classifier.cpp 4.6 KB
Newer Older
C
Channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <glog/logging.h>

J
jack 已提交
17 18
#include <algorithm>
#include <chrono>
C
Channingss 已提交
19 20 21 22
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
J
jack 已提交
23
#include <utility>
J
jack 已提交
24
#include <omp.h>
C
Channingss 已提交
25 26
#include "include/paddlex/paddlex.h"

J
jack 已提交
27 28
using namespace std::chrono;

C
Channingss 已提交
29 30 31 32 33 34 35
DEFINE_string(model_dir, "", "Path of inference model");
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
DEFINE_bool(use_trt, false, "Infering with TensorRT");
DEFINE_int32(gpu_id, 0, "GPU card id");
DEFINE_string(key, "", "key of encryption");
DEFINE_string(image, "", "Path of test image file");
DEFINE_string(image_list, "", "Path of test image list file");
J
jack 已提交
36
DEFINE_int32(batch_size, 1, "Batch size of infering");
C
Channingss 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

int main(int argc, char** argv) {
  // Parsing command-line
  google::ParseCommandLineFlags(&argc, &argv, true);

  if (FLAGS_model_dir == "") {
    std::cerr << "--model_dir need to be defined" << std::endl;
    return -1;
  }
  if (FLAGS_image == "" & FLAGS_image_list == "") {
    std::cerr << "--image or --image_list need to be defined" << std::endl;
    return -1;
  }

  // 加载模型
  PaddleX::Model model;
J
jack 已提交
53
  model.Init(FLAGS_model_dir, FLAGS_use_gpu, FLAGS_use_trt, FLAGS_gpu_id, FLAGS_key, FLAGS_batch_size);
C
Channingss 已提交
54 55

  // 进行预测
J
jack 已提交
56
  double total_running_time_s = 0.0;
J
jack 已提交
57 58
  double total_imread_time_s = 0.0;
  int imgs = 1;
C
Channingss 已提交
59 60 61 62 63 64
  if (FLAGS_image_list != "") {
    std::ifstream inf(FLAGS_image_list);
    if (!inf) {
      std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
      return -1;
    }
J
jack 已提交
65
    // 多batch预测
C
Channingss 已提交
66
    std::string image_path;
J
jack 已提交
67
    std::vector<std::string> image_paths;
C
Channingss 已提交
68
    while (getline(inf, image_path)) {
J
jack 已提交
69
      image_paths.push_back(image_path);
J
jack 已提交
70
    }
J
jack 已提交
71 72
    imgs = image_paths.size();
    for(int i = 0; i < image_paths.size(); i += FLAGS_batch_size) {
J
jack 已提交
73 74
      auto start = system_clock::now();
        // 读图像
J
jack 已提交
75
      int im_vec_size = std::min((int)image_paths.size(), i + FLAGS_batch_size);      
J
jack 已提交
76 77 78 79
      std::vector<cv::Mat> im_vec(im_vec_size - i);
      std::vector<PaddleX::ClsResult> results(im_vec_size - i, PaddleX::ClsResult());
      #pragma omp parallel for num_threads(im_vec_size - i)
      for(int j = i; j < im_vec_size; ++j){
J
jack 已提交
80
        im_vec[j - i] = std::move(cv::imread(image_paths[j], 1));
J
jack 已提交
81 82 83 84 85
      }
      auto imread_end = system_clock::now();
      model.predict(im_vec, results);

      auto imread_duration = duration_cast<microseconds>(imread_end - start);
J
jack 已提交
86
      total_imread_time_s += double(imread_duration.count()) * microseconds::period::num / microseconds::period::den;
J
jack 已提交
87 88 89 90 91

      auto end = system_clock::now();
      auto duration = duration_cast<microseconds>(end - start);
      total_running_time_s += double(duration.count()) * microseconds::period::num / microseconds::period::den;
      for(int j = i; j < im_vec_size; ++j) {
J
jack 已提交
92
            std::cout << "Path:" << image_paths[j]
J
jack 已提交
93 94 95 96
                      << ", predict label: " << results[j - i].category
                      << ", label_id:" << results[j - i].category_id
                      << ", score: " << results[j - i].score << std::endl;
      }	
C
Channingss 已提交
97 98
    }
  } else {
J
jack 已提交
99
    auto start = system_clock::now();
C
Channingss 已提交
100 101 102
    PaddleX::ClsResult result;
    cv::Mat im = cv::imread(FLAGS_image, 1);
    model.predict(im, &result);
J
jack 已提交
103 104 105
    auto end = system_clock::now();
    auto duration = duration_cast<microseconds>(end - start);
    total_running_time_s += double(duration.count()) * microseconds::period::num / microseconds::period::den;
C
Channingss 已提交
106 107 108 109
    std::cout << "Predict label: " << result.category
              << ", label_id:" << result.category_id
              << ", score: " << result.score << std::endl;
  }
J
jack 已提交
110
  std::cout << "Total running time: " 
J
jack 已提交
111
	    << total_running_time_s
J
jack 已提交
112 113 114 115 116 117 118
      << " s, average running time: "
      << total_running_time_s / imgs 
	    << " s/img, total read img time: " 
	    << total_imread_time_s
      << " s, average read time: "
      << total_imread_time_s / imgs  
	    << " s/img, batch_size = " 
J
jack 已提交
119 120
	    << FLAGS_batch_size 
	    << std::endl;
C
Channingss 已提交
121 122
  return 0;
}