diff --git a/deploy/README.md b/deploy/README.md new file mode 100644 index 0000000000000000000000000000000000000000..3160afd098e664d02a20d7a68f58351b0363c011 --- /dev/null +++ b/deploy/README.md @@ -0,0 +1,3 @@ +# 模型部署 + +本目录为PaddleX模型部署代码。 diff --git a/deploy/cpp/.clang-format b/deploy/cpp/.clang-format new file mode 100644 index 0000000000000000000000000000000000000000..8b5830627348c6bff12260b7d9adbd357f074718 --- /dev/null +++ b/deploy/cpp/.clang-format @@ -0,0 +1,27 @@ +# This file is used by clang-format to autoformat paddle source code +# +# The clang-format is part of llvm toolchain. +# It need to install llvm and clang to format source code style. +# +# The basic usage is, +# clang-format -i -style=file PATH/TO/SOURCE/CODE +# +# The -style=file implicit use ".clang-format" file located in one of +# parent directory. +# The -i means inplace change. +# +# The document of clang-format is +# http://clang.llvm.org/docs/ClangFormat.html +# http://clang.llvm.org/docs/ClangFormatStyleOptions.html +--- +Language: Cpp +BasedOnStyle: Google +IndentWidth: 2 +TabWidth: 2 +ContinuationIndentWidth: 4 +AccessModifierOffset: -1 # The private/protected/public has no indent in class +Standard: Cpp11 +AllowAllParametersOfDeclarationOnNextLine: true +BinPackParameters: false +BinPackArguments: false +... diff --git a/deploy/cpp/CMakeLists.txt b/deploy/cpp/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..a6b7d3fe5e35b648a2ac5c43b4ce290bd3db9d14 --- /dev/null +++ b/deploy/cpp/CMakeLists.txt @@ -0,0 +1,254 @@ +cmake_minimum_required(VERSION 3.0) +project(PaddleX CXX C) + +option(WITH_MKL "Compile demo with MKL/OpenBlas support,defaultuseMKL." ON) +option(WITH_GPU "Compile demo with GPU/CPU, default use CPU." ON) +option(WITH_STATIC_LIB "Compile demo with static/shared library, default use static." ON) +option(WITH_TENSORRT "Compile demo with TensorRT." OFF) + +SET(PADDLE_DIR "" CACHE PATH "Location of libraries") +SET(OPENCV_DIR "" CACHE PATH "Location of libraries") +SET(CUDA_LIB "" CACHE PATH "Location of libraries") + +include(cmake/yaml-cpp.cmake) + +include_directories("${CMAKE_SOURCE_DIR}/") +include_directories("${CMAKE_CURRENT_BINARY_DIR}/ext/yaml-cpp/src/ext-yaml-cpp/include") +link_directories("${CMAKE_CURRENT_BINARY_DIR}/ext/yaml-cpp/lib") + +macro(safe_set_static_flag) + foreach(flag_var + CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE + CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO) + if(${flag_var} MATCHES "/MD") + string(REGEX REPLACE "/MD" "/MT" ${flag_var} "${${flag_var}}") + endif(${flag_var} MATCHES "/MD") + endforeach(flag_var) +endmacro() + +if (WITH_MKL) + ADD_DEFINITIONS(-DUSE_MKL) +endif() + +if (NOT DEFINED PADDLE_DIR OR ${PADDLE_DIR} STREQUAL "") + message(FATAL_ERROR "please set PADDLE_DIR with -DPADDLE_DIR=/path/paddle_influence_dir") +endif() + +if (NOT DEFINED OPENCV_DIR OR ${OPENCV_DIR} STREQUAL "") + message(FATAL_ERROR "please set OPENCV_DIR with -DOPENCV_DIR=/path/opencv") +endif() + +include_directories("${CMAKE_SOURCE_DIR}/") +include_directories("${PADDLE_DIR}/") +include_directories("${PADDLE_DIR}/third_party/install/protobuf/include") +include_directories("${PADDLE_DIR}/third_party/install/glog/include") +include_directories("${PADDLE_DIR}/third_party/install/gflags/include") +include_directories("${PADDLE_DIR}/third_party/install/xxhash/include") +if (EXISTS "${PADDLE_DIR}/third_party/install/snappy/include") + include_directories("${PADDLE_DIR}/third_party/install/snappy/include") +endif() +if(EXISTS "${PADDLE_DIR}/third_party/install/snappystream/include") + include_directories("${PADDLE_DIR}/third_party/install/snappystream/include") +endif() +include_directories("${PADDLE_DIR}/third_party/install/zlib/include") +include_directories("${PADDLE_DIR}/third_party/boost") +include_directories("${PADDLE_DIR}/third_party/eigen3") + +if (EXISTS "${PADDLE_DIR}/third_party/install/snappy/lib") + link_directories("${PADDLE_DIR}/third_party/install/snappy/lib") +endif() +if(EXISTS "${PADDLE_DIR}/third_party/install/snappystream/lib") + link_directories("${PADDLE_DIR}/third_party/install/snappystream/lib") +endif() + +link_directories("${PADDLE_DIR}/third_party/install/zlib/lib") +link_directories("${PADDLE_DIR}/third_party/install/protobuf/lib") +link_directories("${PADDLE_DIR}/third_party/install/glog/lib") +link_directories("${PADDLE_DIR}/third_party/install/gflags/lib") +link_directories("${PADDLE_DIR}/third_party/install/xxhash/lib") +link_directories("${PADDLE_DIR}/paddle/lib/") +link_directories("${CMAKE_CURRENT_BINARY_DIR}") + +if (WIN32) + include_directories("${PADDLE_DIR}/paddle/fluid/inference") + include_directories("${PADDLE_DIR}/paddle/include") + link_directories("${PADDLE_DIR}/paddle/fluid/inference") + find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/build/ NO_DEFAULT_PATH) + unset(OpenCV_DIR CACHE) +else () + find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/share/OpenCV NO_DEFAULT_PATH) + include_directories("${PADDLE_DIR}/paddle/include") + link_directories("${PADDLE_DIR}/paddle/lib") +endif () +include_directories(${OpenCV_INCLUDE_DIRS}) + +if (WIN32) + add_definitions("/DGOOGLE_GLOG_DLL_DECL=") + set(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} /bigobj /MTd") + set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} /bigobj /MT") + set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /bigobj /MTd") + set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /bigobj /MT") + if (WITH_STATIC_LIB) + safe_set_static_flag() + add_definitions(-DSTATIC_LIB) + endif() +else() + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -o2 -fopenmp -std=c++11") + set(CMAKE_STATIC_LIBRARY_PREFIX "") +endif() + +if (WITH_GPU) + if (NOT DEFINED CUDA_LIB OR ${CUDA_LIB} STREQUAL "") + message(FATAL_ERROR "please set CUDA_LIB with -DCUDA_LIB=/path/cuda/lib64") + endif() + if (NOT WIN32) + if (NOT DEFINED CUDNN_LIB) + message(FATAL_ERROR "please set CUDNN_LIB with -DCUDNN_LIB=/path/cudnn/") + endif() + endif(NOT WIN32) +endif() + + +if (NOT WIN32) + if (WITH_TENSORRT AND WITH_GPU) + include_directories("${PADDLE_DIR}/third_party/install/tensorrt/include") + link_directories("${PADDLE_DIR}/third_party/install/tensorrt/lib") + endif() +endif(NOT WIN32) + +if (NOT WIN32) + set(NGRAPH_PATH "${PADDLE_DIR}/third_party/install/ngraph") + if(EXISTS ${NGRAPH_PATH}) + include(GNUInstallDirs) + include_directories("${NGRAPH_PATH}/include") + link_directories("${NGRAPH_PATH}/${CMAKE_INSTALL_LIBDIR}") + set(NGRAPH_LIB ${NGRAPH_PATH}/${CMAKE_INSTALL_LIBDIR}/libngraph${CMAKE_SHARED_LIBRARY_SUFFIX}) + endif() +endif() + +if(WITH_MKL) + include_directories("${PADDLE_DIR}/third_party/install/mklml/include") + if (WIN32) + set(MATH_LIB ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.lib + ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.lib) + else () + set(MATH_LIB ${PADDLE_DIR}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX} + ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX}) + execute_process(COMMAND cp -r ${PADDLE_DIR}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX} /usr/lib) + endif () + set(MKLDNN_PATH "${PADDLE_DIR}/third_party/install/mkldnn") + if(EXISTS ${MKLDNN_PATH}) + include_directories("${MKLDNN_PATH}/include") + if (WIN32) + set(MKLDNN_LIB ${MKLDNN_PATH}/lib/mkldnn.lib) + else () + set(MKLDNN_LIB ${MKLDNN_PATH}/lib/libmkldnn.so.0) + endif () + endif() +else() + set(MATH_LIB ${PADDLE_DIR}/third_party/install/openblas/lib/libopenblas${CMAKE_STATIC_LIBRARY_SUFFIX}) +endif() + +if (WIN32) + if(EXISTS "${PADDLE_DIR}/paddle/fluid/inference/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX}") + set(DEPS + ${PADDLE_DIR}/paddle/fluid/inference/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX}) + else() + set(DEPS + ${PADDLE_DIR}/paddle/lib/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX}) + endif() +endif() + +if(WITH_STATIC_LIB) + set(DEPS + ${PADDLE_DIR}/paddle/lib/libpaddle_fluid${CMAKE_STATIC_LIBRARY_SUFFIX}) +else() + set(DEPS + ${PADDLE_DIR}/paddle/lib/libpaddle_fluid${CMAKE_SHARED_LIBRARY_SUFFIX}) +endif() + +if (NOT WIN32) + set(DEPS ${DEPS} + ${MATH_LIB} ${MKLDNN_LIB} + glog gflags protobuf z xxhash yaml-cpp + ) + if(EXISTS "${PADDLE_DIR}/third_party/install/snappystream/lib") + set(DEPS ${DEPS} snappystream) + endif() + if (EXISTS "${PADDLE_DIR}/third_party/install/snappy/lib") + set(DEPS ${DEPS} snappy) + endif() +else() + set(DEPS ${DEPS} + ${MATH_LIB} ${MKLDNN_LIB} + glog gflags_static libprotobuf zlibstatic xxhash libyaml-cppmt) + set(DEPS ${DEPS} libcmt shlwapi) + if (EXISTS "${PADDLE_DIR}/third_party/install/snappy/lib") + set(DEPS ${DEPS} snappy) + endif() + if(EXISTS "${PADDLE_DIR}/third_party/install/snappystream/lib") + set(DEPS ${DEPS} snappystream) + endif() +endif(NOT WIN32) + +if(WITH_GPU) + if(NOT WIN32) + if (WITH_TENSORRT) + set(DEPS ${DEPS} ${PADDLE_DIR}/third_party/install/tensorrt/lib/libnvinfer${CMAKE_STATIC_LIBRARY_SUFFIX}) + set(DEPS ${DEPS} ${PADDLE_DIR}/third_party/install/tensorrt/lib/libnvinfer_plugin${CMAKE_STATIC_LIBRARY_SUFFIX}) + endif() + set(DEPS ${DEPS} ${CUDA_LIB}/libcudart${CMAKE_SHARED_LIBRARY_SUFFIX}) + set(DEPS ${DEPS} ${CUDNN_LIB}/libcudnn${CMAKE_SHARED_LIBRARY_SUFFIX}) + else() + set(DEPS ${DEPS} ${CUDA_LIB}/cudart${CMAKE_STATIC_LIBRARY_SUFFIX} ) + set(DEPS ${DEPS} ${CUDA_LIB}/cublas${CMAKE_STATIC_LIBRARY_SUFFIX} ) + set(DEPS ${DEPS} ${CUDA_LIB}/cudnn${CMAKE_STATIC_LIBRARY_SUFFIX}) + endif() +endif() + +if (NOT WIN32) + set(EXTERNAL_LIB "-ldl -lrt -lgomp -lz -lm -lpthread") + set(DEPS ${DEPS} ${EXTERNAL_LIB}) +endif() + +set(DEPS ${DEPS} ${OpenCV_LIBS}) +add_executable(classifier src/classifier.cpp src/transforms.cpp src/paddlex.cpp) +ADD_DEPENDENCIES(classifier ext-yaml-cpp) +target_link_libraries(classifier ${DEPS}) + +add_executable(detector src/detector.cpp src/transforms.cpp src/paddlex.cpp src/visualize.cpp) +ADD_DEPENDENCIES(detector ext-yaml-cpp) +target_link_libraries(detector ${DEPS}) + +add_executable(segmenter src/segmenter.cpp src/transforms.cpp src/paddlex.cpp src/visualize.cpp) +ADD_DEPENDENCIES(segmenter ext-yaml-cpp) +target_link_libraries(segmenter ${DEPS}) + +if (WIN32 AND WITH_MKL) + add_custom_command(TARGET classifier POST_BUILD + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.dll ./mklml.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mkldnn/lib/mkldnn.dll ./release/mkldnn.dll + ) + add_custom_command(TARGET detector POST_BUILD + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.dll ./mklml.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll + ) + add_custom_command(TARGET segmenter POST_BUILD + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.dll ./mklml.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll + + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mkldnn/lib/mkldnn.dll ./release/mkldnn.dll + ) + +endif() + diff --git a/deploy/cpp/CMakeSettings.json b/deploy/cpp/CMakeSettings.json new file mode 100644 index 0000000000000000000000000000000000000000..860ca7a61e222d84e5cc7e9b3447bdc8397a8c40 --- /dev/null +++ b/deploy/cpp/CMakeSettings.json @@ -0,0 +1,47 @@ +{ + "configurations": [ + { + "name": "x64-Release", + "generator": "Ninja", + "configurationType": "RelWithDebInfo", + "inheritEnvironments": [ "msvc_x64_x64" ], + "buildRoot": "${projectDir}\\out\\build\\${name}", + "installRoot": "${projectDir}\\out\\install\\${name}", + "cmakeCommandArgs": "", + "buildCommandArgs": "-v", + "ctestCommandArgs": "", + "variables": [ + { + "name": "OPENCV_DIR", + "value": "C:/projects/opencv", + "type": "PATH" + }, + { + "name": "PADDLE_DIR", + "value": "C:/projects/fluid_install_dir_win_cpu_1.6/fluid_install_dir_win_cpu_1.6", + "type": "PATH" + }, + { + "name": "CMAKE_BUILD_TYPE", + "value": "Release", + "type": "STRING" + }, + { + "name": "WITH_STATIC_LIB", + "value": "True", + "type": "BOOL" + }, + { + "name": "WITH_MKL", + "value": "True", + "type": "BOOL" + }, + { + "name": "WITH_GPU", + "value": "False", + "type": "BOOL" + } + ] + } + ] +} \ No newline at end of file diff --git a/deploy/cpp/cmake/yaml-cpp.cmake b/deploy/cpp/cmake/yaml-cpp.cmake new file mode 100644 index 0000000000000000000000000000000000000000..30d904dc76196cf106abccb47c003eed485691f1 --- /dev/null +++ b/deploy/cpp/cmake/yaml-cpp.cmake @@ -0,0 +1,30 @@ +find_package(Git REQUIRED) + +include(ExternalProject) + +message("${CMAKE_BUILD_TYPE}") + +ExternalProject_Add( + ext-yaml-cpp + URL https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip + URL_MD5 9542d6de397d1fbd649ed468cb5850e6 + CMAKE_ARGS + -DYAML_CPP_BUILD_TESTS=OFF + -DYAML_CPP_BUILD_TOOLS=OFF + -DYAML_CPP_INSTALL=OFF + -DYAML_CPP_BUILD_CONTRIB=OFF + -DMSVC_SHARED_RT=OFF + -DBUILD_SHARED_LIBS=OFF + -DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE} + -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} + -DCMAKE_CXX_FLAGS_DEBUG=${CMAKE_CXX_FLAGS_DEBUG} + -DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE} + -DCMAKE_LIBRARY_OUTPUT_DIRECTORY=${CMAKE_BINARY_DIR}/ext/yaml-cpp/lib + -DCMAKE_ARCHIVE_OUTPUT_DIRECTORY=${CMAKE_BINARY_DIR}/ext/yaml-cpp/lib + PREFIX "${CMAKE_BINARY_DIR}/ext/yaml-cpp" + # Disable install step + INSTALL_COMMAND "" + LOG_DOWNLOAD ON + LOG_BUILD 1 +) + diff --git a/deploy/cpp/include/paddlex/config_parser.h b/deploy/cpp/include/paddlex/config_parser.h new file mode 100644 index 0000000000000000000000000000000000000000..5303e4da7ac0eb3de73bc57059617d361065f136 --- /dev/null +++ b/deploy/cpp/include/paddlex/config_parser.h @@ -0,0 +1,57 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include +#include + +#include "yaml-cpp/yaml.h" + +#ifdef _WIN32 +#define OS_PATH_SEP "\\" +#else +#define OS_PATH_SEP "/" +#endif + +namespace PaddleX { + +// Inference model configuration parser +class ConfigPaser { + public: + ConfigPaser() {} + + ~ConfigPaser() {} + + bool load_config(const std::string& model_dir, + const std::string& cfg = "model.yml") { + // Load as a YAML::Node + YAML::Node config; + config = YAML::LoadFile(model_dir + OS_PATH_SEP + cfg); + + if (config["Transforms"].IsDefined()) { + YAML::Node transforms_ = config["Transforms"]; + } else { + std::cerr << "There's no field 'Transforms' in model.yml" << std::endl; + return false; + } + return true; + } + + YAML::Node Transforms_; +}; + +} // namespace PaddleDetection diff --git a/deploy/cpp/include/paddlex/paddlex.h b/deploy/cpp/include/paddlex/paddlex.h new file mode 100644 index 0000000000000000000000000000000000000000..59d6ed59c7c5cf9ada0a4a1e891c8520502ab732 --- /dev/null +++ b/deploy/cpp/include/paddlex/paddlex.h @@ -0,0 +1,71 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include + +#include "yaml-cpp/yaml.h" + +#ifdef _WIN32 +#define OS_PATH_SEP "\\" +#else +#define OS_PATH_SEP "/" +#endif + +#include "paddle_inference_api.h" // NOLINT + +#include "include/paddlex/config_parser.h" +#include "include/paddlex/results.h" +#include "include/paddlex/transforms.h" + +namespace PaddleX { + +class Model { + public: + void Init(const std::string& model_dir, + bool use_gpu = false, + int gpu_id = 0) { + create_predictor(model_dir, use_gpu, gpu_id); + } + + void create_predictor(const std::string& model_dir, + bool use_gpu = false, + int gpu_id = 0); + + bool load_config(const std::string& model_dir); + + bool preprocess(const cv::Mat& input_im, ImageBlob* blob); + + bool predict(const cv::Mat& im, ClsResult* result); + + bool predict(const cv::Mat& im, DetResult* result); + + bool predict(const cv::Mat& im, SegResult* result); + + bool postprocess(SegResult* result); + + bool postprocess(DetResult* result); + + std::string type; + std::string name; + std::map labels; + Transforms transforms_; + ImageBlob inputs_; + std::vector outputs_; + std::unique_ptr predictor_; +}; +} // namespce of PaddleX diff --git a/deploy/cpp/include/paddlex/results.h b/deploy/cpp/include/paddlex/results.h new file mode 100644 index 0000000000000000000000000000000000000000..de90c4a85130f42c0201f0d671fd3e2d53b0f37d --- /dev/null +++ b/deploy/cpp/include/paddlex/results.h @@ -0,0 +1,71 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include + +namespace PaddleX { + +template +struct Mask { + std::vector data; + std::vector shape; + void clear() { + data.clear(); + shape.clear(); + } +}; + +struct Box { + int category_id; + std::string category; + float score; + std::vector coordinate; + Mask mask; +}; + +class BaseResult { + public: + std::string type = "base"; +}; + +class ClsResult : public BaseResult { + public: + int category_id; + std::string category; + float score; + std::string type = "cls"; +}; + +class DetResult : public BaseResult { + public: + std::vector boxes; + int mask_resolution; + std::string type = "det"; + void clear() { boxes.clear(); } +}; + +class SegResult : public BaseResult { + public: + Mask label_map; + Mask score_map; + void clear() { + label_map.clear(); + score_map.clear(); + } +}; +} // namespce of PaddleX diff --git a/deploy/cpp/include/paddlex/transforms.h b/deploy/cpp/include/paddlex/transforms.h new file mode 100644 index 0000000000000000000000000000000000000000..a821c08e29d3d18d0e4a00352e13828544cf1226 --- /dev/null +++ b/deploy/cpp/include/paddlex/transforms.h @@ -0,0 +1,196 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include + +#include +#include +#include +#include +#include + +#include +#include +#include + +namespace PaddleX { + +// Object for storing all preprocessed data +class ImageBlob { + public: + // Original image height and width + std::vector ori_im_size_ = std::vector(2); + // Newest image height and width after process + std::vector new_im_size_ = std::vector(2); + // Image height and width before padding + std::vector im_size_before_padding_ = std::vector(2); + // Image height and width before resize + std::vector im_size_before_resize_ = std::vector(2); + // Reshape order + std::vector reshape_order_; + // Resize scale + float scale = 1.0; + // Buffer for image data after preprocessing + std::vector im_data_; + + void clear() { + ori_im_size_.clear(); + new_im_size_.clear(); + im_size_before_padding_.clear(); + im_size_before_resize_.clear(); + reshape_order_.clear(); + im_data_.clear(); + } +}; + +// Abstraction of preprocessing opration class +class Transform { + public: + virtual void Init(const YAML::Node& item) = 0; + virtual bool Run(cv::Mat* im, ImageBlob* data) = 0; +}; + +class Normalize : public Transform { + public: + virtual void Init(const YAML::Node& item) { + mean_ = item["mean"].as>(); + std_ = item["std"].as>(); + } + + virtual bool Run(cv::Mat* im, ImageBlob* data); + + private: + std::vector mean_; + std::vector std_; +}; + +class ResizeByShort : public Transform { + public: + virtual void Init(const YAML::Node& item) { + short_size_ = item["short_size"].as(); + if (item["max_size"].IsDefined()) { + max_size_ = item["max_size"].as(); + } else { + max_size_ = -1; + } + }; + virtual bool Run(cv::Mat* im, ImageBlob* data); + + private: + float GenerateScale(const cv::Mat& im); + int short_size_; + int max_size_; +}; + +class ResizeByLong : public Transform { + public: + virtual void Init(const YAML::Node& item) { + long_size_ = item["long_size"].as(); + }; + virtual bool Run(cv::Mat* im, ImageBlob* data); + + private: + int long_size_; +}; + +class Resize : public Transform { + public: + virtual void Init(const YAML::Node& item) { + if (item["target_size"].IsScalar()) { + height_ = item["target_size"].as(); + width_ = item["target_size"].as(); + interp_ = item["interp"].as(); + } else if (item["target_size"].IsSequence()) { + std::vector target_size = item["target_size"].as>(); + width_ = target_size[0]; + height_ = target_size[1]; + } + if (height_ <= 0 || width_ <= 0) { + std::cerr << "[Resize] target_size should greater than 0" << std::endl; + exit(-1); + } + } + virtual bool Run(cv::Mat* im, ImageBlob* data); + + private: + int height_; + int width_; + std::string interp_; +}; + +class CenterCrop : public Transform { + public: + virtual void Init(const YAML::Node& item) { + if (item["crop_size"].IsScalar()) { + height_ = item["crop_size"].as(); + width_ = item["crop_size"].as(); + } else if (item["crop_size"].IsSequence()) { + std::vector crop_size = item["crop_size"].as>(); + width_ = crop_size[0]; + height_ = crop_size[1]; + } + } + virtual bool Run(cv::Mat* im, ImageBlob* data); + + private: + int height_; + int width_; +}; + +class Padding : public Transform { + public: + virtual void Init(const YAML::Node& item) { + if (item["coarsest_stride"].IsDefined()) { + coarsest_stride_ = item["coarsest_stride"].as(); + if (coarsest_stride_ <= 1) { + std::cerr << "[Padding] coarest_stride should greater than 0" + << std::endl; + exit(-1); + } + } else { + if (item["target_size"].IsScalar()) { + width_ = item["target_size"].as(); + height_ = item["target_size"].as(); + } else if (item["target_size"].IsSequence()) { + width_ = item["target_size"].as>()[0]; + height_ = item["target_size"].as>()[1]; + } + } + if (item["im_padding_value"].IsDefined()) { + value_ = item["im_padding_value"].as>(); + } + } + virtual bool Run(cv::Mat* im, ImageBlob* data); + + private: + int coarsest_stride_ = -1; + int width_ = 0; + int height_ = 0; + std::vector value_; +}; + +class Transforms { + public: + void Init(const YAML::Node& node, bool to_rgb = true); + std::shared_ptr CreateTransform(const std::string& name); + bool Run(cv::Mat* im, ImageBlob* data); + + private: + std::vector> transforms_; + bool to_rgb_ = true; +}; + +} // namespace PaddleX diff --git a/deploy/cpp/include/paddlex/visualize.h b/deploy/cpp/include/paddlex/visualize.h new file mode 100644 index 0000000000000000000000000000000000000000..ba928b705ddd004277971cea4350a0610cf1af2c --- /dev/null +++ b/deploy/cpp/include/paddlex/visualize.h @@ -0,0 +1,62 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include +#ifdef _WIN32 +#include +#include +#else // Linux/Unix +#include +#include +#include +#include +#include +#endif +#include + +#include +#include +#include + +#include "include/paddlex/results.h" + +#ifdef _WIN32 +#define OS_PATH_SEP "\\" +#else +#define OS_PATH_SEP "/" +#endif + +namespace PaddleX { + +// Generate visualization colormap for each class +std::vector GenerateColorMap(int num_class); + +cv::Mat VisualizeDet(const cv::Mat& img, + const DetResult& results, + const std::map& labels, + const std::vector& colormap, + float threshold = 0.5); + +cv::Mat VisualizeSeg(const cv::Mat& img, + const SegResult& result, + const std::map& labels, + const std::vector& colormap); + +std::string generate_save_path(const std::string& save_dir, + const std::string& file_path); +} // namespce of PaddleX diff --git a/deploy/cpp/scripts/bootstrap.sh b/deploy/cpp/scripts/bootstrap.sh new file mode 100644 index 0000000000000000000000000000000000000000..f9fc1d1edc327370f7b5d8e7494cb88d4fd4d12c --- /dev/null +++ b/deploy/cpp/scripts/bootstrap.sh @@ -0,0 +1,10 @@ +# download pre-compiled opencv lib +OPENCV_URL=https://paddleseg.bj.bcebos.com/deploy/docker/opencv3gcc4.8.tar.bz2 +if [ ! -d "./deps/opencv3gcc4.8" ]; then + mkdir -p deps + cd deps + wget -c ${OPENCV_URL} + tar xvfj opencv3gcc4.8.tar.bz2 + rm -rf opencv3gcc4.8.tar.bz2 + cd .. +fi diff --git a/deploy/cpp/scripts/build.sh b/deploy/cpp/scripts/build.sh new file mode 100644 index 0000000000000000000000000000000000000000..f1dac0409a252dd68ee83fa44dce1a4171801f16 --- /dev/null +++ b/deploy/cpp/scripts/build.sh @@ -0,0 +1,27 @@ +# 是否使用GPU(即是否使用 CUDA) +WITH_GPU=ON +# 是否集成 TensorRT(仅WITH_GPU=ON 有效) +WITH_TENSORRT=OFF +# Paddle 预测库路径 +PADDLE_DIR=/path/to/fluid_inference/ +# CUDA 的 lib 路径 +CUDA_LIB=/path/to/cuda/lib/ +# CUDNN 的 lib 路径 +CUDNN_LIB=/path/to/cudnn/lib/ + +# OPENCV 路径, 如果使用自带预编译版本可不修改 +OPENCV_DIR=$(pwd)/deps/opencv3gcc4.8/ +sh $(pwd)/scripts/bootstrap.sh + +# 以下无需改动 +rm -rf build +mkdir -p build +cd build +cmake .. \ + -DWITH_GPU=${WITH_GPU} \ + -DWITH_TENSORRT=${WITH_TENSORRT} \ + -DPADDLE_DIR=${PADDLE_DIR} \ + -DCUDA_LIB=${CUDA_LIB} \ + -DCUDNN_LIB=${CUDNN_LIB} \ + -DOPENCV_DIR=${OPENCV_DIR} +make diff --git a/deploy/cpp/src/classifier.cpp b/deploy/cpp/src/classifier.cpp new file mode 100644 index 0000000000000000000000000000000000000000..bfbf6541d14645b6020fbbb1467b5eb6761b5532 --- /dev/null +++ b/deploy/cpp/src/classifier.cpp @@ -0,0 +1,73 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include + +#include +#include +#include +#include + +#include "include/paddlex/paddlex.h" + +DEFINE_string(model_dir, "", "Path of inference model"); +DEFINE_bool(use_gpu, false, "Infering with GPU or CPU"); +DEFINE_int32(gpu_id, 0, "GPU card id"); +DEFINE_string(image, "", "Path of test image file"); +DEFINE_string(image_list, "", "Path of test image list file"); + +int main(int argc, char** argv) { + // Parsing command-line + google::ParseCommandLineFlags(&argc, &argv, true); + + if (FLAGS_model_dir == "") { + std::cerr << "--model_dir need to be defined" << std::endl; + return -1; + } + if (FLAGS_image == "" & FLAGS_image_list == "") { + std::cerr << "--image or --image_list need to be defined" << std::endl; + return -1; + } + + // 加载模型 + PaddleX::Model model; + model.Init(FLAGS_model_dir, FLAGS_use_gpu, FLAGS_gpu_id); + + // 进行预测 + if (FLAGS_image_list != "") { + std::ifstream inf(FLAGS_image_list); + if (!inf) { + std::cerr << "Fail to open file " << FLAGS_image_list << std::endl; + return -1; + } + std::string image_path; + while (getline(inf, image_path)) { + PaddleX::ClsResult result; + cv::Mat im = cv::imread(image_path, 1); + model.predict(im, &result); + std::cout << "Predict label: " << result.category + << ", label_id:" << result.category_id + << ", score: " << result.score << std::endl; + } + } else { + PaddleX::ClsResult result; + cv::Mat im = cv::imread(FLAGS_image, 1); + model.predict(im, &result); + std::cout << "Predict label: " << result.category + << ", label_id:" << result.category_id + << ", score: " << result.score << std::endl; + } + + return 0; +} diff --git a/deploy/cpp/src/detector.cpp b/deploy/cpp/src/detector.cpp new file mode 100644 index 0000000000000000000000000000000000000000..aeaca68775267c66a39694fb03b130acc0a58377 --- /dev/null +++ b/deploy/cpp/src/detector.cpp @@ -0,0 +1,108 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include + +#include +#include +#include +#include + +#include "include/paddlex/paddlex.h" +#include "include/paddlex/visualize.h" + +DEFINE_string(model_dir, "", "Path of inference model"); +DEFINE_bool(use_gpu, false, "Infering with GPU or CPU"); +DEFINE_int32(gpu_id, 0, "GPU card id"); +DEFINE_string(image, "", "Path of test image file"); +DEFINE_string(image_list, "", "Path of test image list file"); +DEFINE_string(save_dir, "output", "Path to save visualized image"); + +int main(int argc, char** argv) { + // 解析命令行参数 + google::ParseCommandLineFlags(&argc, &argv, true); + + if (FLAGS_model_dir == "") { + std::cerr << "--model_dir need to be defined" << std::endl; + return -1; + } + if (FLAGS_image == "" & FLAGS_image_list == "") { + std::cerr << "--image or --image_list need to be defined" << std::endl; + return -1; + } + + // 加载模型 + PaddleX::Model model; + model.Init(FLAGS_model_dir, FLAGS_use_gpu, FLAGS_gpu_id); + + auto colormap = PaddleX::GenerateColorMap(model.labels.size()); + std::string save_dir = "output"; + // 进行预测 + if (FLAGS_image_list != "") { + std::ifstream inf(FLAGS_image_list); + if (!inf) { + std::cerr << "Fail to open file " << FLAGS_image_list << std::endl; + return -1; + } + std::string image_path; + while (getline(inf, image_path)) { + PaddleX::DetResult result; + cv::Mat im = cv::imread(image_path, 1); + model.predict(im, &result); + for (int i = 0; i < result.boxes.size(); ++i) { + std::cout << "image file: " << image_path + << ", predict label: " << result.boxes[i].category + << ", label_id:" << result.boxes[i].category_id + << ", score: " << result.boxes[i].score << ", box:(" + << result.boxes[i].coordinate[0] << ", " + << result.boxes[i].coordinate[1] << ", " + << result.boxes[i].coordinate[2] << ", " + << result.boxes[i].coordinate[3] << std::endl; + } + + // 可视化 + cv::Mat vis_img = + PaddleX::VisualizeDet(im, result, model.labels, colormap, 0.5); + std::string save_path = + PaddleX::generate_save_path(FLAGS_save_dir, image_path); + cv::imwrite(save_path, vis_img); + result.clear(); + std::cout << "Visualized output saved as " << save_path << std::endl; + } + } else { + PaddleX::DetResult result; + cv::Mat im = cv::imread(FLAGS_image, 1); + model.predict(im, &result); + for (int i = 0; i < result.boxes.size(); ++i) { + std::cout << ", predict label: " << result.boxes[i].category + << ", label_id:" << result.boxes[i].category_id + << ", score: " << result.boxes[i].score << ", box:(" + << result.boxes[i].coordinate[0] << ", " + << result.boxes[i].coordinate[1] << ", " + << result.boxes[i].coordinate[2] << ", " + << result.boxes[i].coordinate[3] << std::endl; + } + + // 可视化 + cv::Mat vis_img = + PaddleX::VisualizeDet(im, result, model.labels, colormap, 0.5); + std::string save_path = + PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image); + cv::imwrite(save_path, vis_img); + result.clear(); + std::cout << "Visualized output saved as " << save_path << std::endl; + } + + return 0; +} diff --git a/deploy/cpp/src/paddlex.cpp b/deploy/cpp/src/paddlex.cpp new file mode 100644 index 0000000000000000000000000000000000000000..68e474c8beaa0173bb15c92ba80dfbdaafe5dcc5 --- /dev/null +++ b/deploy/cpp/src/paddlex.cpp @@ -0,0 +1,324 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "include/paddlex/paddlex.h" + +namespace PaddleX { + +void Model::create_predictor(const std::string& model_dir, + bool use_gpu, + int gpu_id) { + // 读取配置文件 + if (!load_config(model_dir)) { + std::cerr << "Parse file 'model.yml' failed!" << std::endl; + exit(-1); + } + paddle::AnalysisConfig config; + std::string model_file = model_dir + OS_PATH_SEP + "__model__"; + std::string params_file = model_dir + OS_PATH_SEP + "__params__"; + config.SetModel(model_file, params_file); + if (use_gpu) { + config.EnableUseGpu(100, gpu_id); + } else { + config.DisableGpu(); + } + config.SwitchUseFeedFetchOps(false); + config.SwitchSpecifyInputNames(true); + // 开启内存优化 + config.EnableMemoryOptim(); + predictor_ = std::move(CreatePaddlePredictor(config)); +} + +bool Model::load_config(const std::string& model_dir) { + std::string yaml_file = model_dir + OS_PATH_SEP + "model.yml"; + YAML::Node config = YAML::LoadFile(yaml_file); + type = config["_Attributes"]["model_type"].as(); + name = config["Model"].as(); + bool to_rgb = true; + if (config["TransformsMode"].IsDefined()) { + std::string mode = config["TransformsMode"].as(); + if (mode == "BGR") { + to_rgb = false; + } else if (mode != "RGB") { + std::cerr << "[Init] Only 'RGB' or 'BGR' is supported for TransformsMode" + << std::endl; + return false; + } + } + // 构建数据处理流 + transforms_.Init(config["Transforms"], to_rgb); + // 读入label list + labels.clear(); + for (const auto& item : config["_Attributes"]["labels"]) { + int index = labels.size(); + labels[index] = item.as(); + } + return true; +} + +bool Model::preprocess(const cv::Mat& input_im, ImageBlob* blob) { + cv::Mat im = input_im.clone(); + if (!transforms_.Run(&im, &inputs_)) { + return false; + } + return true; +} + +bool Model::predict(const cv::Mat& im, ClsResult* result) { + inputs_.clear(); + if (type == "detector") { + std::cerr << "Loading model is a 'detector', DetResult should be passed to " + "function predict()!" + << std::endl; + return false; + } else if (type == "segmenter") { + std::cerr << "Loading model is a 'segmenter', SegResult should be passed " + "to function predict()!" + << std::endl; + return false; + } + // 处理输入图像 + if (!preprocess(im, &inputs_)) { + std::cerr << "Preprocess failed!" << std::endl; + return false; + } + // 使用加载的模型进行预测 + auto in_tensor = predictor_->GetInputTensor("image"); + int h = inputs_.new_im_size_[0]; + int w = inputs_.new_im_size_[1]; + in_tensor->Reshape({1, 3, h, w}); + in_tensor->copy_from_cpu(inputs_.im_data_.data()); + predictor_->ZeroCopyRun(); + // 取出模型的输出结果 + auto output_names = predictor_->GetOutputNames(); + auto output_tensor = predictor_->GetOutputTensor(output_names[0]); + std::vector output_shape = output_tensor->shape(); + int size = 1; + for (const auto& i : output_shape) { + size *= i; + } + outputs_.resize(size); + output_tensor->copy_to_cpu(outputs_.data()); + // 对模型输出结果进行后处理 + auto ptr = std::max_element(std::begin(outputs_), std::end(outputs_)); + result->category_id = std::distance(std::begin(outputs_), ptr); + result->score = *ptr; + result->category = labels[result->category_id]; +} + +bool Model::predict(const cv::Mat& im, DetResult* result) { + result->clear(); + inputs_.clear(); + if (type == "classifier") { + std::cerr << "Loading model is a 'classifier', ClsResult should be passed " + "to function predict()!" + << std::endl; + return false; + } else if (type == "segmenter") { + std::cerr << "Loading model is a 'segmenter', SegResult should be passed " + "to function predict()!" + << std::endl; + return false; + } + + // 处理输入图像 + if (!preprocess(im, &inputs_)) { + std::cerr << "Preprocess failed!" << std::endl; + return false; + } + + int h = inputs_.new_im_size_[0]; + int w = inputs_.new_im_size_[1]; + auto im_tensor = predictor_->GetInputTensor("image"); + im_tensor->Reshape({1, 3, h, w}); + im_tensor->copy_from_cpu(inputs_.im_data_.data()); + if (name == "YOLOv3") { + auto im_size_tensor = predictor_->GetInputTensor("im_size"); + im_size_tensor->Reshape({1, 2}); + im_size_tensor->copy_from_cpu(inputs_.ori_im_size_.data()); + } else if (name == "FasterRCNN" || name == "MaskRCNN") { + auto im_info_tensor = predictor_->GetInputTensor("im_info"); + auto im_shape_tensor = predictor_->GetInputTensor("im_shape"); + im_info_tensor->Reshape({1, 3}); + im_shape_tensor->Reshape({1, 3}); + float ori_h = static_cast(inputs_.ori_im_size_[0]); + float ori_w = static_cast(inputs_.ori_im_size_[1]); + float new_h = static_cast(inputs_.new_im_size_[0]); + float new_w = static_cast(inputs_.new_im_size_[1]); + float im_info[] = {new_h, new_w, inputs_.scale}; + float im_shape[] = {ori_h, ori_w, 1.0}; + im_info_tensor->copy_from_cpu(im_info); + im_shape_tensor->copy_from_cpu(im_shape); + } + // 使用加载的模型进行预测 + predictor_->ZeroCopyRun(); + + std::vector output_box; + auto output_names = predictor_->GetOutputNames(); + auto output_box_tensor = predictor_->GetOutputTensor(output_names[0]); + std::vector output_box_shape = output_box_tensor->shape(); + int size = 1; + for (const auto& i : output_box_shape) { + size *= i; + } + output_box.resize(size); + output_box_tensor->copy_to_cpu(output_box.data()); + if (size < 6) { + std::cerr << "[WARNING] There's no object detected." << std::endl; + return true; + } + int num_boxes = size / 6; + // 解析预测框box + for (int i = 0; i < num_boxes; ++i) { + Box box; + box.category_id = static_cast(round(output_box[i * 6])); + box.category = labels[box.category_id]; + box.score = output_box[i * 6 + 1]; + float xmin = output_box[i * 6 + 2]; + float ymin = output_box[i * 6 + 3]; + float xmax = output_box[i * 6 + 4]; + float ymax = output_box[i * 6 + 5]; + float w = xmax - xmin + 1; + float h = ymax - ymin + 1; + box.coordinate = {xmin, ymin, w, h}; + result->boxes.push_back(std::move(box)); + } + // 实例分割需解析mask + if (name == "MaskRCNN") { + std::vector output_mask; + auto output_mask_tensor = predictor_->GetOutputTensor(output_names[1]); + std::vector output_mask_shape = output_mask_tensor->shape(); + int masks_size = 1; + for (const auto& i : output_mask_shape) { + masks_size *= i; + } + int mask_pixels = output_mask_shape[2] * output_mask_shape[3]; + int classes = output_mask_shape[1]; + output_mask.resize(masks_size); + output_mask_tensor->copy_to_cpu(output_mask.data()); + result->mask_resolution = output_mask_shape[2]; + for (int i = 0; i < result->boxes.size(); ++i) { + Box* box = &result->boxes[i]; + auto begin_mask = + output_mask.begin() + (i * classes + box->category_id) * mask_pixels; + auto end_mask = begin_mask + mask_pixels; + box->mask.data.assign(begin_mask, end_mask); + box->mask.shape = {static_cast(box->coordinate[2]), + static_cast(box->coordinate[3])}; + } + } +} + +bool Model::predict(const cv::Mat& im, SegResult* result) { + result->clear(); + inputs_.clear(); + if (type == "classifier") { + std::cerr << "Loading model is a 'classifier', ClsResult should be passed " + "to function predict()!" + << std::endl; + return false; + } else if (type == "detector") { + std::cerr << "Loading model is a 'detector', DetResult should be passed to " + "function predict()!" + << std::endl; + return false; + } + + // 处理输入图像 + if (!preprocess(im, &inputs_)) { + std::cerr << "Preprocess failed!" << std::endl; + return false; + } + + int h = inputs_.new_im_size_[0]; + int w = inputs_.new_im_size_[1]; + auto im_tensor = predictor_->GetInputTensor("image"); + im_tensor->Reshape({1, 3, h, w}); + im_tensor->copy_from_cpu(inputs_.im_data_.data()); + std::cout << "input image: " << h << " " << w << std::endl; + + // 使用加载的模型进行预测 + predictor_->ZeroCopyRun(); + + // 获取预测置信度,经过argmax后的labelmap + auto output_names = predictor_->GetOutputNames(); + auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]); + std::vector output_label_shape = output_label_tensor->shape(); + int size = 1; + for (const auto& i : output_label_shape) { + size *= i; + result->label_map.shape.push_back(i); + } + result->label_map.data.resize(size); + output_label_tensor->copy_to_cpu(result->label_map.data.data()); + + // 获取预测置信度scoremap + auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]); + std::vector output_score_shape = output_score_tensor->shape(); + size = 1; + for (const auto& i : output_score_shape) { + size *= i; + result->score_map.shape.push_back(i); + } + result->score_map.data.resize(size); + output_score_tensor->copy_to_cpu(result->score_map.data.data()); + + // 解析输出结果到原图大小 + std::vector label_map(result->label_map.data.begin(), + result->label_map.data.end()); + cv::Mat mask_label(result->label_map.shape[1], + result->label_map.shape[2], + CV_8UC1, + label_map.data()); + + cv::Mat mask_score(result->score_map.shape[2], + result->score_map.shape[3], + CV_32FC1, + result->score_map.data.data()); + + for (std::vector::reverse_iterator iter = + inputs_.reshape_order_.rbegin(); + iter != inputs_.reshape_order_.rend(); + ++iter) { + if (*iter == "padding") { + auto padding_w = inputs_.im_size_before_padding_[0]; + auto padding_h = inputs_.im_size_before_padding_[1]; + mask_label = mask_label(cv::Rect(0, 0, padding_w, padding_h)); + mask_score = mask_score(cv::Rect(0, 0, padding_w, padding_h)); + } else if (*iter == "resize") { + auto resize_w = inputs_.im_size_before_resize_[0]; + auto resize_h = inputs_.im_size_before_resize_[1]; + cv::resize(mask_label, + mask_label, + cv::Size(resize_h, resize_w), + 0, + 0, + cv::INTER_NEAREST); + cv::resize(mask_score, + mask_score, + cv::Size(resize_h, resize_w), + 0, + 0, + cv::INTER_NEAREST); + } + } + result->label_map.data.assign(mask_label.begin(), + mask_label.end()); + result->label_map.shape = {mask_label.rows, mask_label.cols}; + result->score_map.data.assign(mask_score.begin(), + mask_score.end()); + result->score_map.shape = {mask_score.rows, mask_score.cols}; +} + +} // namespce of PaddleX diff --git a/deploy/cpp/src/segmenter.cpp b/deploy/cpp/src/segmenter.cpp new file mode 100644 index 0000000000000000000000000000000000000000..e1b1a59dd78e270acb15d4017aa72e786968845f --- /dev/null +++ b/deploy/cpp/src/segmenter.cpp @@ -0,0 +1,84 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include + +#include +#include +#include +#include + +#include "include/paddlex/paddlex.h" +#include "include/paddlex/visualize.h" + +DEFINE_string(model_dir, "", "Path of inference model"); +DEFINE_bool(use_gpu, false, "Infering with GPU or CPU"); +DEFINE_int32(gpu_id, 0, "GPU card id"); +DEFINE_string(image, "", "Path of test image file"); +DEFINE_string(image_list, "", "Path of test image list file"); +DEFINE_string(save_dir, "output", "Path to save visualized image"); + +int main(int argc, char** argv) { + // 解析命令行参数 + google::ParseCommandLineFlags(&argc, &argv, true); + + if (FLAGS_model_dir == "") { + std::cerr << "--model_dir need to be defined" << std::endl; + return -1; + } + if (FLAGS_image == "" & FLAGS_image_list == "") { + std::cerr << "--image or --image_list need to be defined" << std::endl; + return -1; + } + + // 加载模型 + PaddleX::Model model; + model.Init(FLAGS_model_dir, FLAGS_use_gpu, FLAGS_gpu_id); + auto colormap = PaddleX::GenerateColorMap(model.labels.size()); + // 进行预测 + if (FLAGS_image_list != "") { + std::ifstream inf(FLAGS_image_list); + if (!inf) { + std::cerr << "Fail to open file " << FLAGS_image_list << std::endl; + return -1; + } + std::string image_path; + while (getline(inf, image_path)) { + PaddleX::SegResult result; + cv::Mat im = cv::imread(image_path, 1); + model.predict(im, &result); + // 可视化 + cv::Mat vis_img = + PaddleX::VisualizeSeg(im, result, model.labels, colormap); + std::string save_path = + PaddleX::generate_save_path(FLAGS_save_dir, image_path); + cv::imwrite(save_path, vis_img); + result.clear(); + std::cout << "Visualized output saved as " << save_path << std::endl; + } + } else { + PaddleX::SegResult result; + cv::Mat im = cv::imread(FLAGS_image, 1); + model.predict(im, &result); + // 可视化 + cv::Mat vis_img = PaddleX::VisualizeSeg(im, result, model.labels, colormap); + std::string save_path = + PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image); + cv::imwrite(save_path, vis_img); + result.clear(); + std::cout << "Visualized output saved as " << save_path << std::endl; + } + + return 0; +} diff --git a/deploy/cpp/src/transforms.cpp b/deploy/cpp/src/transforms.cpp new file mode 100644 index 0000000000000000000000000000000000000000..85a261f090f2a32ba0020488dd526ffd645b3bee --- /dev/null +++ b/deploy/cpp/src/transforms.cpp @@ -0,0 +1,225 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include +#include +#include + +#include "include/paddlex/transforms.h" + +namespace PaddleX { + +std::map interpolations = {{"LINEAR", cv::INTER_LINEAR}, + {"NEAREST", cv::INTER_NEAREST}, + {"AREA", cv::INTER_AREA}, + {"CUBIC", cv::INTER_CUBIC}, + {"LANCZOS4", cv::INTER_LANCZOS4}}; + +bool Normalize::Run(cv::Mat* im, ImageBlob* data) { + for (int h = 0; h < im->rows; h++) { + for (int w = 0; w < im->cols; w++) { + im->at(h, w)[0] = + (im->at(h, w)[0] / 255.0 - mean_[0]) / std_[0]; + im->at(h, w)[1] = + (im->at(h, w)[1] / 255.0 - mean_[1]) / std_[1]; + im->at(h, w)[2] = + (im->at(h, w)[2] / 255.0 - mean_[2]) / std_[2]; + } + } + return true; +} + +float ResizeByShort::GenerateScale(const cv::Mat& im) { + int origin_w = im.cols; + int origin_h = im.rows; + int im_size_max = std::max(origin_w, origin_h); + int im_size_min = std::min(origin_w, origin_h); + float scale = + static_cast(short_size_) / static_cast(im_size_min); + if (max_size_ > 0) { + if (round(scale * im_size_max) > max_size_) { + scale = static_cast(max_size_) / static_cast(im_size_max); + } + } + return scale; +} + +bool ResizeByShort::Run(cv::Mat* im, ImageBlob* data) { + data->im_size_before_resize_[0] = im->rows; + data->im_size_before_resize_[1] = im->cols; + data->reshape_order_.push_back("resize"); + + float scale = GenerateScale(*im); + int width = static_cast(scale * im->cols); + int height = static_cast(scale * im->rows); + cv::resize(*im, *im, cv::Size(width, height), 0, 0, cv::INTER_LINEAR); + + data->new_im_size_[0] = im->rows; + data->new_im_size_[1] = im->cols; + data->scale = scale; + return true; +} + +bool CenterCrop::Run(cv::Mat* im, ImageBlob* data) { + int height = static_cast(im->rows); + int width = static_cast(im->cols); + if (height < height_ || width < width_) { + std::cerr << "[CenterCrop] Image size less than crop size" << std::endl; + return false; + } + int offset_x = static_cast((width - width_) / 2); + int offset_y = static_cast((height - height_) / 2); + cv::Rect crop_roi(offset_x, offset_y, width_, height_); + *im = (*im)(crop_roi); + data->new_im_size_[0] = im->rows; + data->new_im_size_[1] = im->cols; + return true; +} + +bool Padding::Run(cv::Mat* im, ImageBlob* data) { + data->im_size_before_padding_[0] = im->rows; + data->im_size_before_padding_[1] = im->cols; + data->reshape_order_.push_back("padding"); + + int padding_w = 0; + int padding_h = 0; + if (width_ > 0 & height_ > 0) { + padding_w = width_ - im->cols; + padding_h = height_ - im->rows; + } else if (coarsest_stride_ > 0) { + padding_h = + ceil(im->rows * 1.0 / coarsest_stride_) * coarsest_stride_ - im->rows; + padding_w = + ceil(im->cols * 1.0 / coarsest_stride_) * coarsest_stride_ - im->cols; + } + if (padding_h < 0 || padding_w < 0) { + std::cerr << "[Padding] Computed padding_h=" << padding_h + << ", padding_w=" << padding_w + << ", but they should be greater than 0." << std::endl; + return false; + } + cv::copyMakeBorder( + *im, *im, 0, padding_h, 0, padding_w, cv::BORDER_CONSTANT, cv::Scalar(0)); + data->new_im_size_[0] = im->rows; + data->new_im_size_[1] = im->cols; + return true; +} + +bool ResizeByLong::Run(cv::Mat* im, ImageBlob* data) { + if (long_size_ <= 0) { + std::cerr << "[ResizeByLong] long_size should be greater than 0" + << std::endl; + return false; + } + data->im_size_before_resize_[0] = im->rows; + data->im_size_before_resize_[1] = im->cols; + data->reshape_order_.push_back("resize"); + int origin_w = im->cols; + int origin_h = im->rows; + + int im_size_max = std::max(origin_w, origin_h); + float scale = + static_cast(long_size_) / static_cast(im_size_max); + cv::resize(*im, *im, cv::Size(), scale, scale, cv::INTER_NEAREST); + data->new_im_size_[0] = im->rows; + data->new_im_size_[1] = im->cols; + data->scale = scale; + return true; +} + +bool Resize::Run(cv::Mat* im, ImageBlob* data) { + if (width_ <= 0 || height_ <= 0) { + std::cerr << "[Resize] width and height should be greater than 0" + << std::endl; + return false; + } + if (interpolations.count(interp_) <= 0) { + std::cerr << "[Resize] Invalid interpolation method: '" << interp_ << "'" + << std::endl; + return false; + } + data->im_size_before_resize_[0] = im->rows; + data->im_size_before_resize_[1] = im->cols; + data->reshape_order_.push_back("resize"); + + cv::resize( + *im, *im, cv::Size(width_, height_), 0, 0, interpolations[interp_]); + data->new_im_size_[0] = im->rows; + data->new_im_size_[1] = im->cols; + return true; +} + +void Transforms::Init(const YAML::Node& transforms_node, bool to_rgb) { + transforms_.clear(); + to_rgb_ = to_rgb; + for (const auto& item : transforms_node) { + std::string name = item.begin()->first.as(); + std::cout << "trans name: " << name << std::endl; + std::shared_ptr transform = CreateTransform(name); + transform->Init(item.begin()->second); + transforms_.push_back(transform); + } +} + +std::shared_ptr Transforms::CreateTransform( + const std::string& transform_name) { + if (transform_name == "Normalize") { + return std::make_shared(); + } else if (transform_name == "ResizeByShort") { + return std::make_shared(); + } else if (transform_name == "CenterCrop") { + return std::make_shared(); + } else if (transform_name == "Resize") { + return std::make_shared(); + } else if (transform_name == "Padding") { + return std::make_shared(); + } else if (transform_name == "ResizeByLong") { + return std::make_shared(); + } else { + std::cerr << "There's unexpected transform(name='" << transform_name + << "')." << std::endl; + exit(-1); + } +} + +bool Transforms::Run(cv::Mat* im, ImageBlob* data) { + // 按照transforms中预处理算子顺序处理图像 + if (to_rgb_) { + cv::cvtColor(*im, *im, cv::COLOR_BGR2RGB); + } + (*im).convertTo(*im, CV_32FC3); + data->ori_im_size_[0] = im->rows; + data->ori_im_size_[1] = im->cols; + data->new_im_size_[0] = im->rows; + data->new_im_size_[1] = im->cols; + for (int i = 0; i < transforms_.size(); ++i) { + if (!transforms_[i]->Run(im, data)) { + std::cerr << "Apply transforms to image failed!" << std::endl; + return false; + } + } + + // 将图像由NHWC转为NCHW格式 + // 同时转为连续的内存块存储到ImageBlob + int h = im->rows; + int w = im->cols; + int c = im->channels(); + (data->im_data_).resize(c * h * w); + float* ptr = (data->im_data_).data(); + for (int i = 0; i < c; ++i) { + cv::extractChannel(*im, cv::Mat(h, w, CV_32FC1, ptr + i * h * w), i); + } + return true; +} +} // namespace PaddleX diff --git a/deploy/cpp/src/visualize.cpp b/deploy/cpp/src/visualize.cpp new file mode 100644 index 0000000000000000000000000000000000000000..28c7c3bcce51a3f26dfd6ab3ea377b644e259622 --- /dev/null +++ b/deploy/cpp/src/visualize.cpp @@ -0,0 +1,148 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "include/paddlex/visualize.h" + +namespace PaddleX { +std::vector GenerateColorMap(int num_class) { + auto colormap = std::vector(3 * num_class, 0); + for (int i = 0; i < num_class; ++i) { + int j = 0; + int lab = i; + while (lab) { + colormap[i * 3] |= (((lab >> 0) & 1) << (7 - j)); + colormap[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)); + colormap[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)); + ++j; + lab >>= 3; + } + } + return colormap; +} + +cv::Mat VisualizeDet(const cv::Mat& img, + const DetResult& result, + const std::map& labels, + const std::vector& colormap, + float threshold) { + cv::Mat vis_img = img.clone(); + auto boxes = result.boxes; + for (int i = 0; i < boxes.size(); ++i) { + if (boxes[i].score < threshold) { + continue; + } + cv::Rect roi = cv::Rect(boxes[i].coordinate[0], + boxes[i].coordinate[1], + boxes[i].coordinate[2], + boxes[i].coordinate[3]); + + // 生成预测框和标题 + std::string text = boxes[i].category; + int c1 = colormap[3 * boxes[i].category_id + 0]; + int c2 = colormap[3 * boxes[i].category_id + 1]; + int c3 = colormap[3 * boxes[i].category_id + 2]; + cv::Scalar roi_color = cv::Scalar(c1, c2, c3); + text += std::to_string(static_cast(boxes[i].score * 100)) + "%"; + int font_face = cv::FONT_HERSHEY_SIMPLEX; + double font_scale = 0.5f; + float thickness = 0.5; + cv::Size text_size = + cv::getTextSize(text, font_face, font_scale, thickness, nullptr); + cv::Point origin; + origin.x = roi.x; + origin.y = roi.y; + + // 生成预测框标题的背景 + cv::Rect text_back = cv::Rect(boxes[i].coordinate[0], + boxes[i].coordinate[1] - text_size.height, + text_size.width, + text_size.height); + + // 绘图和文字 + cv::rectangle(vis_img, roi, roi_color, 2); + cv::rectangle(vis_img, text_back, roi_color, -1); + cv::putText(vis_img, + text, + origin, + font_face, + font_scale, + cv::Scalar(255, 255, 255), + thickness); + + // 生成实例分割mask + if (boxes[i].mask.data.size() == 0) { + continue; + } + cv::Mat bin_mask(result.mask_resolution, + result.mask_resolution, + CV_32FC1, + boxes[i].mask.data.data()); + cv::resize(bin_mask, + bin_mask, + cv::Size(boxes[i].mask.shape[0], boxes[i].mask.shape[1])); + cv::threshold(bin_mask, bin_mask, 0.5, 1, cv::THRESH_BINARY); + cv::Mat full_mask = cv::Mat::zeros(vis_img.size(), CV_8UC1); + bin_mask.copyTo(full_mask(roi)); + cv::Mat mask_ch[3]; + mask_ch[0] = full_mask * c1; + mask_ch[1] = full_mask * c2; + mask_ch[2] = full_mask * c3; + cv::Mat mask; + cv::merge(mask_ch, 3, mask); + cv::addWeighted(vis_img, 1, mask, 0.5, 0, vis_img); + } + return vis_img; +} + +cv::Mat VisualizeSeg(const cv::Mat& img, + const SegResult& result, + const std::map& labels, + const std::vector& colormap) { + std::vector label_map(result.label_map.data.begin(), + result.label_map.data.end()); + cv::Mat mask(result.label_map.shape[0], + result.label_map.shape[1], + CV_8UC1, + label_map.data()); + cv::Mat color_mask = cv::Mat::zeros( + result.label_map.shape[0], result.label_map.shape[1], CV_8UC3); + int rows = img.rows; + int cols = img.cols; + for (int i = 0; i < rows; i++) { + for (int j = 0; j < cols; j++) { + int category_id = static_cast(mask.at(i, j)); + color_mask.at(i, j)[0] = colormap[3 * category_id + 0]; + color_mask.at(i, j)[1] = colormap[3 * category_id + 1]; + color_mask.at(i, j)[2] = colormap[3 * category_id + 2]; + } + } + return color_mask; +} + +std::string generate_save_path(const std::string& save_dir, + const std::string& file_path) { + if (access(save_dir.c_str(), 0) < 0) { +#ifdef _WIN32 + mkdir(save_dir.c_str()); +#else + if (mkdir(save_dir.c_str(), S_IRWXU) < 0) { + std::cerr << "Fail to create " << save_dir << "directory." << std::endl; + } +#endif + } + int pos = file_path.find_last_of(OS_PATH_SEP); + std::string image_name(file_path.substr(pos + 1)); + return save_dir + OS_PATH_SEP + image_name; +} +} // namespace of PaddleX diff --git a/docs/apis/models.md b/docs/apis/models.md index ad098ca71d5588439e753f42b1ada1f3756e8f22..e0a3547ea194cb4ca155fc3be60004a7452e1f6c 100644 --- a/docs/apis/models.md +++ b/docs/apis/models.md @@ -17,7 +17,7 @@ paddlex.cls.ResNet50(num_classes=1000) #### 分类器训练函数接口 > ```python -> train(self, num_epochs, train_dataset, train_batch_size=64, eval_dataset=None, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.025, lr_decay_epochs=[30, 60, 90], lr_decay_gamma=0.1, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05) +> train(self, num_epochs, train_dataset, train_batch_size=64, eval_dataset=None, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.025, lr_decay_epochs=[30, 60, 90], lr_decay_gamma=0.1, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5) > ``` > > **参数:** @@ -37,6 +37,8 @@ paddlex.cls.ResNet50(num_classes=1000) > > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认值为False。 > > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。 > > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。 +> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。 +> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。 #### 分类器评估函数接口 @@ -75,7 +77,7 @@ paddlex.cls.ResNet50(num_classes=1000) ### 其它分类器类 -除`ResNet50`外,`paddlex.cls`下还提供了`ResNet18`、`ResNet34`、`ResNet101`、`ResNet50_vd`、`ResNet101_vd`、`DarkNet53`、`MobileNetV1`、`MobileNetV2`、`MobileNetV3_small`、`MobileNetV3_large`、`Xception41`、`Xception65`、`Xception71`、`ShuffleNetV2`, 使用方式(包括函数接口和参数)均与`ResNet50`一致,各模型效果可参考[模型库](../model_zoo.md)中列表。 +除`ResNet50`外,`paddlex.cls`下还提供了`ResNet18`、`ResNet34`、`ResNet101`、`ResNet50_vd`、`ResNet101_vd`、`ResNet50_vd_ssld`、`ResNet101_vd_ssld`、`DarkNet53`、`MobileNetV1`、`MobileNetV2`、`MobileNetV3_small`、`MobileNetV3_large`、`MobileNetV3_small_ssld`、`MobileNetV3_large_ssld`、`Xception41`、`Xception65`、`Xception71`、`ShuffleNetV2`, 使用方式(包括函数接口和参数)均与`ResNet50`一致,各模型效果可参考[模型库](../model_zoo.md)中列表。 @@ -109,7 +111,7 @@ paddlex.det.YOLOv3(num_classes=80, backbone='MobileNetV1', anchors=None, anchor_ #### YOLOv3训练函数接口 > ```python -> train(self, num_epochs, train_dataset, train_batch_size=8, eval_dataset=None, save_interval_epochs=20, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=1.0/8000, warmup_steps=1000, warmup_start_lr=0.0, lr_decay_epochs=[213, 240], lr_decay_gamma=0.1, metric=None, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05) +> train(self, num_epochs, train_dataset, train_batch_size=8, eval_dataset=None, save_interval_epochs=20, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=1.0/8000, warmup_steps=1000, warmup_start_lr=0.0, lr_decay_epochs=[213, 240], lr_decay_gamma=0.1, metric=None, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5) > ``` > > **参数:** @@ -132,6 +134,8 @@ paddlex.det.YOLOv3(num_classes=80, backbone='MobileNetV1', anchors=None, anchor_ > > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认值为False。 > > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在PascalVOC数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。 > > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。 +> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。 +> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。 #### YOLOv3评估函数接口 @@ -186,7 +190,7 @@ paddlex.det.FasterRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspec #### FasterRCNN训练函数接口 > ```python -> train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, save_interval_epochs=1, log_interval_steps=2,save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.0025, warmup_steps=500, warmup_start_lr=1.0/1200, lr_decay_epochs=[8, 11], lr_decay_gamma=0.1, metric=None, use_vdl=False) +> train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, save_interval_epochs=1, log_interval_steps=2,save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.0025, warmup_steps=500, warmup_start_lr=1.0/1200, lr_decay_epochs=[8, 11], lr_decay_gamma=0.1, metric=None, use_vdl=False, early_stop=False, early_stop_patience=5) > > ``` > @@ -208,6 +212,8 @@ paddlex.det.FasterRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspec > > - **lr_decay_gamma** (float): 默认优化器的学习率衰减率。默认为0.1。 > > - **metric** (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认值为None。 > > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认值为False。 +> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。 +> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。 #### FasterRCNN评估函数接口 @@ -264,7 +270,7 @@ paddlex.det.MaskRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspect_ #### MaskRCNN训练函数接口 > ```python -> train(self, num_epochs, train_dataset, train_batch_size=1, eval_dataset=None, save_interval_epochs=1, log_interval_steps=20, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=1.0/800, warmup_steps=500, warmup_start_lr=1.0 / 2400, lr_decay_epochs=[8, 11], lr_decay_gamma=0.1, metric=None, use_vdl=False) +> train(self, num_epochs, train_dataset, train_batch_size=1, eval_dataset=None, save_interval_epochs=1, log_interval_steps=20, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=1.0/800, warmup_steps=500, warmup_start_lr=1.0 / 2400, lr_decay_epochs=[8, 11], lr_decay_gamma=0.1, metric=None, use_vdl=False, early_stop=False, early_stop_patience=5) > > ``` > @@ -286,6 +292,8 @@ paddlex.det.MaskRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspect_ > > - **lr_decay_gamma** (float): 默认优化器的学习率衰减率。默认为0.1。 > > - **metric** (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认值为None。 > > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认值为False。 +> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。 +> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。 #### MaskRCNN评估函数接口 @@ -350,7 +358,7 @@ paddlex.seg.DeepLabv3p(num_classes=2, backbone='MobileNetV2_x1.0', output_stride #### DeepLabv3训练函数接口 > ```python -> train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, eval_batch_size=1, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.01, lr_decay_power=0.9, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05): +> train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, eval_batch_size=1, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.01, lr_decay_power=0.9, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5): > > ``` > @@ -370,6 +378,8 @@ paddlex.seg.DeepLabv3p(num_classes=2, backbone='MobileNetV2_x1.0', output_stride > > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认False。 > > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。 > > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。 +> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。 +> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。 #### DeepLabv3评估函数接口 @@ -427,7 +437,7 @@ paddlex.seg.UNet(num_classes=2, upsample_mode='bilinear', use_bce_loss=False, us #### Unet训练函数接口 > ```python -> train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, eval_batch_size=1, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='COCO', optimizer=None, learning_rate=0.01, lr_decay_power=0.9, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05): +> train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, eval_batch_size=1, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='COCO', optimizer=None, learning_rate=0.01, lr_decay_power=0.9, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5): > ``` > > **参数:** @@ -446,6 +456,8 @@ paddlex.seg.UNet(num_classes=2, upsample_mode='bilinear', use_bce_loss=False, us > > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认False。 > > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。 > > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。 +> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。 +> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。 #### Unet评估函数接口 diff --git a/docs/deploy.md b/docs/deploy.md deleted file mode 100644 index e4f66484539d8f92cfbd3e20934cf93f2bc8fe87..0000000000000000000000000000000000000000 --- a/docs/deploy.md +++ /dev/null @@ -1,13 +0,0 @@ -# 模型部署导出 - -### 导出inference模型 - -在服务端部署的模型需要首先将模型导出为inference格式模型,导出的模型将包括`__model__`、`__params__`和`model.yml`三个文名,分别为模型的网络结构,模型权重和模型的配置文件(包括数据预处理参数等等)。在安装完PaddleX后,在命令行终端使用如下命令导出模型到当前目录`inferece_model`下。 - -> 可直接下载小度熊分拣模型测试本文档的流程[xiaoduxiong_epoch_12.tar.gz](https://bj.bcebos.com/paddlex/models/xiaoduxiong_epoch_12.tar.gz) - -``` -paddlex --export_inference --model_dir=./xiaoduxiong_epoch_12 --save_dir=./inference_model -``` - -## 模型C++和Python部署方案预计一周内推出... diff --git a/docs/deploy/deploy.md b/docs/deploy/deploy.md new file mode 100644 index 0000000000000000000000000000000000000000..ef381555f47cbe72707da1a0386d7906c2848f75 --- /dev/null +++ b/docs/deploy/deploy.md @@ -0,0 +1,59 @@ +# 模型预测部署 + +本文档指引用户如何采用更高性能地方式来部署使用PaddleX训练的模型。使用本文档模型部署方式,会在模型运算过程中,对模型计算图进行优化,同时减少内存操作,相对比普通的paddlepaddle模型加载和预测方式,预测速度平均可提升1倍,具体各模型性能对比见[预测性能对比](#预测性能对比) + +## 服务端部署 + +### 导出inference模型 + +在服务端部署的模型需要首先将模型导出为inference格式模型,导出的模型将包括`__model__`、`__params__`和`model.yml`三个文名,分别为模型的网络结构,模型权重和模型的配置文件(包括数据预处理参数等等)。在安装完PaddleX后,在命令行终端使用如下命令导出模型到当前目录`inferece_model`下。 + +> 可直接下载垃圾检测模型测试本文档的流程[garbage_epoch_12.tar.gz](https://bj.bcebos.com/paddlex/models/garbage_epoch_12.tar.gz) + +``` +paddlex --export_inference --model_dir=./garbage_epoch_12 --save_dir=./inference_model +``` + +### Python部署 +PaddleX已经集成了基于Python的高性能预测接口,在安装PaddleX后,可参照如下代码示例,进行预测。相关的接口文档可参考[paddlex.deploy](apis/deploy.md) +> 点击下载测试图片 [garbage.bmp](https://bj.bcebos.com/paddlex/datasets/garbage.bmp) +``` +import paddlex as pdx +predictorpdx.deploy.create_predictor('./inference_model') +result = predictor.predict(image='garbage.bmp') +``` + +### C++部署 + +C++部署方案位于目录`deploy/cpp/`下,且独立于PaddleX其他模块。该方案支持在 Windows 和 Linux 完成编译、二次开发集成和部署运行。具体使用方法和编译: + +- Linux平台:[linux](deploy_cpp_linux.md) +- window平台:[windows](deploy_cpp_win_vs2019.md) + +### 预测性能对比 + +#### 测试环境 + +- CUDA 9.0 +- CUDNN 7.5 +- PaddlePaddle 1.71 +- GPU: Tesla P40 +- AnalysisPredictor 指采用Python的高性能预测方式 +- Executor 指采用paddlepaddle普通的python预测方式 +- Batch Size均为1,耗时单位为ms/image,只计算模型运行时间,不包括数据的预处理和后处理 + +| 模型 | AnalysisPredictor耗时 | Executor耗时 | 输入图像大小 | +| :---- | :--------------------- | :------------ | :------------ | +| resnet50 | 4.84 | 7.57 | 224*224 | +| mobilenet_v2 | 3.27 | 5.76 | 224*224 | +| unet | 22.51 | 34.60 |513*513 | +| deeplab_mobile | 63.44 | 358.31 |1025*2049 | +| yolo_mobilenetv2 | 15.20 | 19.54 | 608*608 | +| faster_rcnn_r50_fpn_1x | 50.05 | 69.58 |800*1088 | +| faster_rcnn_r50_1x | 326.11 | 347.22 | 800*1067 | +| mask_rcnn_r50_fpn_1x | 67.49 | 91.02 | 800*1088 | +| mask_rcnn_r50_1x | 326.11 | 350.94 | 800*1067 | + +## 移动端部署 + +> Lite模型导出正在集成中,即将开源... diff --git a/docs/deploy/deploy_cpp_linux.md b/docs/deploy/deploy_cpp_linux.md new file mode 100644 index 0000000000000000000000000000000000000000..5e6a594b70fedf3d88e9566e45f8b3f8e82d2109 --- /dev/null +++ b/docs/deploy/deploy_cpp_linux.md @@ -0,0 +1,116 @@ +# Linux平台编译指南 + +## 说明 +本文档在 `Linux`平台使用`GCC 4.8.5` 和 `GCC 4.9.4`测试过,如果需要使用更高G++版本编译使用,则需要重新编译Paddle预测库,请参考: [从源码编译Paddle预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html#id12)。 + +## 前置条件 +* G++ 4.8.2 ~ 4.9.4 +* CUDA 9.0 / CUDA 10.0, CUDNN 7+ (仅在使用GPU版本的预测库时需要) +* CMake 3.0+ + +请确保系统已经安装好上述基本软件,**下面所有示例以工作目录 `/root/projects/`演示**。 + +### Step1: 下载代码 + + `git clone https://github.com/PaddlePaddle/PaddleX.git` + +**说明**:其中`C++`预测代码在`/root/projects/PaddleX/deploy/cpp` 目录,该目录不依赖任何`PaddleX`下其他目录。 + + +### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference + +PaddlePaddle C++ 预测库针对不同的`CPU`,`CUDA`,以及是否支持TensorRT,提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html#id1) + + +下载并解压后`/root/projects/fluid_inference`目录包含内容为: +``` +fluid_inference +├── paddle # paddle核心库和头文件 +| +├── third_party # 第三方依赖库和头文件 +| +└── version.txt # 版本和编译信息 +``` + +**注意:** 预编译版本除`nv-jetson-cuda10-cudnn7.5-trt5` 以外其它包都是基于`GCC 4.8.5`编译,使用高版本`GCC`可能存在 `ABI`兼容性问题,建议降级或[自行编译预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html#id12)。 + + +### Step4: 编译 + +编译`cmake`的命令在`scripts/build.sh`中,请根据实际情况修改主要参数,其主要内容说明如下: +``` +# 是否使用GPU(即是否使用 CUDA) +WITH_GPU=ON +# 是否集成 TensorRT(仅WITH_GPU=ON 有效) +WITH_TENSORRT=OFF +# 上一步下载的 Paddle 预测库路径 +PADDLE_DIR=/root/projects/deps/fluid_inference/ +# CUDA 的 lib 路径 +CUDA_LIB=/usr/local/cuda/lib64/ +# CUDNN 的 lib 路径 +CUDNN_LIB=/usr/local/cudnn/lib64/ + +# OPENCV 路径, 如果使用自带预编译版本可不设置 +OPENCV_DIR=$(pwd)/deps/opencv3gcc4.8/ +sh $(pwd)/scripts/bootstrap.sh + +# 以下无需改动 +rm -rf build +mkdir -p build +cd build +cmake .. \ + -DWITH_GPU=${WITH_GPU} \ + -DWITH_TENSORRT=${WITH_TENSORRT} \ + -DPADDLE_DIR=${PADDLE_DIR} \ + -DCUDA_LIB=${CUDA_LIB} \ + -DCUDNN_LIB=${CUDNN_LIB} \ + -DOPENCV_DIR=${OPENCV_DIR} +make + +``` + +修改脚本设置好主要参数后,执行`build`脚本: + ```shell + sh ./scripts/build.sh + ``` + +### Step5: 预测及可视化 +编译成功后,预测demo的可执行程序分别为`build/detector`,`build/classifer`,`build/segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下: + +| 参数 | 说明 | +| ---- | ---- | +| model_dir | 导出的预测模型所在路径 | +| image | 要预测的图片文件路径 | +| image_list | 按行存储图片路径的.txt文件 | +| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) | +| gpu_id | GPU 设备ID, 默认值为0 | +| save_dir | 保存可视化结果的路径, 默认值为"output",classfier无该参数 | + +## 样例 + +可使用[垃圾检测模型](deploy.md#导出inference模型)中生成的`inference_model`模型和测试图片进行预测。 + +`样例一`: + +不使用`GPU`测试图片 `/path/to/garbage.bmp` + +```shell +./build/detector --model_dir=/path/to/inference_model --image=/path/to/garbage.bmp --save_dir=output +``` +图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。 + + +`样例二`: + +使用`GPU`预测多个图片`/path/to/image_list.txt`,image_list.txt内容的格式如下: +``` +/path/to/images/garbage1.jpeg +/path/to/images/garbage2.jpeg +... +/path/to/images/garbagen.jpeg +``` +```shell +./build/detector --model_dir=/path/to/models/inference_model --image_list=/root/projects/images_list.txt --use_gpu=1 --save_dir=output +``` +图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。 + diff --git a/docs/deploy/deploy_cpp_win_vs2019.md b/docs/deploy/deploy_cpp_win_vs2019.md new file mode 100644 index 0000000000000000000000000000000000000000..762e1bc1acd042a5b411fba96748eef28d28a0b1 --- /dev/null +++ b/docs/deploy/deploy_cpp_win_vs2019.md @@ -0,0 +1,138 @@ +# Visual Studio 2019 Community CMake 编译指南 + +## 说明 +Windows 平台下,我们使用`Visual Studio 2019 Community` 进行了测试。微软从`Visual Studio 2017`开始即支持直接管理`CMake`跨平台编译项目,但是直到`2019`才提供了稳定和完全的支持,所以如果你想使用CMake管理项目编译构建,我们推荐你使用`Visual Studio 2019`环境下构建。 + +## 前置条件 +* Visual Studio 2019 +* CUDA 9.0 / CUDA 10.0, CUDNN 7+ (仅在使用GPU版本的预测库时需要) +* CMake 3.0+ + +请确保系统已经安装好上述基本软件,我们使用的是`VS2019`的社区版。 + +**下面所有示例以工作目录为 `D:\projects`演示**。 + +### Step1: 下载代码 + +下载源代码 +```shell +d: +mkdir projects +cd projects +git clone https://github.com/PaddlePaddle/PaddleX.git +``` + +**说明**:其中`C++`预测代码在`PaddleX/deploy/cpp` 目录,该目录不依赖任何`PaddleX`下其他目录。 + + +### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference + +PaddlePaddle C++ 预测库针对不同的`CPU`和`CUDA`版本提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/windows_cpp_inference.html) + +解压后`D:\projects\fluid_inference*\`目录下主要包含的内容为: +``` +├── \paddle\ # paddle核心库和头文件 +| +├── \third_party\ # 第三方依赖库和头文件 +| +└── \version.txt # 版本和编译信息 +``` + +### Step3: 安装配置OpenCV + +1. 在OpenCV官网下载适用于Windows平台的3.4.6版本, [下载地址](https://sourceforge.net/projects/opencvlibrary/files/3.4.6/opencv-3.4.6-vc14_vc15.exe/download) +2. 运行下载的可执行文件,将OpenCV解压至指定目录,如`D:\projects\opencv` +3. 配置环境变量,如下流程所示 + - 我的电脑->属性->高级系统设置->环境变量 + - 在系统变量中找到Path(如没有,自行创建),并双击编辑 + - 新建,将opencv路径填入并保存,如`D:\projects\opencv\build\x64\vc14\bin` + +### Step4: 使用Visual Studio 2019直接编译CMake + +1. 打开Visual Studio 2019 Community,点击`继续但无需代码` + +![step2](images/vs2019_step1.png) + +2. 点击: `文件`->`打开`->`CMake` + +![step2.1](images/vs2019_step2.png) + +选择项目代码所在路径,并打开`CMakeList.txt`: + +![step2.2](images/vs2019_step3.png) + +3. 点击:`项目`->`PADDLEX_INFERENCE的CMake设置` + +![step3](images/vs2019_step4.png) + +4. 点击`浏览`,分别设置编译选项指定`CUDA`、`OpenCV`、`Paddle预测库`的路径 + +依赖库路径的含义说明如下(带*表示仅在使用**GPU版本**预测库时指定, 其中CUDA库版本尽量对齐,**使用9.0、10.0版本,不使用9.2、10.1等版本CUDA库**): + +| 参数名 | 含义 | +| ---- | ---- | +| *CUDA_LIB | CUDA的库路径, 注:请将CUDNN的cudnn.lib文件拷贝到CUDA_LIB路径下 | +| OPENCV_DIR | OpenCV的安装路径, | +| PADDLE_DIR | Paddle c++预测库的路径 | + +**注意:** 1. 使用`CPU`版预测库,请把`WITH_GPU`的`值`去掉勾 2. 如果使用的是`openblas`版本,请把`WITH_MKL`的`值`去掉勾 + +![step4](images/vs2019_step5.png) + +**设置完成后**, 点击上图中`保存并生成CMake缓存以加载变量`。 + +5. 点击`生成`->`全部生成` + +![step6](images/vs2019_step6.png) + + +### Step5: 预测及可视化 + +上述`Visual Studio 2019`编译产出的可执行文件在`out\build\x64-Release`目录下,打开`cmd`,并切换到该目录: + +``` +d: +cd D:\projects\PaddleX\deploy\cpp\out\build\x64-Release +``` + +编译成功后,预测demo的入口程序为`detector`,`classifer`,`segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下: + +| 参数 | 说明 | +| ---- | ---- | +| model_dir | 导出的预测模型所在路径 | +| image | 要预测的图片文件路径 | +| image_list | 按行存储图片路径的.txt文件 | +| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) | +| gpu_id | GPU 设备ID, 默认值为0 | +| save_dir | 保存可视化结果的路径, 默认值为"output",classfier无该参数 | + + +## 样例 + +可使用[垃圾检测模型](deploy.md#导出inference模型)中生成的`inference_model`模型和测试图片进行预测。 + +`样例一`: + +不使用`GPU`测试图片 `\\path\\to\\garbage.bmp` + +```shell +.\detector --model_dir=\\path\\to\\inference_model --image=D:\\images\\garbage.bmp --save_dir=output + +``` +图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。 + + +`样例二`: + +使用`GPU`预测多个图片`\\path\\to\\image_list.txt`,image_list.txt内容的格式如下: +``` +\\path\\to\\images\\garbage1.jpeg +\\path\\to\\images\\garbage2.jpeg +... +\\path\\to\\images\\garbagen.jpeg +``` +```shell +.\detector --model_dir=\\path\\to\\inference_model --image_list=\\path\\to\\images_list.txt --use_gpu=1 --save_dir=output +``` +图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。 + diff --git a/docs/deploy/images/vs2019_step1.png b/docs/deploy/images/vs2019_step1.png new file mode 100644 index 0000000000000000000000000000000000000000..58fdf2fd624f3c2d26f7c78814c4a67cc323e495 Binary files /dev/null and b/docs/deploy/images/vs2019_step1.png differ diff --git a/docs/deploy/images/vs2019_step2.png b/docs/deploy/images/vs2019_step2.png new file mode 100644 index 0000000000000000000000000000000000000000..f1b5fd0a1c83c3008e2953a84164932140b104bf Binary files /dev/null and b/docs/deploy/images/vs2019_step2.png differ diff --git a/docs/deploy/images/vs2019_step3.png b/docs/deploy/images/vs2019_step3.png new file mode 100644 index 0000000000000000000000000000000000000000..943e861aaa1496cdb6693fb973cce13600122985 Binary files /dev/null and b/docs/deploy/images/vs2019_step3.png differ diff --git a/docs/deploy/images/vs2019_step4.png b/docs/deploy/images/vs2019_step4.png new file mode 100644 index 0000000000000000000000000000000000000000..102cb81ac911c810bdf24e86b42ece307ffd1f8a Binary files /dev/null and b/docs/deploy/images/vs2019_step4.png differ diff --git a/docs/deploy/images/vs2019_step5.png b/docs/deploy/images/vs2019_step5.png new file mode 100644 index 0000000000000000000000000000000000000000..0986e823812e2316c4fd0f2e6cb260a1204fda40 Binary files /dev/null and b/docs/deploy/images/vs2019_step5.png differ diff --git a/docs/deploy/images/vs2019_step6.png b/docs/deploy/images/vs2019_step6.png new file mode 100644 index 0000000000000000000000000000000000000000..86a8039cbd2a9f8fb499ed72d386b5c02b30c86c Binary files /dev/null and b/docs/deploy/images/vs2019_step6.png differ diff --git a/docs/model_zoo.md b/docs/model_zoo.md index 293ba68ae3431aee8a80c86d6c77938168e26034..d41629cfcc62d314ee41470053c8b3d04dc99321 100644 --- a/docs/model_zoo.md +++ b/docs/model_zoo.md @@ -4,35 +4,38 @@ 表中相关模型也可下载好作为相应模型的预训练模型,通过`pretrain_weights`指定目录加载使用。 ## 图像分类模型 -> 表中模型相关指标均为在ImageNet数据集上使用PaddlePaddle Python预测接口测试得到(测试GPU型号为Nvidia Tesla P4),预测速度为每张图片预测用时(不包括预处理和后处理),表中符号`-`表示相关指标暂未测试。 +> 表中模型相关指标均为在ImageNet数据集上使用PaddlePaddle Python预测接口测试得到(测试GPU型号为Nvidia Tesla P40),预测速度为每张图片预测用时(不包括预处理和后处理),表中符号`-`表示相关指标暂未测试。 -| 模型 | 模型大小 | 预测速度(毫秒) | Top1准确率 | Top5准确率 | +| 模型 | 模型大小 | 预测速度(毫秒) | Top1准确率(%) | Top5准确率(%) | | :----| :------- | :----------- | :--------- | :--------- | -| ResNet18| 46.9MB | 3.456 | 70.98% | 89.92% | -| ResNet34| 87.5MB | 5.668 | 74.57% | 92.14% | -| ResNet50| 102.7MB | 8.787 | 76.50% | 93.00% | -| ResNet101 |179.1MB | 15.447 | 77.56% | 93.64% | -| ResNet50_vd |102.8MB | 9.058 | 79.12% | 94.44% | -| ResNet101_vd| 179.2MB | 15.685 | 80.17% | 94.97% | -| DarkNet53|166.9MB | 11.969 | 78.04% | 94.05% | -| MobileNetV1 | 16.4MB | 2.609 | 70.99% | 89.68% | -| MobileNetV2 | 14.4MB | 4.546 | 72.15% | 90.65% | -| MobileNetV3_large| 22.8MB | - | 75.3% | 75.3% | -| MobileNetV3_small | 12.5MB | 6.809 | 67.46% | 87.12% | -| Xception41 |92.4MB | 13.757 | 79.30% | 94.53% | -| Xception65 | 144.6MB | 19.216 | 81.00% | 95.49% | -| Xception71| 151.9MB | 23.291 | 81.11% | 95.45% | -| DenseNet121 | 32.8MB | 12.437 | 75.66% | 92.58% | -| DenseNet161|116.3MB | 27.717 | 78.57% | 94.14% | -| DenseNet201| 84.6MB | 26.583 | 77.63% | 93.66% | -| ShuffleNetV2 | 10.2MB | 6.101 | 68.8% | 88.5% | +| ResNet18| 46.9MB | 1.499 | 71.0 | 89.9 | +| ResNet34| 87.5MB | 2.272 | 74.6 | 92.1 | +| ResNet50| 102.7MB | 2.939 | 76.5 | 93.0 | +| ResNet101 |179.1MB | 5.314 | 77.6 | 93.6 | +| ResNet50_vd |102.8MB | 3.165 | 79.1 | 94.4 | +| ResNet101_vd| 179.2MB | 5.252 | 80.2 | 95.0 | +| ResNet50_vd_ssld |102.8MB | 3.165 | 82.4 | 96.1 | +| ResNet101_vd_ssld| 179.2MB | 5.252 | 83.7 | 96.7 | +| DarkNet53|166.9MB | 3.139 | 78.0 | 94.1 | +| MobileNetV1 | 16.0MB | 32.523 | 71.0 | 89.7 | +| MobileNetV2 | 14.0MB | 23.318 | 72.2 | 90.7 | +| MobileNetV3_large| 21.0MB | 19.308 | 75.3 | 93.2 | +| MobileNetV3_small | 12.0MB | 6.546 | 68.2 | 88.1 | +| MobileNetV3_large_ssld| 21.0MB | 19.308 | 79.0 | 94.5 | +| MobileNetV3_small_ssld | 12.0MB | 6.546 | 71.3 | 90.1 | +| Xception41 |92.4MB | 4.408 | 79.6 | 94.4 | +| Xception65 | 144.6MB | 6.464 | 80.3 | 94.5 | +| DenseNet121 | 32.8MB | 4.371 | 75.7 | 92.6 | +| DenseNet161|116.3MB | 8.863 | 78.6 | 94.1 | +| DenseNet201| 84.6MB | 8.173 | 77.6 | 93.7 | +| ShuffleNetV2 | 9.0MB | 10.941 | 68.8 | 88.5 | ## 目标检测模型 > 表中模型相关指标均为在MSCOCO数据集上使用PaddlePaddle Python预测接口测试得到(测试GPU型号为Nvidia Tesla V100测试得到,表中符号`-`表示相关指标暂未测试。 -| 模型 | 模型大小 | 预测时间(毫秒) | BoxAP | +| 模型 | 模型大小 | 预测时间(毫秒) | BoxAP(%) | |:-------|:-----------|:-------------|:----------| |FasterRCNN-ResNet50|135.6MB| 78.450 | 35.2 | |FasterRCNN-ResNet50_vd| 135.7MB | 79.523 | 36.4 | @@ -50,7 +53,7 @@ > 表中模型相关指标均为在MSCOCO数据集上测试得到。 -| 模型 |模型大小 | 预测时间(毫秒) | BoxAP | SegAP | +| 模型 |模型大小 | 预测时间(毫秒) | BoxAP | SegAP(%) | |:---------|:---------|:----------|:---------|:--------| |MaskRCNN-ResNet50|51.2MB| 86.096 | 36.5 |32.2| |MaskRCNN-ResNet50-FPN|184.6MB | 65.859 | 37.9 |34.2| diff --git a/paddlex/__init__.py b/paddlex/__init__.py index 14e56b432f6d3a86dbfd787f1b171229b3eb74e7..d41fbf8381938b7a4a950671c17ed2fb6dea2329 100644 --- a/paddlex/__init__.py +++ b/paddlex/__init__.py @@ -20,6 +20,12 @@ from . import seg from . import cls from . import slim +try: + import pycocotools +except: + print("[WARNING] pycocotools is not installed, detection model is not available now.") + print("[WARNING] pycocotools install: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/install.md") + env_info = get_environ_info() load_model = cv.models.load_model datasets = cv.datasets diff --git a/paddlex/cv/datasets/coco.py b/paddlex/cv/datasets/coco.py index 52a3336ce60334bd95fa0d84d1adfb164dfb686b..dc9946ac784a296dfc2751ef0a46bc2496aca2e4 100644 --- a/paddlex/cv/datasets/coco.py +++ b/paddlex/cv/datasets/coco.py @@ -19,7 +19,6 @@ import random import numpy as np import paddlex.utils.logging as logging import paddlex as pst -from pycocotools.coco import COCO from .voc import VOCDetection from .dataset import is_pic @@ -47,6 +46,8 @@ class CocoDetection(VOCDetection): buffer_size=100, parallel_method='process', shuffle=False): + from pycocotools.coco import COCO + super(VOCDetection, self).__init__( transforms=transforms, num_workers=num_workers, diff --git a/paddlex/cv/datasets/voc.py b/paddlex/cv/datasets/voc.py index 6ab985fed760001f06d499987baf5d5c6b4dd049..db63d9828d03b95569382f7d059df5567a9ce59d 100644 --- a/paddlex/cv/datasets/voc.py +++ b/paddlex/cv/datasets/voc.py @@ -18,7 +18,6 @@ import os.path as osp import random import numpy as np import xml.etree.ElementTree as ET -from pycocotools.coco import COCO import paddlex.utils.logging as logging from .dataset import Dataset from .dataset import is_pic @@ -51,6 +50,7 @@ class VOCDetection(Dataset): buffer_size=100, parallel_method='process', shuffle=False): + from pycocotools.coco import COCO super(VOCDetection, self).__init__( transforms=transforms, num_workers=num_workers, diff --git a/paddlex/cv/models/base.py b/paddlex/cv/models/base.py index 0acba25ec8fa40d456557545ecb3226f89b1d81c..735a13f405b85859d204402e4f8a82168547b2c4 100644 --- a/paddlex/cv/models/base.py +++ b/paddlex/cv/models/base.py @@ -24,6 +24,7 @@ import json import functools import paddlex.utils.logging as logging from paddlex.utils import seconds_to_hms +from paddlex.utils.utils import EarlyStop import paddlex from collections import OrderedDict from os import path as osp @@ -334,7 +335,9 @@ class BaseAPI: save_interval_epochs=1, log_interval_steps=10, save_dir='output', - use_vdl=False): + use_vdl=False, + early_stop=False, + early_stop_patience=5): if not osp.isdir(save_dir): if osp.exists(save_dir): os.remove(save_dir) @@ -396,6 +399,9 @@ class BaseAPI: train_step_component = OrderedDict() eval_component = OrderedDict() + thresh = 0.0001 + if early_stop: + earlystop = EarlyStop(early_stop_patience, thresh) best_accuracy_key = "" best_accuracy = -1.0 best_model_epoch = 1 @@ -507,3 +513,6 @@ class BaseAPI: 'Current evaluated best model in eval_dataset is epoch_{}, {}={}' .format(best_model_epoch, best_accuracy_key, best_accuracy)) + if eval_dataset is not None and early_stop: + if earlystop(current_accuracy): + break diff --git a/paddlex/cv/models/classifier.py b/paddlex/cv/models/classifier.py index 65a594ec3a7caee401cdf239f861a0e0e98667d9..bb40254a9b24c839ce46470dc79b2113cbc317d3 100644 --- a/paddlex/cv/models/classifier.py +++ b/paddlex/cv/models/classifier.py @@ -102,7 +102,9 @@ class BaseClassifier(BaseAPI): lr_decay_gamma=0.1, use_vdl=False, sensitivities_file=None, - eval_metric_loss=0.05): + eval_metric_loss=0.05, + early_stop=False, + early_stop_patience=5): """训练。 Args: @@ -124,6 +126,9 @@ class BaseClassifier(BaseAPI): sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT', 则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。 eval_metric_loss (float): 可容忍的精度损失。默认为0.05。 + early_stop (bool): 是否使用提前终止训练策略。默认值为False。 + early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内 + 连续下降或持平,则终止训练。默认值为5。 Raises: ValueError: 模型从inference model进行加载。 @@ -158,7 +163,9 @@ class BaseClassifier(BaseAPI): save_interval_epochs=save_interval_epochs, log_interval_steps=log_interval_steps, save_dir=save_dir, - use_vdl=use_vdl) + use_vdl=use_vdl, + early_stop=early_stop, + early_stop_patience=early_stop_patience) def evaluate(self, eval_dataset, diff --git a/paddlex/cv/models/deeplabv3p.py b/paddlex/cv/models/deeplabv3p.py index 0fa0ac195cb7b05de1fc16a6f2ee2b300155389f..b896bb2a94ea381184026540ac5141fce5dc51e4 100644 --- a/paddlex/cv/models/deeplabv3p.py +++ b/paddlex/cv/models/deeplabv3p.py @@ -231,7 +231,9 @@ class DeepLabv3p(BaseAPI): lr_decay_power=0.9, use_vdl=False, sensitivities_file=None, - eval_metric_loss=0.05): + eval_metric_loss=0.05, + early_stop=False, + early_stop_patience=5): """训练。 Args: @@ -252,6 +254,9 @@ class DeepLabv3p(BaseAPI): sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT', 则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。 eval_metric_loss (float): 可容忍的精度损失。默认为0.05。 + early_stop (bool): 是否使用提前终止训练策略。默认值为False。 + early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内 + 连续下降或持平,则终止训练。默认值为5。 Raises: ValueError: 模型从inference model进行加载。 @@ -288,7 +293,9 @@ class DeepLabv3p(BaseAPI): save_interval_epochs=save_interval_epochs, log_interval_steps=log_interval_steps, save_dir=save_dir, - use_vdl=use_vdl) + use_vdl=use_vdl, + early_stop=early_stop, + early_stop_patience=early_stop_patience) def evaluate(self, eval_dataset, diff --git a/paddlex/cv/models/faster_rcnn.py b/paddlex/cv/models/faster_rcnn.py index 47dbd75696369fd813438eb20db49a45024b6fc7..720363a0cdbe2385cf90bdb595975aae32f6b32b 100644 --- a/paddlex/cv/models/faster_rcnn.py +++ b/paddlex/cv/models/faster_rcnn.py @@ -163,7 +163,9 @@ class FasterRCNN(BaseAPI): lr_decay_epochs=[8, 11], lr_decay_gamma=0.1, metric=None, - use_vdl=False): + use_vdl=False, + early_stop=False, + early_stop_patience=5): """训练。 Args: @@ -186,6 +188,9 @@ class FasterRCNN(BaseAPI): lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。 metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认值为None。 use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。 + early_stop (bool): 是否使用提前终止训练策略。默认值为False。 + early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内 + 连续下降或持平,则终止训练。默认值为5。 Raises: ValueError: 评估类型不在指定列表中。 @@ -233,7 +238,9 @@ class FasterRCNN(BaseAPI): save_interval_epochs=save_interval_epochs, log_interval_steps=log_interval_steps, save_dir=save_dir, - use_vdl=use_vdl) + use_vdl=use_vdl, + early_stop=early_stop, + early_stop_patience=early_stop_patience) def evaluate(self, eval_dataset, diff --git a/paddlex/cv/models/mask_rcnn.py b/paddlex/cv/models/mask_rcnn.py index bfdc9f1092e7ce82cecb869dcd5364a0d34aff2e..93b53ea94638b22a0652dab7098f64ab843cf8a0 100644 --- a/paddlex/cv/models/mask_rcnn.py +++ b/paddlex/cv/models/mask_rcnn.py @@ -128,7 +128,9 @@ class MaskRCNN(FasterRCNN): lr_decay_epochs=[8, 11], lr_decay_gamma=0.1, metric=None, - use_vdl=False): + use_vdl=False, + early_stop=False, + early_stop_patience=5): """训练。 Args: @@ -151,6 +153,9 @@ class MaskRCNN(FasterRCNN): lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。 metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。 use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。 + early_stop (bool): 是否使用提前终止训练策略。默认值为False。 + early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内 + 连续下降或持平,则终止训练。默认值为5。 Raises: ValueError: 评估类型不在指定列表中。 @@ -199,7 +204,9 @@ class MaskRCNN(FasterRCNN): save_interval_epochs=save_interval_epochs, log_interval_steps=log_interval_steps, save_dir=save_dir, - use_vdl=use_vdl) + use_vdl=use_vdl, + early_stop=early_stop, + early_stop_patience=early_stop_patience) def evaluate(self, eval_dataset, diff --git a/paddlex/cv/models/slim/visualize.py b/paddlex/cv/models/slim/visualize.py index 5fcbad9865c3a356ef514098fa236112a1cb3169..d9380abb2f1184cfe59d77b84d6841b5c4fd7288 100644 --- a/paddlex/cv/models/slim/visualize.py +++ b/paddlex/cv/models/slim/visualize.py @@ -15,9 +15,6 @@ import os.path as osp import tqdm import numpy as np -import matplotlib -matplotlib.use('Agg') -import matplotlib.pyplot as plt from .prune import cal_model_size from paddleslim.prune import load_sensitivities @@ -30,6 +27,10 @@ def visualize(model, sensitivities_file, save_dir='./'): model (paddlex.cv.models): paddlex中的模型。 sensitivities_file (str): 敏感度文件存储路径。 """ + import matplotlib + matplotlib.use('Agg') + import matplotlib.pyplot as plt + program = model.test_prog place = model.places[0] fig = plt.figure() diff --git a/paddlex/cv/models/unet.py b/paddlex/cv/models/unet.py index a327b1e14091f106f58e042bf9c1ada8aa97f722..20aba095561f13670648544d41ad21d081fd5842 100644 --- a/paddlex/cv/models/unet.py +++ b/paddlex/cv/models/unet.py @@ -117,7 +117,9 @@ class UNet(DeepLabv3p): lr_decay_power=0.9, use_vdl=False, sensitivities_file=None, - eval_metric_loss=0.05): + eval_metric_loss=0.05, + early_stop=False, + early_stop_patience=5): """训练。 Args: @@ -138,12 +140,17 @@ class UNet(DeepLabv3p): sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT', 则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。 eval_metric_loss (float): 可容忍的精度损失。默认为0.05。 + early_stop (bool): 是否使用提前终止训练策略。默认值为False。 + early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内 + 连续下降或持平,则终止训练。默认值为5。 Raises: ValueError: 模型从inference model进行加载。 """ - return super(UNet, self).train( - num_epochs, train_dataset, train_batch_size, eval_dataset, - save_interval_epochs, log_interval_steps, save_dir, - pretrain_weights, optimizer, learning_rate, lr_decay_power, - use_vdl, sensitivities_file, eval_metric_loss) + return super( + UNet, + self).train(num_epochs, train_dataset, train_batch_size, + eval_dataset, save_interval_epochs, log_interval_steps, + save_dir, pretrain_weights, optimizer, learning_rate, + lr_decay_power, use_vdl, sensitivities_file, + eval_metric_loss, early_stop, early_stop_patience) diff --git a/paddlex/cv/models/utils/visualize.py b/paddlex/cv/models/utils/visualize.py index 1abfa6e7dcf3c366d05faaea872bb582c80747f2..8b534dc0bc64f7be36a43a185b3c2f9036dccd13 100644 --- a/paddlex/cv/models/utils/visualize.py +++ b/paddlex/cv/models/utils/visualize.py @@ -333,6 +333,7 @@ def draw_pr_curve(eval_details_file=None, return mean_s def cal_pr(coco_gt, coco_dt, iou_thresh, save_dir, style='bbox'): + import matplotlib.pyplot as plt from pycocotools.cocoeval import COCOeval coco_dt = loadRes(coco_gt, coco_dt) np.linspace = fixed_linspace diff --git a/paddlex/cv/models/yolo_v3.py b/paddlex/cv/models/yolo_v3.py index 9b296cbc983e261435bf310e49adf0e25c8d4525..e91e3b1989abb2eff6f874cfa17057bd4e5aec13 100644 --- a/paddlex/cv/models/yolo_v3.py +++ b/paddlex/cv/models/yolo_v3.py @@ -162,7 +162,9 @@ class YOLOv3(BaseAPI): metric=None, use_vdl=False, sensitivities_file=None, - eval_metric_loss=0.05): + eval_metric_loss=0.05, + early_stop=False, + early_stop_patience=5): """训练。 Args: @@ -188,6 +190,9 @@ class YOLOv3(BaseAPI): sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT', 则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。 eval_metric_loss (float): 可容忍的精度损失。默认为0.05。 + early_stop (bool): 是否使用提前终止训练策略。默认值为False。 + early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内 + 连续下降或持平,则终止训练。默认值为5。 Raises: ValueError: 评估类型不在指定列表中。 @@ -238,7 +243,9 @@ class YOLOv3(BaseAPI): save_interval_epochs=save_interval_epochs, log_interval_steps=log_interval_steps, save_dir=save_dir, - use_vdl=use_vdl) + use_vdl=use_vdl, + early_stop=early_stop, + early_stop_patience=early_stop_patience) def evaluate(self, eval_dataset, diff --git a/paddlex/utils/utils.py b/paddlex/utils/utils.py index 27dc6dea16b24085e286f2948907310c6b4ff4de..c9d23115ed74ff38f5395b4b04d1eb45a98486ad 100644 --- a/paddlex/utils/utils.py +++ b/paddlex/utils/utils.py @@ -220,3 +220,39 @@ def load_pretrain_weights(exe, main_prog, weights_dir, fuse_bn=False): len(vars_to_load), weights_dir)) if fuse_bn: fuse_bn_weights(exe, main_prog, weights_dir) + + +class EarlyStop: + def __init__(self, patience, thresh): + self.patience = patience + self.counter = 0 + self.score = None + self.max = 0 + self.thresh = thresh + if patience < 1: + raise Exception("Argument patience should be a positive integer.") + + def __call__(self, current_score): + if self.score is None: + self.score = current_score + return False + elif current_score > self.max: + self.counter = 0 + self.score = current_score + self.max = current_score + return False + else: + if (abs(self.score - current_score) < self.thresh + or current_score < self.score): + self.counter += 1 + self.score = current_score + logging.debug( + "EarlyStopping: %i / %i" % (self.counter, self.patience)) + if self.counter >= self.patience: + logging.info("EarlyStopping: Stop training") + return True + return False + else: + self.counter = 0 + self.score = current_score + return False diff --git a/setup.py b/setup.py index db8c2a8a17420bc56f98d528a406284885d14df9..99b91b86b1442a23515bfc93c326ec1498d67e27 100644 --- a/setup.py +++ b/setup.py @@ -29,7 +29,8 @@ setuptools.setup( packages=setuptools.find_packages(), setup_requires=['cython', 'numpy', 'sklearn'], install_requires=[ - 'pycocotools', 'pyyaml', 'colorama', 'tqdm', 'visualdl==1.3.0', + "pycocotools;platform_system!='Windows'", + 'pyyaml', 'colorama', 'tqdm', 'visualdl==1.3.0', 'paddleslim==1.0.1', 'paddlehub>=1.6.2' ], classifiers=[