classifier.cpp 3.7 KB
Newer Older
C
Channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <glog/logging.h>
J
jack 已提交
16
#include <omp.h>
C
Channingss 已提交
17

J
jack 已提交
18
#include <algorithm>
J
jack 已提交
19
#include <chrono>  // NOLINT
C
Channingss 已提交
20 21 22 23
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
J
jack 已提交
24
#include <utility>
C
Channingss 已提交
25 26
#include "include/paddlex/paddlex.h"

J
jack 已提交
27
using namespace std::chrono;  // NOLINT
J
jack 已提交
28

C
Channingss 已提交
29 30 31 32 33 34 35
DEFINE_string(model_dir, "", "Path of inference model");
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
DEFINE_bool(use_trt, false, "Infering with TensorRT");
DEFINE_int32(gpu_id, 0, "GPU card id");
DEFINE_string(key, "", "key of encryption");
DEFINE_string(image, "", "Path of test image file");
DEFINE_string(image_list, "", "Path of test image list file");
J
jack 已提交
36
DEFINE_int32(batch_size, 1, "Batch size of infering");
J
jack 已提交
37 38 39
DEFINE_int32(thread_num,
             omp_get_num_procs(),
             "Number of preprocessing threads");
C
Channingss 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53

int main(int argc, char** argv) {
  // Parsing command-line
  google::ParseCommandLineFlags(&argc, &argv, true);

  if (FLAGS_model_dir == "") {
    std::cerr << "--model_dir need to be defined" << std::endl;
    return -1;
  }
  if (FLAGS_image == "" & FLAGS_image_list == "") {
    std::cerr << "--image or --image_list need to be defined" << std::endl;
    return -1;
  }

54
  // Load model
C
Channingss 已提交
55
  PaddleX::Model model;
J
jack 已提交
56 57 58 59
  model.Init(FLAGS_model_dir,
             FLAGS_use_gpu,
             FLAGS_use_trt,
             FLAGS_gpu_id,
60
             FLAGS_key);
C
Channingss 已提交
61

62
  // Predict
J
jack 已提交
63
  int imgs = 1;
C
Channingss 已提交
64 65 66 67 68 69
  if (FLAGS_image_list != "") {
    std::ifstream inf(FLAGS_image_list);
    if (!inf) {
      std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
      return -1;
    }
70
    // Mini-batch predict
C
Channingss 已提交
71
    std::string image_path;
J
jack 已提交
72
    std::vector<std::string> image_paths;
C
Channingss 已提交
73
    while (getline(inf, image_path)) {
J
jack 已提交
74
      image_paths.push_back(image_path);
J
jack 已提交
75
    }
J
jack 已提交
76
    imgs = image_paths.size();
J
jack 已提交
77
    for (int i = 0; i < image_paths.size(); i += FLAGS_batch_size) {
78
      // Read image
J
jack 已提交
79
      int im_vec_size =
J
jack 已提交
80
          std::min(static_cast<int>(image_paths.size()), i + FLAGS_batch_size);
J
jack 已提交
81
      std::vector<cv::Mat> im_vec(im_vec_size - i);
J
jack 已提交
82 83
      std::vector<PaddleX::ClsResult> results(im_vec_size - i,
                                              PaddleX::ClsResult());
J
jack 已提交
84 85
      int thread_num = std::min(FLAGS_thread_num, im_vec_size - i);
      #pragma omp parallel for num_threads(thread_num)
J
jack 已提交
86
      for (int j = i; j < im_vec_size; ++j) {
J
jack 已提交
87
        im_vec[j - i] = std::move(cv::imread(image_paths[j], 1));
J
jack 已提交
88
      }
J
jack 已提交
89 90 91 92 93 94 95
      model.predict(im_vec, &results, thread_num);
      for (int j = i; j < im_vec_size; ++j) {
        std::cout << "Path:" << image_paths[j]
                  << ", predict label: " << results[j - i].category
                  << ", label_id:" << results[j - i].category_id
                  << ", score: " << results[j - i].score << std::endl;
      }
C
Channingss 已提交
96 97 98 99 100 101 102 103 104 105 106
    }
  } else {
    PaddleX::ClsResult result;
    cv::Mat im = cv::imread(FLAGS_image, 1);
    model.predict(im, &result);
    std::cout << "Predict label: " << result.category
              << ", label_id:" << result.category_id
              << ", score: " << result.score << std::endl;
  }
  return 0;
}