizeSeg(const cv::Mat& img,
const SegResult& result,
const std::map<int, std::string>& labels,
const std::vector<int>& colormap) {
std::vector<uint8_t> label_map(result.label_map.data.begin(),
result.label_map.data.end());
cv::Mat mask(result.label_map.shape[0],
result.label_map.shape[1],
CV_8UC1,
label_map.data());
cv::Mat color_mask = cv::Mat::zeros(
result.label_map.shape[0], result.label_map.shape[1], CV_8UC3);
int rows = img.rows;
int cols = img.cols;
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
int category_id = static_cast<int>(mask.at<uchar>(i, j));
color_mask.at<cv::Vec3b>(i, j)[0] = colormap[3 * category_id + 0];
color_mask.at<cv::Vec3b>(i, j)[1] = colormap[3 * category_id + 1];
color_mask.at<cv::Vec3b>(i, j)[2] = colormap[3 * category_id + 2];
}
}
return color_mask;
}
std::string generate_save_path(const std::string& save_dir,
const std::string& file_path) {
if (access(save_dir.c_str(), 0) < 0) {
#ifdef _WIN32
mkdir(save_dir.c_str());
#else
if (mkdir(save_dir.c_str(), S_IRWXU) < 0) {
std::cerr << "Fail to create " << save_dir << "directory." << std::endl;
}
#endif
}
int pos = file_path.find_last_of(OS_PATH_SEP);
std::string image_name(file_path.substr(pos + 1));
return save_dir + OS_PATH_SEP + image_name;
}
} // namespace of PaddleX
......@@ -17,7 +17,7 @@ paddlex.cls.ResNet50(num_classes=1000)
#### 分类器训练函数接口
> ```python
> train(self, num_epochs, train_dataset, train_batch_size=64, eval_dataset=None, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.025, lr_decay_epochs=[30, 60, 90], lr_decay_gamma=0.1, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05)
> train(self, num_epochs, train_dataset, train_batch_size=64, eval_dataset=None, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.025, lr_decay_epochs=[30, 60, 90], lr_decay_gamma=0.1, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5)
> ```
>
> **参数:**
......@@ -37,6 +37,8 @@ paddlex.cls.ResNet50(num_classes=1000)
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认值为False。
> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
> > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。
> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
#### 分类器评估函数接口
......@@ -75,7 +77,7 @@ paddlex.cls.ResNet50(num_classes=1000)
### 其它分类器类
`ResNet50`外,`paddlex.cls`下还提供了`ResNet18``ResNet34``ResNet101``ResNet50_vd``ResNet101_vd``DarkNet53``MobileNetV1``MobileNetV2``MobileNetV3_small``MobileNetV3_large``Xception41``Xception65``Xception71``ShuffleNetV2`, 使用方式(包括函数接口和参数)均与`ResNet50`一致,各模型效果可参考[模型库](../model_zoo.md)中列表。
`ResNet50`外,`paddlex.cls`下还提供了`ResNet18``ResNet34``ResNet101``ResNet50_vd``ResNet101_vd``ResNet50_vd_ssld``ResNet101_vd_ssld``DarkNet53``MobileNetV1``MobileNetV2``MobileNetV3_small``MobileNetV3_large``MobileNetV3_small_ssld``MobileNetV3_large_ssld``Xception41``Xception65``Xception71``ShuffleNetV2`, 使用方式(包括函数接口和参数)均与`ResNet50`一致,各模型效果可参考[模型库](../model_zoo.md)中列表。
......@@ -109,7 +111,7 @@ paddlex.det.YOLOv3(num_classes=80, backbone='MobileNetV1', anchors=None, anchor_
#### YOLOv3训练函数接口
> ```python
> train(self, num_epochs, train_dataset, train_batch_size=8, eval_dataset=None, save_interval_epochs=20, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=1.0/8000, warmup_steps=1000, warmup_start_lr=0.0, lr_decay_epochs=[213, 240], lr_decay_gamma=0.1, metric=None, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05)
> train(self, num_epochs, train_dataset, train_batch_size=8, eval_dataset=None, save_interval_epochs=20, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=1.0/8000, warmup_steps=1000, warmup_start_lr=0.0, lr_decay_epochs=[213, 240], lr_decay_gamma=0.1, metric=None, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5)
> ```
>
> **参数:**
......@@ -132,6 +134,8 @@ paddlex.det.YOLOv3(num_classes=80, backbone='MobileNetV1', anchors=None, anchor_
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认值为False。
> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在PascalVOC数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
> > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。
> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
#### YOLOv3评估函数接口
......@@ -186,7 +190,7 @@ paddlex.det.FasterRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspec
#### FasterRCNN训练函数接口
> ```python
> train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, save_interval_epochs=1, log_interval_steps=2,save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.0025, warmup_steps=500, warmup_start_lr=1.0/1200, lr_decay_epochs=[8, 11], lr_decay_gamma=0.1, metric=None, use_vdl=False)
> train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, save_interval_epochs=1, log_interval_steps=2,save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.0025, warmup_steps=500, warmup_start_lr=1.0/1200, lr_decay_epochs=[8, 11], lr_decay_gamma=0.1, metric=None, use_vdl=False, early_stop=False, early_stop_patience=5)
>
> ```
>
......@@ -208,6 +212,8 @@ paddlex.det.FasterRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspec
> > - **lr_decay_gamma** (float): 默认优化器的学习率衰减率。默认为0.1。
> > - **metric** (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认值为None。
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认值为False。
> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
#### FasterRCNN评估函数接口
......@@ -264,7 +270,7 @@ paddlex.det.MaskRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspect_
#### MaskRCNN训练函数接口
> ```python
> train(self, num_epochs, train_dataset, train_batch_size=1, eval_dataset=None, save_interval_epochs=1, log_interval_steps=20, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=1.0/800, warmup_steps=500, warmup_start_lr=1.0 / 2400, lr_decay_epochs=[8, 11], lr_decay_gamma=0.1, metric=None, use_vdl=False)
> train(self, num_epochs, train_dataset, train_batch_size=1, eval_dataset=None, save_interval_epochs=1, log_interval_steps=20, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=1.0/800, warmup_steps=500, warmup_start_lr=1.0 / 2400, lr_decay_epochs=[8, 11], lr_decay_gamma=0.1, metric=None, use_vdl=False, early_stop=False, early_stop_patience=5)
>
> ```
>
......@@ -286,6 +292,8 @@ paddlex.det.MaskRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspect_
> > - **lr_decay_gamma** (float): 默认优化器的学习率衰减率。默认为0.1。
> > - **metric** (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认值为None。
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认值为False。
> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
#### MaskRCNN评估函数接口
......@@ -350,7 +358,7 @@ paddlex.seg.DeepLabv3p(num_classes=2, backbone='MobileNetV2_x1.0', output_stride
#### DeepLabv3训练函数接口
> ```python
> train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, eval_batch_size=1, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.01, lr_decay_power=0.9, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05):
> train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, eval_batch_size=1, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.01, lr_decay_power=0.9, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5):
>
> ```
>
......@@ -370,6 +378,8 @@ paddlex.seg.DeepLabv3p(num_classes=2, backbone='MobileNetV2_x1.0', output_stride
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认False。
> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
> > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。
> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
#### DeepLabv3评估函数接口
......@@ -427,7 +437,7 @@ paddlex.seg.UNet(num_classes=2, upsample_mode='bilinear', use_bce_loss=False, us
#### Unet训练函数接口
> ```python
> train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, eval_batch_size=1, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='COCO', optimizer=None, learning_rate=0.01, lr_decay_power=0.9, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05):
> train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, eval_batch_size=1, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='COCO', optimizer=None, learning_rate=0.01, lr_decay_power=0.9, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5):
> ```
>
> **参数:**
......@@ -446,6 +456,8 @@ paddlex.seg.UNet(num_classes=2, upsample_mode='bilinear', use_bce_loss=False, us
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认False。
> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
> > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。
> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
#### Unet评估函数接口
......
# 模型部署导出
### 导出inference模型
在服务端部署的模型需要首先将模型导出为inference格式模型,导出的模型将包括`__model__``__params__``model.yml`三个文名,分别为模型的网络结构,模型权重和模型的配置文件(包括数据预处理参数等等)。在安装完PaddleX后,在命令行终端使用如下命令导出模型到当前目录`inferece_model`下。
> 可直接下载小度熊分拣模型测试本文档的流程[xiaoduxiong_epoch_12.tar.gz](https://bj.bcebos.com/paddlex/models/xiaoduxiong_epoch_12.tar.gz)
```
paddlex --export_inference --model_dir=./xiaoduxiong_epoch_12 --save_dir=./inference_model
```
## 模型C++和Python部署方案预计一周内推出...
# 模型预测部署
本文档指引用户如何采用更高性能地方式来部署使用PaddleX训练的模型。使用本文档模型部署方式,会在模型运算过程中,对模型计算图进行优化,同时减少内存操作,相对比普通的paddlepaddle模型加载和预测方式,预测速度平均可提升1倍,具体各模型性能对比见[预测性能对比](#预测性能对比)
## 服务端部署
### 导出inference模型
在服务端部署的模型需要首先将模型导出为inference格式模型,导出的模型将包括`__model__``__params__``model.yml`三个文名,分别为模型的网络结构,模型权重和模型的配置文件(包括数据预处理参数等等)。在安装完PaddleX后,在命令行终端使用如下命令导出模型到当前目录`inferece_model`下。
> 可直接下载垃圾检测模型测试本文档的流程[garbage_epoch_12.tar.gz](https://bj.bcebos.com/paddlex/models/garbage_epoch_12.tar.gz)
```
paddlex --export_inference --model_dir=./garbage_epoch_12 --save_dir=./inference_model
```
### Python部署
PaddleX已经集成了基于Python的高性能预测接口,在安装PaddleX后,可参照如下代码示例,进行预测。相关的接口文档可参考[paddlex.deploy](apis/deploy.md)
> 点击下载测试图片 [garbage.bmp](https://bj.bcebos.com/paddlex/datasets/garbage.bmp)
```
import paddlex as pdx
predictorpdx.deploy.create_predictor('./inference_model')
result = predictor.predict(image='garbage.bmp')
```
### C++部署
C++部署方案位于目录`deploy/cpp/`下,且独立于PaddleX其他模块。该方案支持在 Windows 和 Linux 完成编译、二次开发集成和部署运行。具体使用方法和编译:
- Linux平台:[linux](deploy_cpp_linux.md)
- window平台:[windows](deploy_cpp_win_vs2019.md)
### 预测性能对比
#### 测试环境
- CUDA 9.0
- CUDNN 7.5
- PaddlePaddle 1.71
- GPU: Tesla P40
- AnalysisPredictor 指采用Python的高性能预测方式
- Executor 指采用paddlepaddle普通的python预测方式
- Batch Size均为1,耗时单位为ms/image,只计算模型运行时间,不包括数据的预处理和后处理
| 模型 | AnalysisPredictor耗时 | Executor耗时 | 输入图像大小 |
| :---- | :--------------------- | :------------ | :------------ |
| resnet50 | 4.84 | 7.57 | 224*224 |
| mobilenet_v2 | 3.27 | 5.76 | 224*224 |
| unet | 22.51 | 34.60 |513*513 |
| deeplab_mobile | 63.44 | 358.31 |1025*2049 |
| yolo_mobilenetv2 | 15.20 | 19.54 | 608*608 |
| faster_rcnn_r50_fpn_1x | 50.05 | 69.58 |800*1088 |
| faster_rcnn_r50_1x | 326.11 | 347.22 | 800*1067 |
| mask_rcnn_r50_fpn_1x | 67.49 | 91.02 | 800*1088 |
| mask_rcnn_r50_1x | 326.11 | 350.94 | 800*1067 |
## 移动端部署
> Lite模型导出正在集成中,即将开源...
# Linux平台编译指南
## 说明
本文档在 `Linux`平台使用`GCC 4.8.5``GCC 4.9.4`测试过,如果需要使用更高G++版本编译使用,则需要重新编译Paddle预测库,请参考: [从源码编译Paddle预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html#id12)
## 前置条件
* G++ 4.8.2 ~ 4.9.4
* CUDA 9.0 / CUDA 10.0, CUDNN 7+ (仅在使用GPU版本的预测库时需要)
* CMake 3.0+
请确保系统已经安装好上述基本软件,**下面所有示例以工作目录 `/root/projects/`演示**
### Step1: 下载代码
`git clone https://github.com/PaddlePaddle/PaddleX.git`
**说明**:其中`C++`预测代码在`/root/projects/PaddleX/deploy/cpp` 目录,该目录不依赖任何`PaddleX`下其他目录。
### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference
PaddlePaddle C++ 预测库针对不同的`CPU``CUDA`,以及是否支持TensorRT,提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html#id1)
下载并解压后`/root/projects/fluid_inference`目录包含内容为:
```
fluid_inference
├── paddle # paddle核心库和头文件
|
├── third_party # 第三方依赖库和头文件
|
└── version.txt # 版本和编译信息
```
**注意:** 预编译版本除`nv-jetson-cuda10-cudnn7.5-trt5` 以外其它包都是基于`GCC 4.8.5`编译,使用高版本`GCC`可能存在 `ABI`兼容性问题,建议降级或[自行编译预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html#id12)
### Step4: 编译
编译`cmake`的命令在`scripts/build.sh`中,请根据实际情况修改主要参数,其主要内容说明如下:
```
# 是否使用GPU(即是否使用 CUDA)
WITH_GPU=ON
# 是否集成 TensorRT(仅WITH_GPU=ON 有效)
WITH_TENSORRT=OFF
# 上一步下载的 Paddle 预测库路径
PADDLE_DIR=/root/projects/deps/fluid_inference/
# CUDA 的 lib 路径
CUDA_LIB=/usr/local/cuda/lib64/
# CUDNN 的 lib 路径
CUDNN_LIB=/usr/local/cudnn/lib64/
# OPENCV 路径, 如果使用自带预编译版本可不设置
OPENCV_DIR=$(pwd)/deps/opencv3gcc4.8/
sh $(pwd)/scripts/bootstrap.sh
# 以下无需改动
rm -rf build
mkdir -p build
cd build
cmake .. \
-DWITH_GPU=${WITH_GPU} \
-DWITH_TENSORRT=${WITH_TENSORRT} \
-DPADDLE_DIR=${PADDLE_DIR} \
-DCUDA_LIB=${CUDA_LIB} \
-DCUDNN_LIB=${CUDNN_LIB} \
-DOPENCV_DIR=${OPENCV_DIR}
make
```
修改脚本设置好主要参数后,执行`build`脚本:
```shell
sh ./scripts/build.sh
```
### Step5: 预测及可视化
编译成功后,预测demo的可执行程序分别为`build/detector``build/classifer``build/segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
| 参数 | 说明 |
| ---- | ---- |
| model_dir | 导出的预测模型所在路径 |
| image | 要预测的图片文件路径 |
| image_list | 按行存储图片路径的.txt文件 |
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) |
| gpu_id | GPU 设备ID, 默认值为0 |
| save_dir | 保存可视化结果的路径, 默认值为"output",classfier无该参数 |
## 样例
可使用[垃圾检测模型](deploy.md#导出inference模型)中生成的`inference_model`模型和测试图片进行预测。
`样例一`
不使用`GPU`测试图片 `/path/to/garbage.bmp`
```shell
./build/detector --model_dir=/path/to/inference_model --image=/path/to/garbage.bmp --save_dir=output
```
图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
`样例二`:
使用`GPU`预测多个图片`/path/to/image_list.txt`,image_list.txt内容的格式如下:
```
/path/to/images/garbage1.jpeg
/path/to/images/garbage2.jpeg
...
/path/to/images/garbagen.jpeg
```
```shell
./build/detector --model_dir=/path/to/models/inference_model --image_list=/root/projects/images_list.txt --use_gpu=1 --save_dir=output
```
图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
# Visual Studio 2019 Community CMake 编译指南
## 说明
Windows 平台下,我们使用`Visual Studio 2019 Community` 进行了测试。微软从`Visual Studio 2017`开始即支持直接管理`CMake`跨平台编译项目,但是直到`2019`才提供了稳定和完全的支持,所以如果你想使用CMake管理项目编译构建,我们推荐你使用`Visual Studio 2019`环境下构建。
## 前置条件
* Visual Studio 2019
* CUDA 9.0 / CUDA 10.0, CUDNN 7+ (仅在使用GPU版本的预测库时需要)
* CMake 3.0+
请确保系统已经安装好上述基本软件,我们使用的是`VS2019`的社区版。
**下面所有示例以工作目录为 `D:\projects`演示**
### Step1: 下载代码
下载源代码
```shell
d:
mkdir projects
cd projects
git clone https://github.com/PaddlePaddle/PaddleX.git
```
**说明**:其中`C++`预测代码在`PaddleX/deploy/cpp` 目录,该目录不依赖任何`PaddleX`下其他目录。
### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference
PaddlePaddle C++ 预测库针对不同的`CPU``CUDA`版本提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/windows_cpp_inference.html)
解压后`D:\projects\fluid_inference*\`目录下主要包含的内容为:
```
├── \paddle\ # paddle核心库和头文件
|
├── \third_party\ # 第三方依赖库和头文件
|
└── \version.txt # 版本和编译信息
```
### Step3: 安装配置OpenCV
1. 在OpenCV官网下载适用于Windows平台的3.4.6版本, [下载地址](https://sourceforge.net/projects/opencvlibrary/files/3.4.6/opencv-3.4.6-vc14_vc15.exe/download)
2. 运行下载的可执行文件,将OpenCV解压至指定目录,如`D:\projects\opencv`
3. 配置环境变量,如下流程所示
- 我的电脑->属性->高级系统设置->环境变量
- 在系统变量中找到Path(如没有,自行创建),并双击编辑
- 新建,将opencv路径填入并保存,如`D:\projects\opencv\build\x64\vc14\bin`
### Step4: 使用Visual Studio 2019直接编译CMake
1. 打开Visual Studio 2019 Community,点击`继续但无需代码`
![step2](images/vs2019_step1.png)
2. 点击: `文件`->`打开`->`CMake`
![step2.1](images/vs2019_step2.png)
选择项目代码所在路径,并打开`CMakeList.txt`:
![step2.2](images/vs2019_step3.png)
3. 点击:`项目`->`PADDLEX_INFERENCE的CMake设置`
![step3](images/vs2019_step4.png)
4. 点击`浏览`,分别设置编译选项指定`CUDA`、`OpenCV`、`Paddle预测库`的路径
依赖库路径的含义说明如下(带*表示仅在使用**GPU版本**预测库时指定, 其中CUDA库版本尽量对齐,**使用9.0、10.0版本,不使用9.2、10.1等版本CUDA库**):
| 参数名 | 含义 |
| ---- | ---- |
| *CUDA_LIB | CUDA的库路径, 注:请将CUDNN的cudnn.lib文件拷贝到CUDA_LIB路径下 |
| OPENCV_DIR | OpenCV的安装路径, |
| PADDLE_DIR | Paddle c++预测库的路径 |
**注意:** 1. 使用`CPU`版预测库,请把`WITH_GPU`的``去掉勾 2. 如果使用的是`openblas`版本,请把`WITH_MKL`的``去掉勾
![step4](images/vs2019_step5.png)
**设置完成后**, 点击上图中`保存并生成CMake缓存以加载变量`。
5. 点击`生成`->`全部生成`
![step6](images/vs2019_step6.png)
### Step5: 预测及可视化
上述`Visual Studio 2019`编译产出的可执行文件在`out\build\x64-Release`目录下,打开`cmd`,并切换到该目录:
```
d:
cd D:\projects\PaddleX\deploy\cpp\out\build\x64-Release
```
编译成功后,预测demo的入口程序为`detector`,`classifer`,`segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
| 参数 | 说明 |
| ---- | ---- |
| model_dir | 导出的预测模型所在路径 |
| image | 要预测的图片文件路径 |
| image_list | 按行存储图片路径的.txt文件 |
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) |
| gpu_id | GPU 设备ID, 默认值为0 |
| save_dir | 保存可视化结果的路径, 默认值为"output",classfier无该参数 |
## 样例
可使用[垃圾检测模型](deploy.md#导出inference模型)中生成的`inference_model`模型和测试图片进行预测。
`样例一`:
不使用`GPU`测试图片 `\\path\\to\\garbage.bmp`
```shell
.\detector --model_dir=\\path\\to\\inference_model --image=D:\\images\\garbage.bmp --save_dir=output
```
图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
`样例二`:
使用`GPU`预测多个图片`\\path\\to\\image_list.txt`,image_list.txt内容的格式如下:
```
\\path\\to\\images\\garbage1.jpeg
\\path\\to\\images\\garbage2.jpeg
...
\\path\\to\\images\\garbagen.jpeg
```
```shell
.\detector --model_dir=\\path\\to\\inference_model --image_list=\\path\\to\\images_list.txt --use_gpu=1 --save_dir=output
```
图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
......@@ -4,35 +4,38 @@
表中相关模型也可下载好作为相应模型的预训练模型,通过`pretrain_weights`指定目录加载使用。
## 图像分类模型
> 表中模型相关指标均为在ImageNet数据集上使用PaddlePaddle Python预测接口测试得到(测试GPU型号为Nvidia Tesla P4),预测速度为每张图片预测用时(不包括预处理和后处理),表中符号`-`表示相关指标暂未测试。
> 表中模型相关指标均为在ImageNet数据集上使用PaddlePaddle Python预测接口测试得到(测试GPU型号为Nvidia Tesla P40),预测速度为每张图片预测用时(不包括预处理和后处理),表中符号`-`表示相关指标暂未测试。
| 模型 | 模型大小 | 预测速度(毫秒) | Top1准确率 | Top5准确率 |
| 模型 | 模型大小 | 预测速度(毫秒) | Top1准确率(%) | Top5准确率(%) |
| :----| :------- | :----------- | :--------- | :--------- |
| ResNet18| 46.9MB | 3.456 | 70.98% | 89.92% |
| ResNet34| 87.5MB | 5.668 | 74.57% | 92.14% |
| ResNet50| 102.7MB | 8.787 | 76.50% | 93.00% |
| ResNet101 |179.1MB | 15.447 | 77.56% | 93.64% |
| ResNet50_vd |102.8MB | 9.058 | 79.12% | 94.44% |
| ResNet101_vd| 179.2MB | 15.685 | 80.17% | 94.97% |
| DarkNet53|166.9MB | 11.969 | 78.04% | 94.05% |
| MobileNetV1 | 16.4MB | 2.609 | 70.99% | 89.68% |
| MobileNetV2 | 14.4MB | 4.546 | 72.15% | 90.65% |
| MobileNetV3_large| 22.8MB | - | 75.3% | 75.3% |
| MobileNetV3_small | 12.5MB | 6.809 | 67.46% | 87.12% |
| Xception41 |92.4MB | 13.757 | 79.30% | 94.53% |
| Xception65 | 144.6MB | 19.216 | 81.00% | 95.49% |
| Xception71| 151.9MB | 23.291 | 81.11% | 95.45% |
| DenseNet121 | 32.8MB | 12.437 | 75.66% | 92.58% |
| DenseNet161|116.3MB | 27.717 | 78.57% | 94.14% |
| DenseNet201| 84.6MB | 26.583 | 77.63% | 93.66% |
| ShuffleNetV2 | 10.2MB | 6.101 | 68.8% | 88.5% |
| ResNet18| 46.9MB | 1.499 | 71.0 | 89.9 |
| ResNet34| 87.5MB | 2.272 | 74.6 | 92.1 |
| ResNet50| 102.7MB | 2.939 | 76.5 | 93.0 |
| ResNet101 |179.1MB | 5.314 | 77.6 | 93.6 |
| ResNet50_vd |102.8MB | 3.165 | 79.1 | 94.4 |
| ResNet101_vd| 179.2MB | 5.252 | 80.2 | 95.0 |
| ResNet50_vd_ssld |102.8MB | 3.165 | 82.4 | 96.1 |
| ResNet101_vd_ssld| 179.2MB | 5.252 | 83.7 | 96.7 |
| DarkNet53|166.9MB | 3.139 | 78.0 | 94.1 |
| MobileNetV1 | 16.0MB | 32.523 | 71.0 | 89.7 |
| MobileNetV2 | 14.0MB | 23.318 | 72.2 | 90.7 |
| MobileNetV3_large| 21.0MB | 19.308 | 75.3 | 93.2 |
| MobileNetV3_small | 12.0MB | 6.546 | 68.2 | 88.1 |
| MobileNetV3_large_ssld| 21.0MB | 19.308 | 79.0 | 94.5 |
| MobileNetV3_small_ssld | 12.0MB | 6.546 | 71.3 | 90.1 |
| Xception41 |92.4MB | 4.408 | 79.6 | 94.4 |
| Xception65 | 144.6MB | 6.464 | 80.3 | 94.5 |
| DenseNet121 | 32.8MB | 4.371 | 75.7 | 92.6 |
| DenseNet161|116.3MB | 8.863 | 78.6 | 94.1 |
| DenseNet201| 84.6MB | 8.173 | 77.6 | 93.7 |
| ShuffleNetV2 | 9.0MB | 10.941 | 68.8 | 88.5 |
## 目标检测模型
> 表中模型相关指标均为在MSCOCO数据集上使用PaddlePaddle Python预测接口测试得到(测试GPU型号为Nvidia Tesla V100测试得到,表中符号`-`表示相关指标暂未测试。
| 模型 | 模型大小 | 预测时间(毫秒) | BoxAP |
| 模型 | 模型大小 | 预测时间(毫秒) | BoxAP(%) |
|:-------|:-----------|:-------------|:----------|
|FasterRCNN-ResNet50|135.6MB| 78.450 | 35.2 |
|FasterRCNN-ResNet50_vd| 135.7MB | 79.523 | 36.4 |
......@@ -50,7 +53,7 @@
> 表中模型相关指标均为在MSCOCO数据集上测试得到。
| 模型 |模型大小 | 预测时间(毫秒) | BoxAP | SegAP |
| 模型 |模型大小 | 预测时间(毫秒) | BoxAP | SegAP(%) |
|:---------|:---------|:----------|:---------|:--------|
|MaskRCNN-ResNet50|51.2MB| 86.096 | 36.5 |32.2|
|MaskRCNN-ResNet50-FPN|184.6MB | 65.859 | 37.9 |34.2|
......
......@@ -20,6 +20,12 @@ from . import seg
from . import cls
from . import slim
try:
import pycocotools
except:
print("[WARNING] pycocotools is not installed, detection model is not available now.")
print("[WARNING] pycocotools install: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/install.md")
env_info = get_environ_info()
load_model = cv.models.load_model
datasets = cv.datasets
......
......@@ -19,7 +19,6 @@ import random
import numpy as np
import paddlex.utils.logging as logging
import paddlex as pst
from pycocotools.coco import COCO
from .voc import VOCDetection
from .dataset import is_pic
......@@ -47,6 +46,8 @@ class CocoDetection(VOCDetection):
buffer_size=100,
parallel_method='process',
shuffle=False):
from pycocotools.coco import COCO
super(VOCDetection, self).__init__(
transforms=transforms,
num_workers=num_workers,
......
......@@ -18,7 +18,6 @@ import os.path as osp
import random
import numpy as np
import xml.etree.ElementTree as ET
from pycocotools.coco import COCO
import paddlex.utils.logging as logging
from .dataset import Dataset
from .dataset import is_pic
......@@ -51,6 +50,7 @@ class VOCDetection(Dataset):
buffer_size=100,
parallel_method='process',
shuffle=False):
from pycocotools.coco import COCO
super(VOCDetection, self).__init__(
transforms=transforms,
num_workers=num_workers,
......
......@@ -24,6 +24,7 @@ import json
import functools
import paddlex.utils.logging as logging
from paddlex.utils import seconds_to_hms
from paddlex.utils.utils import EarlyStop
import paddlex
from collections import OrderedDict
from os import path as osp
......@@ -334,7 +335,9 @@ class BaseAPI:
save_interval_epochs=1,
log_interval_steps=10,
save_dir='output',
use_vdl=False):
use_vdl=False,
early_stop=False,
early_stop_patience=5):
if not osp.isdir(save_dir):
if osp.exists(save_dir):
os.remove(save_dir)
......@@ -396,6 +399,9 @@ class BaseAPI:
train_step_component = OrderedDict()
eval_component = OrderedDict()
thresh = 0.0001
if early_stop:
earlystop = EarlyStop(early_stop_patience, thresh)
best_accuracy_key = ""
best_accuracy = -1.0
best_model_epoch = 1
......@@ -507,3 +513,6 @@ class BaseAPI:
'Current evaluated best model in eval_dataset is epoch_{}, {}={}'
.format(best_model_epoch, best_accuracy_key,
best_accuracy))
if eval_dataset is not None and early_stop:
if earlystop(current_accuracy):
break
......@@ -102,7 +102,9 @@ class BaseClassifier(BaseAPI):
lr_decay_gamma=0.1,
use_vdl=False,
sensitivities_file=None,
eval_metric_loss=0.05):
eval_metric_loss=0.05,
early_stop=False,
early_stop_patience=5):
"""训练。
Args:
......@@ -124,6 +126,9 @@ class BaseClassifier(BaseAPI):
sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
early_stop (bool): 是否使用提前终止训练策略。默认值为False。
early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
连续下降或持平,则终止训练。默认值为5。
Raises:
ValueError: 模型从inference model进行加载。
......@@ -158,7 +163,9 @@ class BaseClassifier(BaseAPI):
save_interval_epochs=save_interval_epochs,
log_interval_steps=log_interval_steps,
save_dir=save_dir,
use_vdl=use_vdl)
use_vdl=use_vdl,
early_stop=early_stop,
early_stop_patience=early_stop_patience)
def evaluate(self,
eval_dataset,
......
......@@ -231,7 +231,9 @@ class DeepLabv3p(BaseAPI):
lr_decay_power=0.9,
use_vdl=False,
sensitivities_file=None,
eval_metric_loss=0.05):
eval_metric_loss=0.05,
early_stop=False,
early_stop_patience=5):
"""训练。
Args:
......@@ -252,6 +254,9 @@ class DeepLabv3p(BaseAPI):
sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
early_stop (bool): 是否使用提前终止训练策略。默认值为False。
early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
连续下降或持平,则终止训练。默认值为5。
Raises:
ValueError: 模型从inference model进行加载。
......@@ -288,7 +293,9 @@ class DeepLabv3p(BaseAPI):
save_interval_epochs=save_interval_epochs,
log_interval_steps=log_interval_steps,
save_dir=save_dir,
use_vdl=use_vdl)
use_vdl=use_vdl,
early_stop=early_stop,
early_stop_patience=early_stop_patience)
def evaluate(self,
eval_dataset,
......
......@@ -163,7 +163,9 @@ class FasterRCNN(BaseAPI):
lr_decay_epochs=[8, 11],
lr_decay_gamma=0.1,
metric=None,
use_vdl=False):
use_vdl=False,
early_stop=False,
early_stop_patience=5):
"""训练。
Args:
......@@ -186,6 +188,9 @@ class FasterRCNN(BaseAPI):
lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认值为None。
use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
early_stop (bool): 是否使用提前终止训练策略。默认值为False。
early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
连续下降或持平,则终止训练。默认值为5。
Raises:
ValueError: 评估类型不在指定列表中。
......@@ -233,7 +238,9 @@ class FasterRCNN(BaseAPI):
save_interval_epochs=save_interval_epochs,
log_interval_steps=log_interval_steps,
save_dir=save_dir,
use_vdl=use_vdl)
use_vdl=use_vdl,
early_stop=early_stop,
early_stop_patience=early_stop_patience)
def evaluate(self,
eval_dataset,
......
......@@ -128,7 +128,9 @@ class MaskRCNN(FasterRCNN):
lr_decay_epochs=[8, 11],
lr_decay_gamma=0.1,
metric=None,
use_vdl=False):
use_vdl=False,
early_stop=False,
early_stop_patience=5):
"""训练。
Args:
......@@ -151,6 +153,9 @@ class MaskRCNN(FasterRCNN):
lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。
use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
early_stop (bool): 是否使用提前终止训练策略。默认值为False。
early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
连续下降或持平,则终止训练。默认值为5。
Raises:
ValueError: 评估类型不在指定列表中。
......@@ -199,7 +204,9 @@ class MaskRCNN(FasterRCNN):
save_interval_epochs=save_interval_epochs,
log_interval_steps=log_interval_steps,
save_dir=save_dir,
use_vdl=use_vdl)
use_vdl=use_vdl,
early_stop=early_stop,
early_stop_patience=early_stop_patience)
def evaluate(self,
eval_dataset,
......
......@@ -15,9 +15,6 @@
import os.path as osp
import tqdm
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from .prune import cal_model_size
from paddleslim.prune import load_sensitivities
......@@ -30,6 +27,10 @@ def visualize(model, sensitivities_file, save_dir='./'):
model (paddlex.cv.models): paddlex中的模型。
sensitivities_file (str): 敏感度文件存储路径。
"""
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
program = model.test_prog
place = model.places[0]
fig = plt.figure()
......
......@@ -117,7 +117,9 @@ class UNet(DeepLabv3p):
lr_decay_power=0.9,
use_vdl=False,
sensitivities_file=None,
eval_metric_loss=0.05):
eval_metric_loss=0.05,
early_stop=False,
early_stop_patience=5):
"""训练。
Args:
......@@ -138,12 +140,17 @@ class UNet(DeepLabv3p):
sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
early_stop (bool): 是否使用提前终止训练策略。默认值为False。
early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
连续下降或持平,则终止训练。默认值为5。
Raises:
ValueError: 模型从inference model进行加载。
"""
return super(UNet, self).train(
num_epochs, train_dataset, train_batch_size, eval_dataset,
save_interval_epochs, log_interval_steps, save_dir,
pretrain_weights, optimizer, learning_rate, lr_decay_power,
use_vdl, sensitivities_file, eval_metric_loss)
return super(
UNet,
self).train(num_epochs, train_dataset, train_batch_size,
eval_dataset, save_interval_epochs, log_interval_steps,
save_dir, pretrain_weights, optimizer, learning_rate,
lr_decay_power, use_vdl, sensitivities_file,
eval_metric_loss, early_stop, early_stop_patience)
......@@ -333,6 +333,7 @@ def draw_pr_curve(eval_details_file=None,
return mean_s
def cal_pr(coco_gt, coco_dt, iou_thresh, save_dir, style='bbox'):
import matplotlib.pyplot as plt
from pycocotools.cocoeval import COCOeval
coco_dt = loadRes(coco_gt, coco_dt)
np.linspace = fixed_linspace
......
......@@ -162,7 +162,9 @@ class YOLOv3(BaseAPI):
metric=None,
use_vdl=False,
sensitivities_file=None,
eval_metric_loss=0.05):
eval_metric_loss=0.05,
early_stop=False,
early_stop_patience=5):
"""训练。
Args:
......@@ -188,6 +190,9 @@ class YOLOv3(BaseAPI):
sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
early_stop (bool): 是否使用提前终止训练策略。默认值为False。
early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
连续下降或持平,则终止训练。默认值为5。
Raises:
ValueError: 评估类型不在指定列表中。
......@@ -238,7 +243,9 @@ class YOLOv3(BaseAPI):
save_interval_epochs=save_interval_epochs,
log_interval_steps=log_interval_steps,
save_dir=save_dir,
use_vdl=use_vdl)
use_vdl=use_vdl,
early_stop=early_stop,
early_stop_patience=early_stop_patience)
def evaluate(self,
eval_dataset,
......
......@@ -220,3 +220,39 @@ def load_pretrain_weights(exe, main_prog, weights_dir, fuse_bn=False):
len(vars_to_load), weights_dir))
if fuse_bn:
fuse_bn_weights(exe, main_prog, weights_dir)
class EarlyStop:
def __init__(self, patience, thresh):
self.patience = patience
self.counter = 0
self.score = None
self.max = 0
self.thresh = thresh
if patience < 1:
raise Exception("Argument patience should be a positive integer.")
def __call__(self, current_score):
if self.score is None:
self.score = current_score
return False
elif current_score > self.max:
self.counter = 0
self.score = current_score
self.max = current_score
return False
else:
if (abs(self.score - current_score) < self.thresh
or current_score < self.score):
self.counter += 1
self.score = current_score
logging.debug(
"EarlyStopping: %i / %i" % (self.counter, self.patience))
if self.counter >= self.patience:
logging.info("EarlyStopping: Stop training")
return True
return False
else:
self.counter = 0
self.score = current_score
return False
......@@ -29,7 +29,8 @@ setuptools.setup(
packages=setuptools.find_packages(),
setup_requires=['cython', 'numpy', 'sklearn'],
install_requires=[
'pycocotools', 'pyyaml', 'colorama', 'tqdm', 'visualdl==1.3.0',
"pycocotools;platform_system!='Windows'",
'pyyaml', 'colorama', 'tqdm', 'visualdl==1.3.0',
'paddleslim==1.0.1', 'paddlehub>=1.6.2'
],
classifiers=[
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册