提交 eadd3666 编写于 作者: F FlyingQianMM

rewrite draw_pr_curve in docs

上级 0e9ae273
......@@ -40,12 +40,12 @@ paddlex.det.draw_pr_curve(eval_details_file=None, gt=None, pred_bbox=None, pred_
**注意:**`eval_details_file`的优先级更高,只要`eval_details_file`不为None,就会从`eval_details_file`提取真值信息和预测结果做分析。当`eval_details_file`为None时,则用`gt``pred_mask``pred_mask`做分析。
### 使用示例
点击下载如下示例中的[模型]()和[数据集](https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz)
点击下载如下示例中的[模型](https://bj.bcebos.com/paddlex/models/insect_epoch_270.zip)[数据集](https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz)
> 方式一:分析训练过程中保存的模型文件夹中的评估结果文件`eval_details.json`,例如[模型]()中的`eval_details.json`。
> 方式一:分析训练过程中保存的模型文件夹中的评估结果文件`eval_details.json`,例如[模型](https://bj.bcebos.com/paddlex/models/insect_epoch_270.zip)中的`eval_details.json`。
```
import paddlex as pdx
eval_details_file = 'insect_epoch_/eval_details.json'
eval_details_file = 'insect_epoch_270/eval_details.json'
pdx.det.draw_pr_curve(eval_details_file, save_dir='./insect')
```
> 方式二:分析模型评估函数返回的评估结果。
......@@ -58,10 +58,11 @@ os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from paddlex.det import transforms
import paddlex as pdx
model = pdx.load_model('xiaoduxiong_epoch_12')
eval_dataset = pdx.datasets.CocoDetection(
data_dir='xiaoduxiong_ins_det/JPEGImages',
ann_file='xiaoduxiong_ins_det/val.json',
model = pdx.load_model('insect_epoch_270')
eval_dataset = pdx.datasets.VOCDetection(
data_dir='insect_det',
file_list='insect_det/val_list.txt',
label_list='insect_det/labels.txt',
transforms=model.eval_transforms)
metrics, evaluate_details = model.evaluate(eval_dataset, batch_size=8, return_details=True)
gt = evaluate_details['gt']
......
......@@ -20,3 +20,4 @@ YOLOv3 = cv.models.YOLOv3
MaskRCNN = cv.models.MaskRCNN
transforms = cv.transforms.det_transforms
visualize = cv.models.utils.visualize.visualize_detection
draw_pr_curve = cv.models.utils.visualize.draw_pr_curve
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册