Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
76edffaa
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
76edffaa
编写于
7月 28, 2020
作者:
F
FlyingQianMM
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add video deploy for human_seg, classifier, detector and segmenter
上级
cd856fb1
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
1268 addition
and
80 deletion
+1268
-80
deploy/cpp/CMakeLists.txt
deploy/cpp/CMakeLists.txt
+73
-13
deploy/cpp/demo/classifier.cpp
deploy/cpp/demo/classifier.cpp
+1
-3
deploy/cpp/demo/detector.cpp
deploy/cpp/demo/detector.cpp
+1
-3
deploy/cpp/demo/segmenter.cpp
deploy/cpp/demo/segmenter.cpp
+1
-3
deploy/cpp/demo/video_classifier.cpp
deploy/cpp/demo/video_classifier.cpp
+186
-0
deploy/cpp/demo/video_detector.cpp
deploy/cpp/demo/video_detector.cpp
+158
-0
deploy/cpp/demo/video_segmenter.cpp
deploy/cpp/demo/video_segmenter.cpp
+157
-0
deploy/cpp/scripts/bootstrap.sh
deploy/cpp/scripts/bootstrap.sh
+5
-4
deploy/cpp/scripts/build.sh
deploy/cpp/scripts/build.sh
+5
-4
docs/deploy/server/cpp/linux.md
docs/deploy/server/cpp/linux.md
+39
-4
docs/deploy/server/cpp/windows.md
docs/deploy/server/cpp/windows.md
+34
-2
docs/examples/human_segmentation.md
docs/examples/human_segmentation.md
+66
-9
docs/examples/meter_reader.md
docs/examples/meter_reader.md
+13
-24
examples/human_segmentation/deploy/cpp/CMakeLists.txt
examples/human_segmentation/deploy/cpp/CMakeLists.txt
+321
-0
examples/human_segmentation/deploy/cpp/human_segmenter.cpp
examples/human_segmentation/deploy/cpp/human_segmenter.cpp
+208
-0
examples/meter_reader/README.md
examples/meter_reader/README.md
+0
-11
未找到文件。
deploy/cpp/CMakeLists.txt
浏览文件 @
76edffaa
...
...
@@ -3,7 +3,11 @@ project(PaddleX CXX C)
option
(
WITH_MKL
"Compile demo with MKL/OpenBlas support,defaultuseMKL."
ON
)
option
(
WITH_GPU
"Compile demo with GPU/CPU, default use CPU."
ON
)
option
(
WITH_STATIC_LIB
"Compile demo with static/shared library, default use static."
OFF
)
if
(
NOT WIN32
)
option
(
WITH_STATIC_LIB
"Compile demo with static/shared library, default use static."
OFF
)
else
()
option
(
WITH_STATIC_LIB
"Compile demo with static/shared library, default use static."
ON
)
endif
()
option
(
WITH_TENSORRT
"Compile demo with TensorRT."
OFF
)
option
(
WITH_ENCRYPTION
"Compile demo with encryption tool."
OFF
)
...
...
@@ -57,8 +61,10 @@ if (NOT DEFINED PADDLE_DIR OR ${PADDLE_DIR} STREQUAL "")
message
(
FATAL_ERROR
"please set PADDLE_DIR with -DPADDLE_DIR=/path/paddle_influence_dir"
)
endif
()
if
(
NOT DEFINED OPENCV_DIR OR
${
OPENCV_DIR
}
STREQUAL
""
)
if
(
NOT
(
${
CMAKE_SYSTEM_PROCESSOR
}
STREQUAL
"aarch64"
))
if
(
NOT DEFINED OPENCV_DIR OR
${
OPENCV_DIR
}
STREQUAL
""
)
message
(
FATAL_ERROR
"please set OPENCV_DIR with -DOPENCV_DIR=/path/opencv"
)
endif
()
endif
()
include_directories
(
"
${
CMAKE_SOURCE_DIR
}
/"
)
...
...
@@ -106,10 +112,17 @@ if (WIN32)
find_package
(
OpenCV REQUIRED PATHS
${
OPENCV_DIR
}
/build/ NO_DEFAULT_PATH
)
unset
(
OpenCV_DIR CACHE
)
else
()
find_package
(
OpenCV REQUIRED PATHS
${
OPENCV_DIR
}
/share/OpenCV NO_DEFAULT_PATH
)
if
(
${
CMAKE_SYSTEM_PROCESSOR
}
STREQUAL
"aarch64"
)
# x86_64 aarch64
set
(
OpenCV_INCLUDE_DIRS
"/usr/include/opencv4"
)
file
(
GLOB OpenCV_LIBS /usr/lib/aarch64-linux-gnu/libopencv_*
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
message
(
"OpenCV libs:
${
OpenCV_LIBS
}
"
)
else
()
find_package
(
OpenCV REQUIRED PATHS
${
OPENCV_DIR
}
/share/OpenCV NO_DEFAULT_PATH
)
endif
()
include_directories
(
"
${
PADDLE_DIR
}
/paddle/include"
)
link_directories
(
"
${
PADDLE_DIR
}
/paddle/lib"
)
endif
()
include_directories
(
${
OpenCV_INCLUDE_DIRS
}
)
if
(
WIN32
)
...
...
@@ -271,6 +284,7 @@ if (NOT WIN32)
endif
()
set
(
DEPS
${
DEPS
}
${
OpenCV_LIBS
}
)
add_library
(
paddlex_inference SHARED src/visualize src/transforms.cpp src/paddlex.cpp
)
ADD_DEPENDENCIES
(
paddlex_inference ext-yaml-cpp
)
target_link_libraries
(
paddlex_inference
${
DEPS
}
)
...
...
@@ -287,26 +301,60 @@ add_executable(segmenter demo/segmenter.cpp src/transforms.cpp src/paddlex.cpp s
ADD_DEPENDENCIES
(
segmenter ext-yaml-cpp
)
target_link_libraries
(
segmenter
${
DEPS
}
)
add_executable
(
video_classifier demo/video_classifier.cpp src/transforms.cpp src/paddlex.cpp src/visualize.cpp
)
ADD_DEPENDENCIES
(
video_classifier ext-yaml-cpp
)
target_link_libraries
(
video_classifier
${
DEPS
}
)
add_executable
(
video_detector demo/video_detector.cpp src/transforms.cpp src/paddlex.cpp src/visualize.cpp
)
ADD_DEPENDENCIES
(
video_detector ext-yaml-cpp
)
target_link_libraries
(
video_detector
${
DEPS
}
)
add_executable
(
video_segmenter demo/video_segmenter.cpp src/transforms.cpp src/paddlex.cpp src/visualize.cpp
)
ADD_DEPENDENCIES
(
video_segmenter ext-yaml-cpp
)
target_link_libraries
(
video_segmenter
${
DEPS
}
)
if
(
WIN32 AND WITH_MKL
)
add_custom_command
(
TARGET classifier POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.dll ./mklml.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.dll ./
paddlex_inference/Release/
mklml.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.dll ./
paddlex_inference/Release/
libiomp5md.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mkldnn/lib/mkldnn.dll ./
paddlex_inference/Release/
mkldnn.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mkldnn/lib/mkldnn.dll ./release/mkldnn.dll
)
add_custom_command
(
TARGET detector POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.dll ./mklml.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.dll ./
paddlex_inference/Release/
mklml.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.dll ./
paddlex_inference/Release/
libiomp5md.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mkldnn/lib/mkldnn.dll ./
paddlex_inference/Release/
mkldnn.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll
)
add_custom_command
(
TARGET segmenter POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.dll ./mklml.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.dll ./paddlex_inference/Release/mklml.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.dll ./paddlex_inference/Release/libiomp5md.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mkldnn/lib/mkldnn.dll ./paddlex_inference/Release/mkldnn.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mkldnn/lib/mkldnn.dll ./release/mkldnn.dll
)
add_custom_command
(
TARGET video_classifier POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.dll ./paddlex_inference/Release/mklml.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.dll ./paddlex_inference/Release/libiomp5md.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mkldnn/lib/mkldnn.dll ./paddlex_inference/Release/mkldnn.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll
)
add_custom_command
(
TARGET video_detector POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.dll ./paddlex_inference/Release/mklml.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.dll ./paddlex_inference/Release/libiomp5md.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mkldnn/lib/mkldnn.dll ./paddlex_inference/Release/mkldnn.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll
)
add_custom_command
(
TARGET video_segmenter POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.dll ./paddlex_inference/Release/mklml.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.dll ./paddlex_inference/Release/libiomp5md.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mkldnn/lib/mkldnn.dll ./paddlex_inference/Release/mkldnn.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mkldnn/lib/mkldnn.dll ./release/mkldnn.dll
...
...
@@ -325,6 +373,18 @@ if (WIN32 AND WITH_MKL)
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
ENCRYPTION_DIR
}
/lib/pmodel-decrypt.dll ./pmodel-decrypt.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
ENCRYPTION_DIR
}
/lib/pmodel-decrypt.dll ./release/pmodel-decrypt.dll
)
add_custom_command
(
TARGET video_classifier POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
ENCRYPTION_DIR
}
/lib/pmodel-decrypt.dll ./pmodel-decrypt.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
ENCRYPTION_DIR
}
/lib/pmodel-decrypt.dll ./release/pmodel-decrypt.dll
)
add_custom_command
(
TARGET video_detector POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
ENCRYPTION_DIR
}
/lib/pmodel-decrypt.dll ./pmodel-decrypt.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
ENCRYPTION_DIR
}
/lib/pmodel-decrypt.dll ./release/pmodel-decrypt.dll
)
add_custom_command
(
TARGET video_segmenter POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
ENCRYPTION_DIR
}
/lib/pmodel-decrypt.dll ./pmodel-decrypt.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
ENCRYPTION_DIR
}
/lib/pmodel-decrypt.dll ./release/pmodel-decrypt.dll
)
endif
()
endif
()
...
...
deploy/cpp/demo/classifier.cpp
浏览文件 @
76edffaa
...
...
@@ -37,7 +37,6 @@ DEFINE_int32(batch_size, 1, "Batch size of infering");
DEFINE_int32
(
thread_num
,
omp_get_num_procs
(),
"Number of preprocessing threads"
);
DEFINE_bool
(
use_ir_optim
,
true
,
"use ir optimization"
);
int
main
(
int
argc
,
char
**
argv
)
{
// Parsing command-line
...
...
@@ -58,8 +57,7 @@ int main(int argc, char** argv) {
FLAGS_use_gpu
,
FLAGS_use_trt
,
FLAGS_gpu_id
,
FLAGS_key
,
FLAGS_use_ir_optim
);
FLAGS_key
);
// 进行预测
int
imgs
=
1
;
...
...
deploy/cpp/demo/detector.cpp
浏览文件 @
76edffaa
...
...
@@ -43,7 +43,6 @@ DEFINE_double(threshold,
DEFINE_int32
(
thread_num
,
omp_get_num_procs
(),
"Number of preprocessing threads"
);
DEFINE_bool
(
use_ir_optim
,
true
,
"use ir optimization"
);
int
main
(
int
argc
,
char
**
argv
)
{
// 解析命令行参数
...
...
@@ -63,8 +62,7 @@ int main(int argc, char** argv) {
FLAGS_use_gpu
,
FLAGS_use_trt
,
FLAGS_gpu_id
,
FLAGS_key
,
FLAGS_use_ir_optim
);
FLAGS_key
);
int
imgs
=
1
;
std
::
string
save_dir
=
"output"
;
// 进行预测
...
...
deploy/cpp/demo/segmenter.cpp
浏览文件 @
76edffaa
...
...
@@ -39,7 +39,6 @@ DEFINE_int32(batch_size, 1, "Batch size of infering");
DEFINE_int32
(
thread_num
,
omp_get_num_procs
(),
"Number of preprocessing threads"
);
DEFINE_bool
(
use_ir_optim
,
false
,
"use ir optimization"
);
int
main
(
int
argc
,
char
**
argv
)
{
// 解析命令行参数
...
...
@@ -60,8 +59,7 @@ int main(int argc, char** argv) {
FLAGS_use_gpu
,
FLAGS_use_trt
,
FLAGS_gpu_id
,
FLAGS_key
,
FLAGS_use_ir_optim
);
FLAGS_key
);
int
imgs
=
1
;
// 进行预测
if
(
FLAGS_image_list
!=
""
)
{
...
...
deploy/cpp/demo/video_classifier.cpp
0 → 100644
浏览文件 @
76edffaa
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <glog/logging.h>
#include <omp.h>
#include <algorithm>
#include <chrono> // NOLINT
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include <utility>
#include "include/paddlex/paddlex.h"
#include "include/paddlex/visualize.h"
#if defined(__arm__) || defined(__aarch64__)
#include <opencv2/videoio/legacy/constants_c.h>
#endif
using
namespace
std
::
chrono
;
// NOLINT
DEFINE_string
(
model_dir
,
""
,
"Path of inference model"
);
DEFINE_bool
(
use_gpu
,
false
,
"Infering with GPU or CPU"
);
DEFINE_bool
(
use_trt
,
false
,
"Infering with TensorRT"
);
DEFINE_int32
(
gpu_id
,
0
,
"GPU card id"
);
DEFINE_string
(
key
,
""
,
"key of encryption"
);
DEFINE_bool
(
use_camera
,
false
,
"Infering with Camera"
);
DEFINE_int32
(
camera_id
,
0
,
"Camera id"
);
DEFINE_string
(
video_path
,
""
,
"Path of input video"
);
DEFINE_bool
(
show_result
,
false
,
"show the result of each frame with a window"
);
DEFINE_bool
(
save_result
,
true
,
"save the result of each frame to a video"
);
DEFINE_string
(
save_dir
,
"output"
,
"Path to save visualized image"
);
int
main
(
int
argc
,
char
**
argv
)
{
// Parsing command-line
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
if
(
FLAGS_model_dir
==
""
)
{
std
::
cerr
<<
"--model_dir need to be defined"
<<
std
::
endl
;
return
-
1
;
}
if
(
FLAGS_video_path
==
""
&
FLAGS_use_camera
==
false
)
{
std
::
cerr
<<
"--video_path or --use_camera need to be defined"
<<
std
::
endl
;
return
-
1
;
}
// 加载模型
PaddleX
::
Model
model
;
model
.
Init
(
FLAGS_model_dir
,
FLAGS_use_gpu
,
FLAGS_use_trt
,
FLAGS_gpu_id
,
FLAGS_key
);
// 打开视频流
cv
::
VideoCapture
capture
;
if
(
FLAGS_use_camera
)
{
capture
.
open
(
FLAGS_camera_id
);
if
(
!
capture
.
isOpened
())
{
std
::
cout
<<
"Can not open the camera "
<<
FLAGS_camera_id
<<
"."
<<
std
::
endl
;
return
-
1
;
}
}
else
{
capture
.
open
(
FLAGS_video_path
);
if
(
!
capture
.
isOpened
())
{
std
::
cout
<<
"Can not open the video "
<<
FLAGS_video_path
<<
"."
<<
std
::
endl
;
return
-
1
;
}
}
// 创建VideoWriter
cv
::
VideoWriter
video_out
;
std
::
string
video_out_path
;
if
(
FLAGS_save_result
)
{
// 获取视频流信息: 分辨率, 帧率
int
video_width
=
static_cast
<
int
>
(
capture
.
get
(
CV_CAP_PROP_FRAME_WIDTH
));
int
video_height
=
static_cast
<
int
>
(
capture
.
get
(
CV_CAP_PROP_FRAME_HEIGHT
));
int
video_fps
=
static_cast
<
int
>
(
capture
.
get
(
CV_CAP_PROP_FPS
));
int
video_fourcc
;
if
(
FLAGS_use_camera
)
{
video_fourcc
=
828601953
;
}
else
{
video_fourcc
=
static_cast
<
int
>
(
capture
.
get
(
CV_CAP_PROP_FOURCC
));
}
if
(
FLAGS_use_camera
)
{
time_t
now
=
time
(
0
);
video_out_path
=
PaddleX
::
generate_save_path
(
FLAGS_save_dir
,
std
::
to_string
(
now
)
+
".mp4"
);
}
else
{
video_out_path
=
PaddleX
::
generate_save_path
(
FLAGS_save_dir
,
FLAGS_video_path
);
}
video_out
.
open
(
video_out_path
.
c_str
(),
video_fourcc
,
video_fps
,
cv
::
Size
(
video_width
,
video_height
),
true
);
if
(
!
video_out
.
isOpened
())
{
std
::
cout
<<
"Create video writer failed!"
<<
std
::
endl
;
return
-
1
;
}
}
PaddleX
::
ClsResult
result
;
cv
::
Mat
frame
;
int
key
;
while
(
capture
.
read
(
frame
))
{
if
(
FLAGS_show_result
||
FLAGS_use_camera
)
{
key
=
cv
::
waitKey
(
1
);
// 按下ESC退出整个程序,保存视频文件到磁盘
if
(
key
==
27
)
{
break
;
}
}
else
if
(
frame
.
empty
())
{
break
;
}
// 开始预测
model
.
predict
(
frame
,
&
result
);
// 可视化
cv
::
Mat
vis_img
=
frame
.
clone
();
auto
colormap
=
PaddleX
::
GenerateColorMap
(
model
.
labels
.
size
());
int
c1
=
colormap
[
3
*
result
.
category_id
+
0
];
int
c2
=
colormap
[
3
*
result
.
category_id
+
1
];
int
c3
=
colormap
[
3
*
result
.
category_id
+
2
];
cv
::
Scalar
text_color
=
cv
::
Scalar
(
c1
,
c2
,
c3
);
std
::
string
text
=
result
.
category
;
text
+=
std
::
to_string
(
static_cast
<
int
>
(
result
.
score
*
100
))
+
"%"
;
int
font_face
=
cv
::
FONT_HERSHEY_SIMPLEX
;
double
font_scale
=
0.5
f
;
float
thickness
=
0.5
;
cv
::
Size
text_size
=
cv
::
getTextSize
(
text
,
font_face
,
font_scale
,
thickness
,
nullptr
);
cv
::
Point
origin
;
origin
.
x
=
frame
.
cols
/
2
;
origin
.
y
=
frame
.
rows
/
2
;
cv
::
Rect
text_back
=
cv
::
Rect
(
origin
.
x
,
origin
.
y
-
text_size
.
height
,
text_size
.
width
,
text_size
.
height
);
cv
::
rectangle
(
vis_img
,
text_back
,
text_color
,
-
1
);
cv
::
putText
(
vis_img
,
text
,
origin
,
font_face
,
font_scale
,
cv
::
Scalar
(
255
,
255
,
255
),
thickness
);
if
(
FLAGS_show_result
||
FLAGS_use_camera
)
{
cv
::
imshow
(
"human_seg"
,
vis_img
);
}
if
(
FLAGS_save_result
)
{
video_out
.
write
(
vis_img
);
}
std
::
cout
<<
"Predict label: "
<<
result
.
category
<<
", label_id:"
<<
result
.
category_id
<<
", score: "
<<
result
.
score
<<
std
::
endl
;
}
capture
.
release
();
if
(
FLAGS_save_result
)
{
video_out
.
release
();
std
::
cout
<<
"Visualized output saved as "
<<
video_out_path
<<
std
::
endl
;
}
if
(
FLAGS_show_result
||
FLAGS_use_camera
)
{
cv
::
destroyAllWindows
();
}
return
0
;
}
deploy/cpp/demo/video_detector.cpp
0 → 100644
浏览文件 @
76edffaa
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <glog/logging.h>
#include <omp.h>
#include <algorithm>
#include <chrono> // NOLINT
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include <utility>
#include "include/paddlex/paddlex.h"
#include "include/paddlex/visualize.h"
#if defined(__arm__) || defined(__aarch64__)
#include <opencv2/videoio/legacy/constants_c.h>
#endif
using
namespace
std
::
chrono
;
// NOLINT
DEFINE_string
(
model_dir
,
""
,
"Path of inference model"
);
DEFINE_bool
(
use_gpu
,
false
,
"Infering with GPU or CPU"
);
DEFINE_bool
(
use_trt
,
false
,
"Infering with TensorRT"
);
DEFINE_int32
(
gpu_id
,
0
,
"GPU card id"
);
DEFINE_bool
(
use_camera
,
false
,
"Infering with Camera"
);
DEFINE_int32
(
camera_id
,
0
,
"Camera id"
);
DEFINE_string
(
video_path
,
""
,
"Path of input video"
);
DEFINE_bool
(
show_result
,
false
,
"show the result of each frame with a window"
);
DEFINE_bool
(
save_result
,
true
,
"save the result of each frame to a video"
);
DEFINE_string
(
key
,
""
,
"key of encryption"
);
DEFINE_string
(
save_dir
,
"output"
,
"Path to save visualized image"
);
DEFINE_double
(
threshold
,
0.5
,
"The minimum scores of target boxes which are shown"
);
int
main
(
int
argc
,
char
**
argv
)
{
// 解析命令行参数
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
if
(
FLAGS_model_dir
==
""
)
{
std
::
cerr
<<
"--model_dir need to be defined"
<<
std
::
endl
;
return
-
1
;
}
if
(
FLAGS_video_path
==
""
&
FLAGS_use_camera
==
false
)
{
std
::
cerr
<<
"--video_path or --use_camera need to be defined"
<<
std
::
endl
;
return
-
1
;
}
// 加载模型
PaddleX
::
Model
model
;
model
.
Init
(
FLAGS_model_dir
,
FLAGS_use_gpu
,
FLAGS_use_trt
,
FLAGS_gpu_id
,
FLAGS_key
);
// 打开视频流
cv
::
VideoCapture
capture
;
if
(
FLAGS_use_camera
)
{
capture
.
open
(
FLAGS_camera_id
);
if
(
!
capture
.
isOpened
())
{
std
::
cout
<<
"Can not open the camera "
<<
FLAGS_camera_id
<<
"."
<<
std
::
endl
;
return
-
1
;
}
}
else
{
capture
.
open
(
FLAGS_video_path
);
if
(
!
capture
.
isOpened
())
{
std
::
cout
<<
"Can not open the video "
<<
FLAGS_video_path
<<
"."
<<
std
::
endl
;
return
-
1
;
}
}
// 创建VideoWriter
cv
::
VideoWriter
video_out
;
std
::
string
video_out_path
;
if
(
FLAGS_save_result
)
{
// 获取视频流信息: 分辨率, 帧率
int
video_width
=
static_cast
<
int
>
(
capture
.
get
(
CV_CAP_PROP_FRAME_WIDTH
));
int
video_height
=
static_cast
<
int
>
(
capture
.
get
(
CV_CAP_PROP_FRAME_HEIGHT
));
int
video_fps
=
static_cast
<
int
>
(
capture
.
get
(
CV_CAP_PROP_FPS
));
int
video_fourcc
;
if
(
FLAGS_use_camera
)
{
video_fourcc
=
828601953
;
}
else
{
video_fourcc
=
static_cast
<
int
>
(
capture
.
get
(
CV_CAP_PROP_FOURCC
));
}
if
(
FLAGS_use_camera
)
{
time_t
now
=
time
(
0
);
video_out_path
=
PaddleX
::
generate_save_path
(
FLAGS_save_dir
,
std
::
to_string
(
now
)
+
".mp4"
);
}
else
{
video_out_path
=
PaddleX
::
generate_save_path
(
FLAGS_save_dir
,
FLAGS_video_path
);
}
video_out
.
open
(
video_out_path
.
c_str
(),
video_fourcc
,
video_fps
,
cv
::
Size
(
video_width
,
video_height
),
true
);
if
(
!
video_out
.
isOpened
())
{
std
::
cout
<<
"Create video writer failed!"
<<
std
::
endl
;
return
-
1
;
}
}
PaddleX
::
DetResult
result
;
cv
::
Mat
frame
;
int
key
;
while
(
capture
.
read
(
frame
))
{
if
(
FLAGS_show_result
||
FLAGS_use_camera
)
{
key
=
cv
::
waitKey
(
1
);
// 按下ESC退出整个程序,保存视频文件到磁盘
if
(
key
==
27
)
{
break
;
}
}
else
if
(
frame
.
empty
())
{
break
;
}
model
.
predict
(
frame
,
&
result
);
// 可视化
cv
::
Mat
vis_img
=
PaddleX
::
Visualize
(
frame
,
result
,
model
.
labels
,
FLAGS_threshold
);
if
(
FLAGS_show_result
||
FLAGS_use_camera
)
{
cv
::
imshow
(
"human_seg"
,
vis_img
);
}
if
(
FLAGS_save_result
)
{
video_out
.
write
(
vis_img
);
}
result
.
clear
();
}
capture
.
release
();
if
(
FLAGS_save_result
)
{
std
::
cout
<<
"Visualized output saved as "
<<
video_out_path
<<
std
::
endl
;
video_out
.
release
();
}
if
(
FLAGS_show_result
||
FLAGS_use_camera
)
{
cv
::
destroyAllWindows
();
}
return
0
;
}
deploy/cpp/demo/video_segmenter.cpp
0 → 100644
浏览文件 @
76edffaa
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <glog/logging.h>
#include <omp.h>
#include <algorithm>
#include <chrono> // NOLINT
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include <utility>
#include <ctime>
#include "include/paddlex/paddlex.h"
#include "include/paddlex/visualize.h"
#if defined(__arm__) || defined(__aarch64__)
#include <opencv2/videoio/legacy/constants_c.h>
#endif
using
namespace
std
::
chrono
;
// NOLINT
DEFINE_string
(
model_dir
,
""
,
"Path of inference model"
);
DEFINE_bool
(
use_gpu
,
false
,
"Infering with GPU or CPU"
);
DEFINE_bool
(
use_trt
,
false
,
"Infering with TensorRT"
);
DEFINE_int32
(
gpu_id
,
0
,
"GPU card id"
);
DEFINE_string
(
key
,
""
,
"key of encryption"
);
DEFINE_bool
(
use_camera
,
false
,
"Infering with Camera"
);
DEFINE_int32
(
camera_id
,
0
,
"Camera id"
);
DEFINE_string
(
video_path
,
""
,
"Path of input video"
);
DEFINE_bool
(
show_result
,
false
,
"show the result of each frame with a window"
);
DEFINE_bool
(
save_result
,
true
,
"save the result of each frame to a video"
);
DEFINE_string
(
save_dir
,
"output"
,
"Path to save visualized image"
);
int
main
(
int
argc
,
char
**
argv
)
{
// 解析命令行参数
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
if
(
FLAGS_model_dir
==
""
)
{
std
::
cerr
<<
"--model_dir need to be defined"
<<
std
::
endl
;
return
-
1
;
}
if
(
FLAGS_video_path
==
""
&
FLAGS_use_camera
==
false
)
{
std
::
cerr
<<
"--video_path or --use_camera need to be defined"
<<
std
::
endl
;
return
-
1
;
}
// 加载模型
PaddleX
::
Model
model
;
model
.
Init
(
FLAGS_model_dir
,
FLAGS_use_gpu
,
FLAGS_use_trt
,
FLAGS_gpu_id
,
FLAGS_key
);
// 打开视频流
cv
::
VideoCapture
capture
;
if
(
FLAGS_use_camera
)
{
capture
.
open
(
FLAGS_camera_id
);
if
(
!
capture
.
isOpened
())
{
std
::
cout
<<
"Can not open the camera "
<<
FLAGS_camera_id
<<
"."
<<
std
::
endl
;
return
-
1
;
}
}
else
{
capture
.
open
(
FLAGS_video_path
);
if
(
!
capture
.
isOpened
())
{
std
::
cout
<<
"Can not open the video "
<<
FLAGS_video_path
<<
"."
<<
std
::
endl
;
return
-
1
;
}
}
// 创建VideoWriter
cv
::
VideoWriter
video_out
;
std
::
string
video_out_path
;
if
(
FLAGS_save_result
)
{
// 获取视频流信息: 分辨率, 帧率
int
video_width
=
static_cast
<
int
>
(
capture
.
get
(
CV_CAP_PROP_FRAME_WIDTH
));
int
video_height
=
static_cast
<
int
>
(
capture
.
get
(
CV_CAP_PROP_FRAME_HEIGHT
));
int
video_fps
=
static_cast
<
int
>
(
capture
.
get
(
CV_CAP_PROP_FPS
));
int
video_fourcc
;
if
(
FLAGS_use_camera
)
{
video_fourcc
=
828601953
;
}
else
{
video_fourcc
=
static_cast
<
int
>
(
capture
.
get
(
CV_CAP_PROP_FOURCC
));
}
if
(
FLAGS_use_camera
)
{
time_t
now
=
time
(
0
);
video_out_path
=
PaddleX
::
generate_save_path
(
FLAGS_save_dir
,
std
::
to_string
(
now
)
+
".mp4"
);
}
else
{
video_out_path
=
PaddleX
::
generate_save_path
(
FLAGS_save_dir
,
FLAGS_video_path
);
}
video_out
.
open
(
video_out_path
.
c_str
(),
video_fourcc
,
video_fps
,
cv
::
Size
(
video_width
,
video_height
),
true
);
if
(
!
video_out
.
isOpened
())
{
std
::
cout
<<
"Create video writer failed!"
<<
std
::
endl
;
return
-
1
;
}
}
PaddleX
::
SegResult
result
;
cv
::
Mat
frame
;
int
key
;
while
(
capture
.
read
(
frame
))
{
if
(
FLAGS_show_result
||
FLAGS_use_camera
)
{
key
=
cv
::
waitKey
(
1
);
// 按下ESC退出整个程序,保存视频文件到磁盘
if
(
key
==
27
)
{
break
;
}
}
else
if
(
frame
.
empty
())
{
break
;
}
// 开始预测
model
.
predict
(
frame
,
&
result
);
// 可视化
cv
::
Mat
vis_img
=
PaddleX
::
Visualize
(
frame
,
result
,
model
.
labels
);
if
(
FLAGS_show_result
||
FLAGS_use_camera
)
{
cv
::
imshow
(
"human_seg"
,
vis_img
);
}
if
(
FLAGS_save_result
)
{
video_out
.
write
(
vis_img
);
}
result
.
clear
();
}
capture
.
release
();
if
(
FLAGS_save_result
)
{
video_out
.
release
();
std
::
cout
<<
"Visualized output saved as "
<<
video_out_path
<<
std
::
endl
;
}
if
(
FLAGS_show_result
||
FLAGS_use_camera
)
{
cv
::
destroyAllWindows
();
}
return
0
;
}
deploy/cpp/scripts/bootstrap.sh
浏览文件 @
76edffaa
...
...
@@ -7,12 +7,13 @@ if [ ! -d "./paddlex-encryption" ]; then
fi
# download pre-compiled opencv lib
OPENCV_URL
=
https://paddleseg.bj.bcebos.com/deploy/docker/opencv3gcc4.8.tar.bz2
if
[
!
-d
"./deps/opencv3gcc4.8"
]
;
then
#OPENCV_URL=https://paddleseg.bj.bcebos.com/deploy/docker/opencv3gcc4.8.tar.bz2
OPENCV_URL
=
https://bj.bcebos.com/paddleseg/deploy/opencv3.4.6gcc4.8ffmpeg.tar.gz2
if
[
!
-d
"./deps/opencv3.4.6gcc4.8ffmpeg/"
]
;
then
mkdir
-p
deps
cd
deps
wget
-c
${
OPENCV_URL
}
tar
xvfj opencv3
gcc4.8.tar.b
z2
rm
-rf
opencv3
gcc4.8.tar.b
z2
tar
xvfj opencv3
.4.6gcc4.8ffmpeg.tar.g
z2
rm
-rf
opencv3
.4.6gcc4.8ffmpeg.tar.g
z2
cd
..
fi
deploy/cpp/scripts/build.sh
浏览文件 @
76edffaa
# 是否使用GPU(即是否使用 CUDA)
WITH_GPU
=
O
FF
WITH_GPU
=
O
N
# 使用MKL or openblas
WITH_MKL
=
ON
# 是否集成 TensorRT(仅WITH_GPU=ON 有效)
...
...
@@ -7,14 +7,15 @@ WITH_TENSORRT=OFF
# TensorRT 的路径,如果需要集成TensorRT,需修改为您实际安装的TensorRT路径
TENSORRT_DIR
=
/root/projects/TensorRT/
# Paddle 预测库路径, 请修改为您实际安装的预测库路径
PADDLE_DIR
=
/root/projects/fluid_inference
#PADDLE_DIR=/rrpn/my/qh_PaddleX/PaddleX/deploy/cpp/fluid_inference
PADDLE_DIR
=
/rrpn/my/PaddleX/deploy/cpp/fluid_inference
# Paddle 的预测库是否使用静态库来编译
# 使用TensorRT时,Paddle的预测库通常为动态库
WITH_STATIC_LIB
=
OFF
# CUDA 的 lib 路径
CUDA_LIB
=
/usr/local/cuda/lib64
# CUDNN 的 lib 路径
CUDNN_LIB
=
/usr/l
ocal/cuda/lib64
CUDNN_LIB
=
/usr/l
ib/x86_64-linux-gnu/
# 是否加载加密后的模型
WITH_ENCRYPTION
=
ON
...
...
@@ -24,7 +25,7 @@ ENCRYPTION_DIR=$(pwd)/paddlex-encryption
# OPENCV 路径, 如果使用自带预编译版本可不修改
sh
$(
pwd
)
/scripts/bootstrap.sh
# 下载预编译版本的opencv
OPENCV_DIR
=
$(
pwd
)
/deps/opencv3
gcc4.8
/
OPENCV_DIR
=
$(
pwd
)
/deps/opencv3
.4.6gcc4.8ffmpeg
/
# 以下无需改动
rm
-rf
build
...
...
docs/deploy/server/cpp/linux.md
浏览文件 @
76edffaa
...
...
@@ -116,7 +116,7 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
**在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](../../export_model.md)将模型导出为部署格式。**
编译成功后,
预测demo的可执行程序分别为
`build/demo/detector`
,
`build/demo/classifier`
,
`build/demo/segmenter`
,用户可根据自己的模型类型选择,其主要命令参数说明如下:
*
编译成功后,图片
预测demo的可执行程序分别为
`build/demo/detector`
,
`build/demo/classifier`
,
`build/demo/segmenter`
,用户可根据自己的模型类型选择,其主要命令参数说明如下:
| 参数 | 说明 |
| ---- | ---- |
...
...
@@ -130,7 +130,24 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
| key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 |
| batch_size | 预测的批量大小,默认为1 |
| thread_num | 预测的线程数,默认为cpu处理器个数 |
| use_ir_optim | 是否使用图优化策略,支持值为0或1(默认值为1,图像分割默认值为0)|
*
编译成功后,视频预测demo的可执行程序分别为
`build/demo/video_detector`
,
`build/demo/video_classifier`
,
`build/demo/video_segmenter`
,用户可根据自己的模型类型选择,其主要命令参数说明如下:
| 参数 | 说明 |
| ---- | ---- |
| model_dir | 导出的预测模型所在路径 |
| use_camera | 是否使用摄像头预测,支持值为0或1(默认值为0) |
| camera_id | 摄像头设备ID,默认值为0 |
| video_path | 视频文件的路径 |
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) |
| use_trt | 是否使用 TensorRT 预测, 支持值为0或1(默认值为0) |
| gpu_id | GPU 设备ID, 默认值为0 |
| show_result | 是否在屏幕上实时显示预测可视化结果(因加入了延迟处理,故显示结果不能反映真实的帧率),支持值为0或1(默认值为0) |
| save_result | 是否将每帧的预测可视结果保存为视频文件,支持值为0或1(默认值为1) |
| save_dir | 保存可视化结果的路径, 默认值为"output",
**classfier无该参数**
|
| key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 |
**注意:若系统无GUI,则不要将show_result设置为1。当使用摄像头预测时,按`ESC`键可关闭摄像头并推出预测程序。**
## 样例
...
...
@@ -138,7 +155,7 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
> 关于预测速度的说明:加载模型后前几张图片的预测速度会较慢,这是因为运行启动时涉及到内存显存初始化等步骤,通常在预测20-30张图片后模型的预测速度达到稳定。
`样例一`
:
**样例一:**
不使用
`GPU`
测试图片
`/root/projects/images/xiaoduxiong.jpeg`
...
...
@@ -148,7 +165,7 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
图片文件
`可视化预测结果`
会保存在
`save_dir`
参数设置的目录下。
`样例二`
:
**样例二:**
使用
`GPU`
预测多个图片
`/root/projects/image_list.txt`
,image_list.txt内容的格式如下:
```
...
...
@@ -161,3 +178,21 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
./build/demo/detector
--model_dir
=
/root/projects/inference_model
--image_list
=
/root/projects/images_list.txt
--use_gpu
=
1
--save_dir
=
output
--batch_size
=
2
--thread_num
=
2
```
图片文件
`可视化预测结果`
会保存在
`save_dir`
参数设置的目录下。
**样例三:**
使用摄像头预测:
```
shell
./build/demo/video_detector
--model_dir
=
/root/projects/inference_model
--use_camera
=
1
--use_gpu
=
1
--save_dir
=
output
--save_result
=
1
```
当
`save_result`
设置为1时,
`可视化预测结果`
会以视频文件的格式保存在
`save_dir`
参数设置的目录下。如果系统有GUI,通过将
`show_result`
设置为1在屏幕上观看可视化预测结果。
**样例四:**
对视频文件进行预测:
```
shell
./build/demo/video_detector
--model_dir
=
/root/projects/inference_model
--video_path
=
/path/to/video_file
--use_gpu
=
1
--save_dir
=
output
--show_result
=
1
--save_result
=
1
```
当
`save_result`
设置为1时,
`可视化预测结果`
会以视频文件的格式保存在
`save_dir`
参数设置的目录下。如果系统有GUI,通过将
`show_result`
设置为1在屏幕上观看可视化预测结果。
docs/deploy/server/cpp/windows.md
浏览文件 @
76edffaa
...
...
@@ -101,7 +101,7 @@ D:
cd D:\projects\PaddleX\deploy\cpp\out\build\x64-Release
```
编译成功后,
预测demo的入口程序为`
paddlex_inference
\d
etector.exe
`,`
paddlex_inference
\c
lassifier.exe
`,`
paddlex_inference
\s
egmenter.exe
`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
* 编译成功后,图片
预测demo的入口程序为`
paddlex_inference
\d
etector.exe
`,`
paddlex_inference
\c
lassifier.exe
`,`
paddlex_inference
\s
egmenter.exe
`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
| 参数 | 说明 |
| ---- | ---- |
...
...
@@ -114,7 +114,24 @@ cd D:\projects\PaddleX\deploy\cpp\out\build\x64-Release
| key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 |
| batch_size | 预测的批量大小,默认为1 |
| thread_num | 预测的线程数,默认为cpu处理器个数 |
| use_ir_optim | 是否使用图优化策略,支持值为0或1(默认值为1,图像分割默认值为0)|
* 编译成功后,视频预测demo的入口程序为`
paddlex_inference
\v
ideo_detector.exe
`,`
paddlex_inference
\v
ideo_classifier.exe
`,`
paddlex_inference
\v
ideo_segmenter.exe
`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
| 参数 | 说明 |
| ---- | ---- |
| model_dir | 导出的预测模型所在路径 |
| use_camera | 是否使用摄像头预测,支持值为0或1(默认值为0) |
| camera_id | 摄像头设备ID,默认值为0 |
| video_path | 视频文件的路径 |
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) |
| gpu_id | GPU 设备ID, 默认值为0 |
| show_result | 对视频文件做预测时,是否在屏幕上实时显示预测可视化结果(因加入了延迟处理,故显示结果不能反映真实的帧率),支持值为0或1(默认值为0) |
| save_result | 是否将每帧的预测可视结果保存为视频文件,支持值为0或1(默认值为1) |
| save_dir | 保存可视化结果的路径, 默认值为"output",classifier无该参数 |
| key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 |
**注意:若系统无GUI,则不要将show_result设置为1。当使用摄像头预测时,按`
ESC
`键可关闭摄像头并推出预测程序。**
## 样例
...
...
@@ -157,3 +174,18 @@ D:\images\xiaoduxiongn.jpeg
```
`
--key
`传入加密工具输出的密钥,例如`
kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=
`, 图片文件可视化预测结果会保存在`
save_dir
`参数设置的目录下。
### 样例四:(使用未加密的模型开启摄像头预测)
```shell
.\paddlex_inference\video_detector.exe --model_dir=D:\projects\inference_model --use_camera=1 --use_gpu=1 --save_dir=output
```
当`
save_result
`设置为1时,`
可视化预测结果
`会以视频文件的格式保存在`
save_dir
`参数设置的目录下。如果系统有GUI,通过将`
show_result
`设置为1在屏幕上观看可视化预测结果。
### 样例五:(使用未加密的模型对视频文件做预测)
```shell
.\paddlex_inference\video_detector.exe --model_dir=D:\projects\inference_model --video_path=D:\projects\video_test.mp4 --use_gpu=1 --show_result=1 --save_dir=output
```
当`
save_result
`设置为1时,`
可视化预测结果
`会以视频文件的格式保存在`
save_dir
`参数设置的目录下。如果系统有GUI,通过将`
show_result
`
设置为1在屏幕上观看可视化预测结果。
docs/examples/human_segmentation.md
浏览文件 @
76edffaa
# 人像分割模型
本教程基于PaddleX核心分割模型实现人像分割,开放预训练模型和测试数据、支持视频流人像分割、提供模型Fine-tune到Paddle Lite移动端部署的全流程应用指南。
本教程基于PaddleX核心分割模型实现人像分割,开放预训练模型和测试数据、支持视频流人像分割、提供模型Fine-tune到Paddle Lite移动端
及Nvidia Jeston嵌入式设备
部署的全流程应用指南。
## 预训练模型和测试数据
#### 预训练模型
本案例开放了两个在大规模人像数据集上训练好的模型,以满足服务器端场景和移动端场景的需求。使用这些模型可以快速体验视频流人像分割,也可以部署到移动端进行实时人像分割,也可以用于完成模型Fine-tuning。
本案例开放了两个在大规模人像数据集上训练好的模型,以满足服务器端场景和移动端场景的需求。使用这些模型可以快速体验视频流人像分割,也可以部署到移动端
或嵌入式设备
进行实时人像分割,也可以用于完成模型Fine-tuning。
| 模型类型 | Checkpoint Parameter | Inference Model | Quant Inference Model | 备注 |
| --- | --- | --- | ---| --- |
...
...
@@ -243,15 +243,17 @@ python quant_offline.py --model_dir output/best_model \
*
`--save_dir`
: 量化模型保存路径
*
`--image_shape`
: 网络输入图像大小(w, h)
## Paddle Lite移动端部署
## 推理部署
### Paddle Lite移动端部署
本案例将人像分割模型在移动端进行部署,部署流程展示如下,通用的移动端部署流程参见
[
Paddle Lite移动端部署
](
../../docs/deploy/paddlelite/android.md
)
。
### 1. 将PaddleX模型导出为inference模型
###
#
1. 将PaddleX模型导出为inference模型
本案例使用humanseg_mobile_quant预训练模型,该模型已经是inference模型,不需要再执行模型导出步骤。如果不使用预训练模型,则执行上一章节
`模型训练`
中的
`模型导出`
将自己训练的模型导出为inference格式。
### 2. 将inference模型优化为Paddle Lite模型
###
#
2. 将inference模型优化为Paddle Lite模型
下载并解压
[
模型优化工具opt
](
https://bj.bcebos.com/paddlex/deploy/lite/model_optimize_tool_11cbd50e.tar.gz
)
,进入模型优化工具opt所在路径后,执行以下命令:
...
...
@@ -273,16 +275,16 @@ python quant_offline.py --model_dir output/best_model \
更详细的使用方法和参数含义请参考:
[
使用opt转化模型
](
https://paddle-lite.readthedocs.io/zh/latest/user_guides/opt/opt_bin.html
)
### 3. 移动端预测
###
#
3. 移动端预测
PaddleX提供了基于PaddleX Android SDK的安卓demo,可供用户体验图像分类、目标检测、实例分割和语义分割,该demo位于
`PaddleX/deploy/lite/android/demo`
,用户将模型、配置文件和测试图片拷贝至该demo下进行预测。
#### 3.1 前置依赖
####
#
3.1 前置依赖
*
Android Studio 3.4
*
Android手机或开发板
#### 3.2 拷贝模型、配置文件和测试图片
####
#
3.2 拷贝模型、配置文件和测试图片
*
将Lite模型(.nb文件)拷贝到
`PaddleX/deploy/lite/android/demo/app/src/main/assets/model/`
目录下, 根据.nb文件的名字,修改文件
`PaddleX/deploy/lite/android/demo/app/src/main/res/values/strings.xml`
中的
`MODEL_PATH_DEFAULT`
;
...
...
@@ -290,7 +292,7 @@ PaddleX提供了基于PaddleX Android SDK的安卓demo,可供用户体验图
*
将测试图片拷贝到
`PaddleX/deploy/lite/android/demo/app/src/main/assets/images/`
目录下,根据图片文件的名字,修改文件
`PaddleX/deploy/lite/android/demo/app/src/main/res/values/strings.xml`
中的
`IMAGE_PATH_DEFAULT`
。
#### 3.3 导入工程并运行
####
#
3.3 导入工程并运行
*
打开Android Studio,在"Welcome to Android Studio"窗口点击"Open an existing Android Studio project",在弹出的路径选择窗口中进入
`PaddleX/deploy/lite/android/demo`
目录,然后点击右下角的"Open"按钮,导入工程;
...
...
@@ -303,3 +305,58 @@ PaddleX提供了基于PaddleX Android SDK的安卓demo,可供用户体验图
测试图片及其分割结果如下所示:

### Nvidia Jetson嵌入式设备部署
#### c++部署
step 1. 下载PaddleX源码
```
git clone https://github.com/PaddlePaddle/PaddleX
```
step 2. 将
`PaddleX/examples/human_segmentation/deploy/cpp`
下的
`human_segmenter.cpp`
和
`CMakeList.txt`
拷贝至
`PaddleX/deploy/cpp`
目录下,拷贝之前可以将
`PaddleX/deploy/cpp`
下原本的
`CMakeList.txt`
做好备份。
step 3. 按照
[
Nvidia Jetson开发板部署
](
../deploy/nvidia-jetson.md
)
中的Step2至Step3完成C++预测代码的编译。
step 4. 编译成功后,可执行程为
`build/human_segmenter`
,其主要命令参数说明如下:
| 参数 | 说明 |
| ---- | ---- |
| model_dir | 人像分割模型路径 |
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0)|
| gpu_id | GPU 设备ID, 默认值为0 |
| use_camera | 是否使用摄像头采集图片,支持值为0或1(默认值为0) |
| camera_id | 摄像头设备ID,默认值为0 |
| video_path | 视频文件的路径 |
| show_result | 对视频文件做预测时,是否在屏幕上实时显示预测可视化结果,支持值为0或1(默认值为0) |
| save_result | 是否将每帧的预测可视结果保存为视频文件,支持值为0或1(默认值为1) |
| image | 待预测的图片路径 |
| save_dir | 保存可视化结果的路径, 默认值为"output"|
step 5. 推理预测
用于部署推理的模型应为inference格式,本案例使用humanseg_server_inference预训练模型,该模型已经是inference模型,不需要再执行模型导出步骤。如果不使用预训练模型,则执行第2章节
`模型训练`
中的
`模型导出`
将自己训练的模型导出为inference格式。
*
使用未加密的模型对单张图片做预测
待测试图片位于本案例提供的测试数据中,可以替换成自己的图片。
```
shell
./build/human_segmenter
--model_dir
=
/path/to/humanseg_server_inference
--image
=
/path/to/data/mini_supervisely/Images/pexels-photo-63776.png
--use_gpu
=
1
--save_dir
=
output
```
*
使用未加密的模型开启摄像头做预测
```
shell
./build/human_segmenter
--model_dir
=
/path/to/humanseg_server_inference
--use_camera
=
1
--save_result
=
1
--use_gpu
=
1
--save_dir
=
output
```
*
使用未加密的模型对视频文件做预测
待测试视频文件位于本案例提供的测试数据中,可以替换成自己的视频文件。
```
shell
./build/human_segmenter
--model_dir
=
/path/to/humanseg_server_inference
--video_path
=
/path/to/data/mini_supervisely/video_test.mp4
--save_result
=
1
--use_gpu
=
1
--save_dir
=
output
```
docs/examples/meter_reader.md
浏览文件 @
76edffaa
...
...
@@ -46,13 +46,13 @@
#### 测试表计读数
1.
下载PaddleX源码:
step
1. 下载PaddleX源码:
```
git clone https://github.com/PaddlePaddle/PaddleX
```
2.
预测执行文件位于
`PaddleX/examples/meter_reader/`
,进入该目录:
step
2. 预测执行文件位于
`PaddleX/examples/meter_reader/`
,进入该目录:
```
cd PaddleX/examples/meter_reader/
...
...
@@ -76,7 +76,7 @@ cd PaddleX/examples/meter_reader/
| use_erode | 是否使用图像腐蚀对分割预测图进行细分,默认为False |
| erode_kernel | 图像腐蚀操作时的卷积核大小,默认值为4 |
3.
预测
step
3. 预测
若要使用GPU,则指定GPU卡号(以0号卡为例):
...
...
@@ -112,17 +112,17 @@ python3 reader_infer.py --detector_dir /path/to/det_inference_model --segmenter_
#### c++部署
1.
下载PaddleX源码:
step
1. 下载PaddleX源码:
```
git clone https://github.com/PaddlePaddle/PaddleX
```
2.
将
`PaddleX\examples\meter_reader\deploy\cpp`
下的
`meter_reader`
文件夹和
`CMakeList.txt`
拷贝至
`PaddleX\deploy\cpp`
目录下,拷贝之前可以将
`PaddleX\deploy\cpp`
下原本的
`CMakeList.txt`
做好备份。
step
2. 将
`PaddleX\examples\meter_reader\deploy\cpp`
下的
`meter_reader`
文件夹和
`CMakeList.txt`
拷贝至
`PaddleX\deploy\cpp`
目录下,拷贝之前可以将
`PaddleX\deploy\cpp`
下原本的
`CMakeList.txt`
做好备份。
3.
按照
[
Windows平台部署
](
../deploy/server/cpp/windows.md
)
中的Step2至Step4完成C++预测代码的编译。
step
3. 按照
[
Windows平台部署
](
../deploy/server/cpp/windows.md
)
中的Step2至Step4完成C++预测代码的编译。
4.
编译成功后,可执行文件在
`out\build\x64-Release`
目录下,打开
`cmd`
,并切换到该目录:
step
4. 编译成功后,可执行文件在
`out\build\x64-Release`
目录下,打开
`cmd`
,并切换到该目录:
```
cd PaddleX\deploy\cpp\out\build\x64-Release
...
...
@@ -149,7 +149,7 @@ git clone https://github.com/PaddlePaddle/PaddleX
| erode_kernel | 图像腐蚀操作时的卷积核大小,默认值为4 |
| score_threshold | 检测模型输出结果中,预测得分低于该阈值的框将被滤除,默认值为0.5|
5.
推理预测:
step
5. 推理预测:
用于部署推理的模型应为inference格式,本案例提供的预训练模型均为inference格式,如若是重新训练的模型,需参考
[
部署模型导出
](
../deploy/export_model.md
)
将模型导出为inference格式。
...
...
@@ -183,17 +183,17 @@ git clone https://github.com/PaddlePaddle/PaddleX
#### c++部署
1.
下载PaddleX源码:
step
1. 下载PaddleX源码:
```
git clone https://github.com/PaddlePaddle/PaddleX
```
2.
将
`PaddleX/examples/meter_reader/deploy/cpp`
下的
`meter_reader`
文件夹和
`CMakeList.txt`
拷贝至
`PaddleX/deploy/cpp`
目录下,拷贝之前可以将
`PaddleX/deploy/cpp`
下原本的
`CMakeList.txt`
做好备份。
step
2. 将
`PaddleX/examples/meter_reader/deploy/cpp`
下的
`meter_reader`
文件夹和
`CMakeList.txt`
拷贝至
`PaddleX/deploy/cpp`
目录下,拷贝之前可以将
`PaddleX/deploy/cpp`
下原本的
`CMakeList.txt`
做好备份。
3.
按照
[
Nvidia Jetson开发板部署
](
../deploy/nvidia-jetson.md
)
中的Step2至Step3完成C++预测代码的编译。
step
3. 按照
[
Nvidia Jetson开发板部署
](
../deploy/nvidia-jetson.md
)
中的Step2至Step3完成C++预测代码的编译。
4.
编译成功后,可执行程为
`build/meter_reader/meter_reader`
,其主要命令参数说明如下:
step
4. 编译成功后,可执行程为
`build/meter_reader/meter_reader`
,其主要命令参数说明如下:
| 参数 | 说明 |
| ---- | ---- |
...
...
@@ -204,8 +204,6 @@ git clone https://github.com/PaddlePaddle/PaddleX
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0)|
| gpu_id | GPU 设备ID, 默认值为0 |
| save_dir | 保存可视化结果的路径, 默认值为"output"|
| det_key | 检测模型加密过程中产生的密钥信息,默认值为""表示加载的是未加密的检测模型 |
| seg_key | 分割模型加密过程中产生的密钥信息,默认值为""表示加载的是未加密的分割模型 |
| seg_batch_size | 分割的批量大小,默认为2 |
| thread_num | 分割预测的线程数,默认为cpu处理器个数 |
| use_camera | 是否使用摄像头采集图片,支持值为0或1(默认值为0) |
...
...
@@ -214,7 +212,7 @@ git clone https://github.com/PaddlePaddle/PaddleX
| erode_kernel | 图像腐蚀操作时的卷积核大小,默认值为4 |
| score_threshold | 检测模型输出结果中,预测得分低于该阈值的框将被滤除,默认值为0.5|
5.
推理预测:
step
5. 推理预测:
用于部署推理的模型应为inference格式,本案例提供的预训练模型均为inference格式,如若是重新训练的模型,需参考
[
部署模型导出
](
../deploy/export_model.md
)
将模型导出为inference格式。
...
...
@@ -236,15 +234,6 @@ git clone https://github.com/PaddlePaddle/PaddleX
./build/meter_reader/meter_reader
--det_model_dir
=
/path/to/det_inference_model
--seg_model_dir
=
/path/to/seg_inference_model
--use_camera
=
1
--use_gpu
=
1
--use_erode
=
1
--save_dir
=
output
```
*
使用加密后的模型对单张图片做预测
如果未对模型进行加密,请参考
[
加密PaddleX模型
](
../deploy/server/encryption.html#paddlex
)
对模型进行加密。例如加密后的检测模型所在目录为
`/path/to/encrypted_det_inference_model`
,密钥为
`yEBLDiBOdlj+5EsNNrABhfDuQGkdcreYcHcncqwdbx0=`
;加密后的分割模型所在目录为
`/path/to/encrypted_seg_inference_model`
,密钥为
`DbVS64I9pFRo5XmQ8MNV2kSGsfEr4FKA6OH9OUhRrsY=`
```
shell
./build/meter_reader/meter_reader
--det_model_dir
=
/path/to/encrypted_det_inference_model
--seg_model_dir
=
/path/to/encrypted_seg_inference_model
--image
=
/path/to/test.jpg
--use_gpu
=
1
--use_erode
=
1
--save_dir
=
output
--det_key
yEBLDiBOdlj+5EsNNrABhfDuQGkdcreYcHcncqwdbx0
=
--seg_key
DbVS64I9pFRo5XmQ8MNV2kSGsfEr4FKA6OH9OUhRrsY
=
```
## 模型训练
...
...
examples/human_segmentation/deploy/cpp/CMakeLists.txt
0 → 100644
浏览文件 @
76edffaa
cmake_minimum_required
(
VERSION 3.0
)
project
(
PaddleX CXX C
)
option
(
WITH_MKL
"Compile human_segmenter with MKL/OpenBlas support,defaultuseMKL."
ON
)
option
(
WITH_GPU
"Compile human_segmenter with GPU/CPU, default use CPU."
ON
)
if
(
NOT WIN32
)
option
(
WITH_STATIC_LIB
"Compile human_segmenter with static/shared library, default use static."
OFF
)
else
()
option
(
WITH_STATIC_LIB
"Compile human_segmenter with static/shared library, default use static."
ON
)
endif
()
option
(
WITH_TENSORRT
"Compile human_segmenter with TensorRT."
OFF
)
option
(
WITH_ENCRYPTION
"Compile human_segmenter with encryption tool."
OFF
)
SET
(
TENSORRT_DIR
""
CACHE PATH
"Location of libraries"
)
SET
(
PADDLE_DIR
""
CACHE PATH
"Location of libraries"
)
SET
(
OPENCV_DIR
""
CACHE PATH
"Location of libraries"
)
SET
(
ENCRYPTION_DIR
""
CACHE PATH
"Location of libraries"
)
SET
(
CUDA_LIB
""
CACHE PATH
"Location of libraries"
)
if
(
NOT WIN32
)
set
(
CMAKE_ARCHIVE_OUTPUT_DIRECTORY
${
CMAKE_BINARY_DIR
}
/lib
)
set
(
CMAKE_LIBRARY_OUTPUT_DIRECTORY
${
CMAKE_BINARY_DIR
}
/lib
)
else
()
set
(
CMAKE_ARCHIVE_OUTPUT_DIRECTORY
${
CMAKE_BINARY_DIR
}
/paddlex_inference
)
set
(
CMAKE_LIBRARY_OUTPUT_DIRECTORY
${
CMAKE_BINARY_DIR
}
/paddlex_inference
)
set
(
CMAKE_RUNTIME_OUTPUT_DIRECTORY
${
CMAKE_BINARY_DIR
}
/paddlex_inference
)
endif
()
if
(
NOT WIN32
)
SET
(
YAML_BUILD_TYPE ON CACHE BOOL
"yaml build shared library."
)
else
()
SET
(
YAML_BUILD_TYPE OFF CACHE BOOL
"yaml build shared library."
)
endif
()
include
(
cmake/yaml-cpp.cmake
)
include_directories
(
"
${
CMAKE_SOURCE_DIR
}
/"
)
include_directories
(
"
${
CMAKE_CURRENT_BINARY_DIR
}
/ext/yaml-cpp/src/ext-yaml-cpp/include"
)
link_directories
(
"
${
CMAKE_CURRENT_BINARY_DIR
}
/ext/yaml-cpp/lib"
)
macro
(
safe_set_static_flag
)
foreach
(
flag_var
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO
)
if
(
${
flag_var
}
MATCHES
"/MD"
)
string
(
REGEX REPLACE
"/MD"
"/MT"
${
flag_var
}
"
${${
flag_var
}}
"
)
endif
(
${
flag_var
}
MATCHES
"/MD"
)
endforeach
(
flag_var
)
endmacro
()
if
(
WITH_ENCRYPTION
)
add_definitions
(
-DWITH_ENCRYPTION=
${
WITH_ENCRYPTION
}
)
endif
()
if
(
WITH_MKL
)
ADD_DEFINITIONS
(
-DUSE_MKL
)
endif
()
if
(
NOT DEFINED PADDLE_DIR OR
${
PADDLE_DIR
}
STREQUAL
""
)
message
(
FATAL_ERROR
"please set PADDLE_DIR with -DPADDLE_DIR=/path/paddle_influence_dir"
)
endif
()
if
(
NOT
(
${
CMAKE_SYSTEM_PROCESSOR
}
STREQUAL
"aarch64"
))
if
(
NOT DEFINED OPENCV_DIR OR
${
OPENCV_DIR
}
STREQUAL
""
)
message
(
FATAL_ERROR
"please set OPENCV_DIR with -DOPENCV_DIR=/path/opencv"
)
endif
()
endif
()
include_directories
(
"
${
CMAKE_SOURCE_DIR
}
/"
)
include_directories
(
"
${
PADDLE_DIR
}
/"
)
include_directories
(
"
${
PADDLE_DIR
}
/third_party/install/protobuf/include"
)
include_directories
(
"
${
PADDLE_DIR
}
/third_party/install/glog/include"
)
include_directories
(
"
${
PADDLE_DIR
}
/third_party/install/gflags/include"
)
include_directories
(
"
${
PADDLE_DIR
}
/third_party/install/xxhash/include"
)
if
(
EXISTS
"
${
PADDLE_DIR
}
/third_party/install/snappy/include"
)
include_directories
(
"
${
PADDLE_DIR
}
/third_party/install/snappy/include"
)
endif
()
if
(
EXISTS
"
${
PADDLE_DIR
}
/third_party/install/snappystream/include"
)
include_directories
(
"
${
PADDLE_DIR
}
/third_party/install/snappystream/include"
)
endif
()
# zlib does not exist in 1.8.1
if
(
EXISTS
"
${
PADDLE_DIR
}
/third_party/install/zlib/include"
)
include_directories
(
"
${
PADDLE_DIR
}
/third_party/install/zlib/include"
)
endif
()
include_directories
(
"
${
PADDLE_DIR
}
/third_party/boost"
)
include_directories
(
"
${
PADDLE_DIR
}
/third_party/eigen3"
)
if
(
EXISTS
"
${
PADDLE_DIR
}
/third_party/install/snappy/lib"
)
link_directories
(
"
${
PADDLE_DIR
}
/third_party/install/snappy/lib"
)
endif
()
if
(
EXISTS
"
${
PADDLE_DIR
}
/third_party/install/snappystream/lib"
)
link_directories
(
"
${
PADDLE_DIR
}
/third_party/install/snappystream/lib"
)
endif
()
if
(
EXISTS
"
${
PADDLE_DIR
}
/third_party/install/zlib/lib"
)
link_directories
(
"
${
PADDLE_DIR
}
/third_party/install/zlib/lib"
)
endif
()
link_directories
(
"
${
PADDLE_DIR
}
/third_party/install/protobuf/lib"
)
link_directories
(
"
${
PADDLE_DIR
}
/third_party/install/glog/lib"
)
link_directories
(
"
${
PADDLE_DIR
}
/third_party/install/gflags/lib"
)
link_directories
(
"
${
PADDLE_DIR
}
/third_party/install/xxhash/lib"
)
link_directories
(
"
${
PADDLE_DIR
}
/paddle/lib/"
)
link_directories
(
"
${
CMAKE_CURRENT_BINARY_DIR
}
"
)
if
(
WIN32
)
include_directories
(
"
${
PADDLE_DIR
}
/paddle/fluid/inference"
)
include_directories
(
"
${
PADDLE_DIR
}
/paddle/include"
)
link_directories
(
"
${
PADDLE_DIR
}
/paddle/fluid/inference"
)
find_package
(
OpenCV REQUIRED PATHS
${
OPENCV_DIR
}
/build/ NO_DEFAULT_PATH
)
unset
(
OpenCV_DIR CACHE
)
else
()
if
(
${
CMAKE_SYSTEM_PROCESSOR
}
STREQUAL
"aarch64"
)
# x86_64 aarch64
set
(
OpenCV_INCLUDE_DIRS
"/usr/include/opencv4"
)
file
(
GLOB OpenCV_LIBS /usr/lib/aarch64-linux-gnu/libopencv_*
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
message
(
"OpenCV libs:
${
OpenCV_LIBS
}
"
)
else
()
find_package
(
OpenCV REQUIRED PATHS
${
OPENCV_DIR
}
/share/OpenCV NO_DEFAULT_PATH
)
endif
()
include_directories
(
"
${
PADDLE_DIR
}
/paddle/include"
)
link_directories
(
"
${
PADDLE_DIR
}
/paddle/lib"
)
endif
()
include_directories
(
${
OpenCV_INCLUDE_DIRS
}
)
if
(
WIN32
)
add_definitions
(
"/DGOOGLE_GLOG_DLL_DECL="
)
find_package
(
OpenMP REQUIRED
)
if
(
OPENMP_FOUND
)
message
(
"OPENMP FOUND"
)
set
(
CMAKE_C_FLAGS_DEBUG
"
${
CMAKE_C_FLAGS_DEBUG
}
${
OpenMP_C_FLAGS
}
"
)
set
(
CMAKE_C_FLAGS_RELEASE
"
${
CMAKE_C_FLAGS_RELEASE
}
${
OpenMP_C_FLAGS
}
"
)
set
(
CMAKE_CXX_FLAGS_DEBUG
"
${
CMAKE_CXX_FLAGS_DEBUG
}
${
OpenMP_CXX_FLAGS
}
"
)
set
(
CMAKE_CXX_FLAGS_RELEASE
"
${
CMAKE_CXX_FLAGS_RELEASE
}
${
OpenMP_CXX_FLAGS
}
"
)
endif
()
set
(
CMAKE_C_FLAGS_DEBUG
"
${
CMAKE_C_FLAGS_DEBUG
}
/bigobj /MTd"
)
set
(
CMAKE_C_FLAGS_RELEASE
"
${
CMAKE_C_FLAGS_RELEASE
}
/bigobj /MT"
)
set
(
CMAKE_CXX_FLAGS_DEBUG
"
${
CMAKE_CXX_FLAGS_DEBUG
}
/bigobj /MTd"
)
set
(
CMAKE_CXX_FLAGS_RELEASE
"
${
CMAKE_CXX_FLAGS_RELEASE
}
/bigobj /MT"
)
if
(
WITH_STATIC_LIB
)
safe_set_static_flag
()
add_definitions
(
-DSTATIC_LIB
)
endif
()
else
()
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-g -o2 -fopenmp -std=c++11"
)
set
(
CMAKE_STATIC_LIBRARY_PREFIX
""
)
endif
()
if
(
WITH_GPU
)
if
(
NOT DEFINED CUDA_LIB OR
${
CUDA_LIB
}
STREQUAL
""
)
message
(
FATAL_ERROR
"please set CUDA_LIB with -DCUDA_LIB=/path/cuda/lib64"
)
endif
()
if
(
NOT WIN32
)
if
(
NOT DEFINED CUDNN_LIB
)
message
(
FATAL_ERROR
"please set CUDNN_LIB with -DCUDNN_LIB=/path/cudnn/"
)
endif
()
endif
(
NOT WIN32
)
endif
()
if
(
NOT WIN32
)
if
(
WITH_TENSORRT AND WITH_GPU
)
include_directories
(
"
${
TENSORRT_DIR
}
/include"
)
link_directories
(
"
${
TENSORRT_DIR
}
/lib"
)
endif
()
endif
(
NOT WIN32
)
if
(
NOT WIN32
)
set
(
NGRAPH_PATH
"
${
PADDLE_DIR
}
/third_party/install/ngraph"
)
if
(
EXISTS
${
NGRAPH_PATH
}
)
include
(
GNUInstallDirs
)
include_directories
(
"
${
NGRAPH_PATH
}
/include"
)
link_directories
(
"
${
NGRAPH_PATH
}
/
${
CMAKE_INSTALL_LIBDIR
}
"
)
set
(
NGRAPH_LIB
${
NGRAPH_PATH
}
/
${
CMAKE_INSTALL_LIBDIR
}
/libngraph
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
endif
()
endif
()
if
(
WITH_MKL
)
include_directories
(
"
${
PADDLE_DIR
}
/third_party/install/mklml/include"
)
if
(
WIN32
)
set
(
MATH_LIB
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.lib
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.lib
)
else
()
set
(
MATH_LIB
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libmklml_intel
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
execute_process
(
COMMAND cp -r
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libmklml_intel
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
/usr/lib
)
endif
()
set
(
MKLDNN_PATH
"
${
PADDLE_DIR
}
/third_party/install/mkldnn"
)
if
(
EXISTS
${
MKLDNN_PATH
}
)
include_directories
(
"
${
MKLDNN_PATH
}
/include"
)
if
(
WIN32
)
set
(
MKLDNN_LIB
${
MKLDNN_PATH
}
/lib/mkldnn.lib
)
else
()
set
(
MKLDNN_LIB
${
MKLDNN_PATH
}
/lib/libmkldnn.so.0
)
endif
()
endif
()
else
()
set
(
MATH_LIB
${
PADDLE_DIR
}
/third_party/install/openblas/lib/libopenblas
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
endif
()
if
(
WIN32
)
if
(
EXISTS
"
${
PADDLE_DIR
}
/paddle/fluid/inference/libpaddle_fluid
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
"
)
set
(
DEPS
${
PADDLE_DIR
}
/paddle/fluid/inference/libpaddle_fluid
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
else
()
set
(
DEPS
${
PADDLE_DIR
}
/paddle/lib/libpaddle_fluid
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
endif
()
endif
()
if
(
WITH_STATIC_LIB
)
set
(
DEPS
${
PADDLE_DIR
}
/paddle/lib/libpaddle_fluid
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
else
()
if
(
NOT WIN32
)
set
(
DEPS
${
PADDLE_DIR
}
/paddle/lib/libpaddle_fluid
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
else
()
set
(
DEPS
${
PADDLE_DIR
}
/paddle/lib/paddle_fluid
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
endif
()
endif
()
if
(
NOT WIN32
)
set
(
DEPS
${
DEPS
}
${
MATH_LIB
}
${
MKLDNN_LIB
}
glog gflags protobuf z xxhash yaml-cpp
)
if
(
EXISTS
"
${
PADDLE_DIR
}
/third_party/install/snappystream/lib"
)
set
(
DEPS
${
DEPS
}
snappystream
)
endif
()
if
(
EXISTS
"
${
PADDLE_DIR
}
/third_party/install/snappy/lib"
)
set
(
DEPS
${
DEPS
}
snappy
)
endif
()
else
()
set
(
DEPS
${
DEPS
}
${
MATH_LIB
}
${
MKLDNN_LIB
}
glog gflags_static libprotobuf xxhash libyaml-cppmt
)
if
(
EXISTS
"
${
PADDLE_DIR
}
/third_party/install/zlib/lib"
)
set
(
DEPS
${
DEPS
}
zlibstatic
)
endif
()
set
(
DEPS
${
DEPS
}
libcmt shlwapi
)
if
(
EXISTS
"
${
PADDLE_DIR
}
/third_party/install/snappy/lib"
)
set
(
DEPS
${
DEPS
}
snappy
)
endif
()
if
(
EXISTS
"
${
PADDLE_DIR
}
/third_party/install/snappystream/lib"
)
set
(
DEPS
${
DEPS
}
snappystream
)
endif
()
endif
(
NOT WIN32
)
if
(
WITH_GPU
)
if
(
NOT WIN32
)
if
(
WITH_TENSORRT
)
set
(
DEPS
${
DEPS
}
${
TENSORRT_DIR
}
/lib/libnvinfer
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
set
(
DEPS
${
DEPS
}
${
TENSORRT_DIR
}
/lib/libnvinfer_plugin
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
endif
()
set
(
DEPS
${
DEPS
}
${
CUDA_LIB
}
/libcudart
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
set
(
DEPS
${
DEPS
}
${
CUDNN_LIB
}
/libcudnn
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
else
()
set
(
DEPS
${
DEPS
}
${
CUDA_LIB
}
/cudart
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
set
(
DEPS
${
DEPS
}
${
CUDA_LIB
}
/cublas
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
set
(
DEPS
${
DEPS
}
${
CUDA_LIB
}
/cudnn
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
endif
()
endif
()
if
(
WITH_ENCRYPTION
)
if
(
NOT WIN32
)
include_directories
(
"
${
ENCRYPTION_DIR
}
/include"
)
link_directories
(
"
${
ENCRYPTION_DIR
}
/lib"
)
set
(
DEPS
${
DEPS
}
${
ENCRYPTION_DIR
}
/lib/libpmodel-decrypt
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
else
()
include_directories
(
"
${
ENCRYPTION_DIR
}
/include"
)
link_directories
(
"
${
ENCRYPTION_DIR
}
/lib"
)
set
(
DEPS
${
DEPS
}
${
ENCRYPTION_DIR
}
/lib/pmodel-decrypt
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
endif
()
endif
()
if
(
NOT WIN32
)
set
(
EXTERNAL_LIB
"-ldl -lrt -lgomp -lz -lm -lpthread"
)
set
(
DEPS
${
DEPS
}
${
EXTERNAL_LIB
}
)
endif
()
set
(
DEPS
${
DEPS
}
${
OpenCV_LIBS
}
)
add_library
(
paddlex_inference SHARED src/visualize src/transforms.cpp src/paddlex.cpp
)
ADD_DEPENDENCIES
(
paddlex_inference ext-yaml-cpp
)
target_link_libraries
(
paddlex_inference
${
DEPS
}
)
add_executable
(
human_segmenter human_segmenter.cpp src/transforms.cpp src/paddlex.cpp src/visualize.cpp
)
ADD_DEPENDENCIES
(
human_segmenter ext-yaml-cpp
)
target_link_libraries
(
human_segmenter
${
DEPS
}
)
if
(
WIN32 AND WITH_MKL
)
add_custom_command
(
TARGET human_segmenter POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.dll ./mklml.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
PADDLE_DIR
}
/third_party/install/mkldnn/lib/mkldnn.dll ./release/mkldnn.dll
)
# for encryption
if
(
EXISTS
"
${
ENCRYPTION_DIR
}
/lib/pmodel-decrypt.dll"
)
add_custom_command
(
TARGET human_segmenter POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
ENCRYPTION_DIR
}
/lib/pmodel-decrypt.dll ./pmodel-decrypt.dll
COMMAND
${
CMAKE_COMMAND
}
-E copy_if_different
${
ENCRYPTION_DIR
}
/lib/pmodel-decrypt.dll ./release/pmodel-decrypt.dll
)
endif
()
endif
()
file
(
COPY
"
${
CMAKE_SOURCE_DIR
}
/include/paddlex/visualize.h"
DESTINATION
"
${
CMAKE_BINARY_DIR
}
/include/"
)
file
(
COPY
"
${
CMAKE_SOURCE_DIR
}
/include/paddlex/config_parser.h"
DESTINATION
"
${
CMAKE_BINARY_DIR
}
/include/"
)
file
(
COPY
"
${
CMAKE_SOURCE_DIR
}
/include/paddlex/transforms.h"
DESTINATION
"
${
CMAKE_BINARY_DIR
}
/include/"
)
file
(
COPY
"
${
CMAKE_SOURCE_DIR
}
/include/paddlex/results.h"
DESTINATION
"
${
CMAKE_BINARY_DIR
}
/include/"
)
file
(
COPY
"
${
CMAKE_SOURCE_DIR
}
/include/paddlex/paddlex.h"
DESTINATION
"
${
CMAKE_BINARY_DIR
}
/include/"
)
examples/human_segmentation/deploy/cpp/human_segmenter.cpp
0 → 100644
浏览文件 @
76edffaa
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <glog/logging.h>
#include <omp.h>
#include <algorithm>
#include <chrono> // NOLINT
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include <utility>
#include <ctime>
#include "include/paddlex/paddlex.h"
#include "include/paddlex/visualize.h"
#if defined(__arm__) || defined(__aarch64__)
#include <opencv2/videoio/legacy/constants_c.h>
#endif
using
namespace
std
::
chrono
;
// NOLINT
DEFINE_string
(
model_dir
,
""
,
"Path of inference model"
);
DEFINE_bool
(
use_gpu
,
false
,
"Infering with GPU or CPU"
);
DEFINE_bool
(
use_trt
,
false
,
"Infering with TensorRT"
);
DEFINE_int32
(
gpu_id
,
0
,
"GPU card id"
);
DEFINE_string
(
key
,
""
,
"key of encryption"
);
DEFINE_string
(
image
,
""
,
"Path of test image file"
);
DEFINE_bool
(
use_camera
,
false
,
"Infering with Camera"
);
DEFINE_int32
(
camera_id
,
0
,
"Camera id"
);
DEFINE_string
(
video_path
,
""
,
"Path of input video"
);
DEFINE_bool
(
show_result
,
false
,
"show the result of each frame with a window"
);
DEFINE_bool
(
save_result
,
true
,
"save the result of each frame to a video"
);
DEFINE_string
(
save_dir
,
"output"
,
"Path to save visualized image"
);
int
main
(
int
argc
,
char
**
argv
)
{
// 解析命令行参数
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
if
(
FLAGS_model_dir
==
""
)
{
std
::
cerr
<<
"--model_dir need to be defined"
<<
std
::
endl
;
return
-
1
;
}
if
(
FLAGS_image
==
""
&
FLAGS_video_path
==
""
&
FLAGS_use_camera
==
false
)
{
std
::
cerr
<<
"--image or --video_path or --use_camera need to be defined"
<<
std
::
endl
;
return
-
1
;
}
// 加载模型
PaddleX
::
Model
model
;
model
.
Init
(
FLAGS_model_dir
,
FLAGS_use_gpu
,
FLAGS_use_trt
,
FLAGS_gpu_id
,
FLAGS_key
);
if
(
FLAGS_use_camera
||
FLAGS_video_path
!=
""
)
{
// 打开视频流
cv
::
VideoCapture
capture
;
if
(
FLAGS_use_camera
)
{
capture
.
open
(
FLAGS_camera_id
);
if
(
!
capture
.
isOpened
())
{
std
::
cout
<<
"Can not open the camera "
<<
FLAGS_camera_id
<<
"."
<<
std
::
endl
;
return
-
1
;
}
}
else
{
capture
.
open
(
FLAGS_video_path
);
if
(
!
capture
.
isOpened
())
{
std
::
cout
<<
"Can not open the video "
<<
FLAGS_video_path
<<
"."
<<
std
::
endl
;
return
-
1
;
}
}
// 创建VideoWriter
cv
::
VideoWriter
video_out
;
std
::
string
video_out_path
;
if
(
FLAGS_save_result
)
{
// 获取视频流信息: 分辨率, 帧率
int
video_width
=
static_cast
<
int
>
(
capture
.
get
(
CV_CAP_PROP_FRAME_WIDTH
));
int
video_height
=
static_cast
<
int
>
(
capture
.
get
(
CV_CAP_PROP_FRAME_HEIGHT
));
int
video_fps
=
static_cast
<
int
>
(
capture
.
get
(
CV_CAP_PROP_FPS
));
int
video_fourcc
;
if
(
FLAGS_use_camera
)
{
video_fourcc
=
828601953
;
}
else
{
video_fourcc
=
static_cast
<
int
>
(
capture
.
get
(
CV_CAP_PROP_FOURCC
));
}
if
(
FLAGS_use_camera
)
{
time_t
now
=
time
(
0
);
video_out_path
=
PaddleX
::
generate_save_path
(
FLAGS_save_dir
,
std
::
to_string
(
now
)
+
".mp4"
);
}
else
{
video_out_path
=
PaddleX
::
generate_save_path
(
FLAGS_save_dir
,
FLAGS_video_path
);
}
video_out
.
open
(
video_out_path
.
c_str
(),
video_fourcc
,
video_fps
,
cv
::
Size
(
video_width
,
video_height
),
true
);
if
(
!
video_out
.
isOpened
())
{
std
::
cout
<<
"Create video writer failed!"
<<
std
::
endl
;
return
-
1
;
}
}
PaddleX
::
SegResult
result
;
cv
::
Mat
frame
;
int
key
;
while
(
capture
.
read
(
frame
))
{
if
(
FLAGS_show_result
||
FLAGS_use_camera
)
{
key
=
cv
::
waitKey
(
1
);
// 按下ESC退出整个程序,保存视频文件到磁盘
if
(
key
==
27
)
{
break
;
}
}
else
if
(
frame
.
empty
())
{
break
;
}
// 开始预测
model
.
predict
(
frame
,
&
result
);
// 可视化
std
::
vector
<
uint8_t
>
label_map
(
result
.
label_map
.
data
.
begin
(),
result
.
label_map
.
data
.
end
());
cv
::
Mat
mask
(
result
.
label_map
.
shape
[
0
],
result
.
label_map
.
shape
[
1
],
CV_8UC1
,
label_map
.
data
());
int
rows
=
result
.
label_map
.
shape
[
0
];
int
cols
=
result
.
label_map
.
shape
[
1
];
cv
::
Mat
vis_img
=
frame
.
clone
();
for
(
int
i
=
0
;
i
<
rows
;
i
++
)
{
for
(
int
j
=
0
;
j
<
cols
;
j
++
)
{
int
category_id
=
static_cast
<
int
>
(
mask
.
at
<
uchar
>
(
i
,
j
));
if
(
category_id
==
0
)
{
vis_img
.
at
<
cv
::
Vec3b
>
(
i
,
j
)[
0
]
=
255
;
vis_img
.
at
<
cv
::
Vec3b
>
(
i
,
j
)[
1
]
=
255
;
vis_img
.
at
<
cv
::
Vec3b
>
(
i
,
j
)[
2
]
=
255
;
}
}
}
if
(
FLAGS_show_result
||
FLAGS_use_camera
)
{
cv
::
imshow
(
"human_seg"
,
vis_img
);
}
if
(
FLAGS_save_result
)
{
video_out
.
write
(
vis_img
);
}
result
.
clear
();
}
capture
.
release
();
if
(
FLAGS_save_result
)
{
video_out
.
release
();
std
::
cout
<<
"Visualized output saved as "
<<
video_out_path
<<
std
::
endl
;
}
if
(
FLAGS_show_result
||
FLAGS_use_camera
)
{
cv
::
destroyAllWindows
();
}
}
else
{
PaddleX
::
SegResult
result
;
cv
::
Mat
im
=
cv
::
imread
(
FLAGS_image
,
1
);
model
.
predict
(
im
,
&
result
);
// 可视化
std
::
vector
<
uint8_t
>
label_map
(
result
.
label_map
.
data
.
begin
(),
result
.
label_map
.
data
.
end
());
cv
::
Mat
mask
(
result
.
label_map
.
shape
[
0
],
result
.
label_map
.
shape
[
1
],
CV_8UC1
,
label_map
.
data
());
int
rows
=
result
.
label_map
.
shape
[
0
];
int
cols
=
result
.
label_map
.
shape
[
1
];
cv
::
Mat
vis_img
=
im
.
clone
();
for
(
int
i
=
0
;
i
<
rows
;
i
++
)
{
for
(
int
j
=
0
;
j
<
cols
;
j
++
)
{
int
category_id
=
static_cast
<
int
>
(
mask
.
at
<
uchar
>
(
i
,
j
));
if
(
category_id
==
0
)
{
vis_img
.
at
<
cv
::
Vec3b
>
(
i
,
j
)[
0
]
=
255
;
vis_img
.
at
<
cv
::
Vec3b
>
(
i
,
j
)[
1
]
=
255
;
vis_img
.
at
<
cv
::
Vec3b
>
(
i
,
j
)[
2
]
=
255
;
}
}
}
std
::
string
save_path
=
PaddleX
::
generate_save_path
(
FLAGS_save_dir
,
FLAGS_image
);
cv
::
imwrite
(
save_path
,
vis_img
);
result
.
clear
();
std
::
cout
<<
"Visualized output saved as "
<<
save_path
<<
std
::
endl
;
}
return
0
;
}
examples/meter_reader/README.md
浏览文件 @
76edffaa
...
...
@@ -213,8 +213,6 @@ git clone https://github.com/PaddlePaddle/PaddleX
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0)|
| gpu_id | GPU 设备ID, 默认值为0 |
| save_dir | 保存可视化结果的路径, 默认值为"output"|
| det_key | 检测模型加密过程中产生的密钥信息,默认值为""表示加载的是未加密的检测模型 |
| seg_key | 分割模型加密过程中产生的密钥信息,默认值为""表示加载的是未加密的分割模型 |
| seg_batch_size | 分割的批量大小,默认为2 |
| thread_num | 分割预测的线程数,默认为cpu处理器个数 |
| use_camera | 是否使用摄像头采集图片,支持值为0或1(默认值为0) |
...
...
@@ -245,15 +243,6 @@ git clone https://github.com/PaddlePaddle/PaddleX
./build/meter_reader/meter_reader
--det_model_dir
=
/path/to/det_inference_model
--seg_model_dir
=
/path/to/seg_inference_model
--use_camera
=
1
--use_gpu
=
1
--use_erode
=
1
--save_dir
=
output
```
*
使用加密后的模型对单张图片做预测
如果未对模型进行加密,请参考
[
加密PaddleX模型
](
../../docs/deploy/server/encryption.md#13-加密paddlex模型
)
对模型进行加密。例如加密后的检测模型所在目录为
`/path/to/encrypted_det_inference_model`
,密钥为
`yEBLDiBOdlj+5EsNNrABhfDuQGkdcreYcHcncqwdbx0=`
;加密后的分割模型所在目录为
`/path/to/encrypted_seg_inference_model`
,密钥为
`DbVS64I9pFRo5XmQ8MNV2kSGsfEr4FKA6OH9OUhRrsY=`
```
shell
./build/meter_reader/meter_reader
--det_model_dir
=
/path/to/encrypted_det_inference_model
--seg_model_dir
=
/path/to/encrypted_seg_inference_model
--image
=
/path/to/test.jpg
--use_gpu
=
1
--use_erode
=
1
--save_dir
=
output
--det_key
yEBLDiBOdlj+5EsNNrABhfDuQGkdcreYcHcncqwdbx0
=
--seg_key
DbVS64I9pFRo5XmQ8MNV2kSGsfEr4FKA6OH9OUhRrsY
=
```
## <h2 id="5">模型训练</h2>
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录