classifier.py 19.0 KB
Newer Older
F
FlyingQianMM 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

from __future__ import absolute_import
import numpy as np
import time
import math
import tqdm
import paddle.fluid as fluid
import paddlex.utils.logging as logging
from paddlex.utils import seconds_to_hms
import paddlex
from collections import OrderedDict
from .base import BaseAPI


class BaseClassifier(BaseAPI):
    """构建分类器,并实现其训练、评估、预测和模型导出。
    Args:
        model_name (str): 分类器的模型名字,取值范围为['ResNet18',
                          'ResNet34', 'ResNet50', 'ResNet101',
                          'ResNet50_vd', 'ResNet101_vd', 'DarkNet53',
                          'MobileNetV1', 'MobileNetV2', 'Xception41',
                          'Xception65', 'Xception71']。默认为'ResNet50'。
        num_classes (int): 类别数。默认为1000。
    """

39
    def __init__(self, model_name='ResNet50', num_classes=1000):
J
jiangjiajun 已提交
40 41 42
        self.init_params = locals()
        super(BaseClassifier, self).__init__('classifier')
        if not hasattr(paddlex.cv.nets, str.lower(model_name)):
43 44
            raise Exception("ERROR: There's no model named {}.".format(
                model_name))
J
jiangjiajun 已提交
45 46 47
        self.model_name = model_name
        self.labels = None
        self.num_classes = num_classes
48
        self.fixed_input_shape = None
J
jiangjiajun 已提交
49 50

    def build_net(self, mode='train'):
J
jiangjiajun 已提交
51 52
        if self.__class__.__name__ == "AlexNet":
            assert self.fixed_input_shape is not None, "In AlexNet, input_shape should be defined, e.g. model = paddlex.cls.AlexNet(num_classes=1000, input_shape=[224, 224])"
C
Channingss 已提交
53
        if self.fixed_input_shape is not None:
54 55 56
            input_shape = [
                None, 3, self.fixed_input_shape[1], self.fixed_input_shape[0]
            ]
J
jiangjiajun 已提交
57
            image = fluid.data(dtype='float32', shape=input_shape, name='image')
C
Channingss 已提交
58 59 60
        else:
            image = fluid.data(
                dtype='float32', shape=[None, 3, None, None], name='image')
J
jiangjiajun 已提交
61 62 63
        if mode != 'test':
            label = fluid.data(dtype='int64', shape=[None, 1], name='label')
        model = getattr(paddlex.cv.nets, str.lower(self.model_name))
S
sunyanfang01 已提交
64
        net_out = model(image, num_classes=self.num_classes)
S
sunyanfang01 已提交
65
        softmax_out = fluid.layers.softmax(net_out, use_cudnn=False)
J
jiangjiajun 已提交
66
        inputs = OrderedDict([('image', image)])
S
SunAhong1993 已提交
67 68
        outputs = OrderedDict([('predict', softmax_out)])
        if mode == 'test':
S
rename  
sunyanfang01 已提交
69
            self.interpretation_feats = OrderedDict([('logits', net_out)])
J
jiangjiajun 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        if mode != 'test':
            cost = fluid.layers.cross_entropy(input=softmax_out, label=label)
            avg_cost = fluid.layers.mean(cost)
            acc1 = fluid.layers.accuracy(input=softmax_out, label=label, k=1)
            k = min(5, self.num_classes)
            acck = fluid.layers.accuracy(input=softmax_out, label=label, k=k)
            if mode == 'train':
                self.optimizer.minimize(avg_cost)
            inputs = OrderedDict([('image', image), ('label', label)])
            outputs = OrderedDict([('loss', avg_cost), ('acc1', acc1),
                                   ('acc{}'.format(k), acck)])
        if mode == 'eval':
            del outputs['loss']
        return inputs, outputs

J
jiangjiajun 已提交
85 86
    def default_optimizer(self, learning_rate, warmup_steps, warmup_start_lr,
                          lr_decay_epochs, lr_decay_gamma,
J
jiangjiajun 已提交
87 88 89 90 91 92 93 94
                          num_steps_each_epoch):
        boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
        values = [
            learning_rate * (lr_decay_gamma**i)
            for i in range(len(lr_decay_epochs) + 1)
        ]
        lr_decay = fluid.layers.piecewise_decay(
            boundaries=boundaries, values=values)
J
jiangjiajun 已提交
95 96 97 98 99 100
        if warmup_steps > 0:
            if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
                logging.error(
                    "In function train(), parameters should satisfy: warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset",
                    exit=False)
                logging.error(
J
jiangjiajun 已提交
101 102
                    "See this doc for more information: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice",
                    exit=False)
J
jiangjiajun 已提交
103
                logging.error(
J
jiangjiajun 已提交
104 105 106
                    "warmup_steps should less than {} or lr_decay_epochs[0] greater than {}, please modify 'lr_decay_epochs' or 'warmup_steps' in train function".
                    format(lr_decay_epochs[0] * num_steps_each_epoch,
                           warmup_steps // num_steps_each_epoch))
J
jiangjiajun 已提交
107 108 109 110 111 112

            lr_decay = fluid.layers.linear_lr_warmup(
                learning_rate=lr_decay,
                warmup_steps=warmup_steps,
                start_lr=warmup_start_lr,
                end_lr=learning_rate)
J
jiangjiajun 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        optimizer = fluid.optimizer.Momentum(
            lr_decay,
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-04))
        return optimizer

    def train(self,
              num_epochs,
              train_dataset,
              train_batch_size=64,
              eval_dataset=None,
              save_interval_epochs=1,
              log_interval_steps=2,
              save_dir='output',
              pretrain_weights='IMAGENET',
              optimizer=None,
              learning_rate=0.025,
J
jiangjiajun 已提交
130 131
              warmup_steps=0,
              warmup_start_lr=0.0,
J
jiangjiajun 已提交
132 133 134 135
              lr_decay_epochs=[30, 60, 90],
              lr_decay_gamma=0.1,
              use_vdl=False,
              sensitivities_file=None,
F
FlyingQianMM 已提交
136 137
              eval_metric_loss=0.05,
              early_stop=False,
138 139
              early_stop_patience=5,
              resume_checkpoint=None):
J
jiangjiajun 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153
        """训练。
        Args:
            num_epochs (int): 训练迭代轮数。
            train_dataset (paddlex.datasets): 训练数据读取器。
            train_batch_size (int): 训练数据batch大小。同时作为验证数据batch大小。默认值为64。
            eval_dataset (paddlex.datasets: 验证数据读取器。
            save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。
            log_interval_steps (int): 训练日志输出间隔(单位:迭代步数)。默认为2。
            save_dir (str): 模型保存路径。
            pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
                则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为'IMAGENET'。
            optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:
                fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
            learning_rate (float): 默认优化器的初始学习率。默认为0.025。
J
jiangjiajun 已提交
154 155
            warmup_steps(int): 学习率从warmup_start_lr上升至设定的learning_rate,所需的步数,默认为0
            warmup_start_lr(float): 学习率在warmup阶段时的起始值,默认为0.0
J
jiangjiajun 已提交
156 157 158 159 160 161
            lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[30, 60, 90]。
            lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
            use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
            sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
                则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
            eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
F
FlyingQianMM 已提交
162 163 164
            early_stop (bool): 是否使用提前终止训练策略。默认值为False。
            early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
                连续下降或持平,则终止训练。默认值为5。
165
            resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
J
jiangjiajun 已提交
166 167 168 169
        Raises:
            ValueError: 模型从inference model进行加载。
        """
        if not self.trainable:
J
jiangjiajun 已提交
170
            raise ValueError("Model is not trainable from load_model method.")
J
jiangjiajun 已提交
171 172 173 174 175
        self.labels = train_dataset.labels
        if optimizer is None:
            num_steps_each_epoch = train_dataset.num_samples // train_batch_size
            optimizer = self.default_optimizer(
                learning_rate=learning_rate,
J
jiangjiajun 已提交
176 177
                warmup_steps=warmup_steps,
                warmup_start_lr=warmup_start_lr,
J
jiangjiajun 已提交
178 179 180 181 182 183 184
                lr_decay_epochs=lr_decay_epochs,
                lr_decay_gamma=lr_decay_gamma,
                num_steps_each_epoch=num_steps_each_epoch)
        self.optimizer = optimizer
        # 构建训练、验证、预测网络
        self.build_program()
        # 初始化网络权重
185 186 187 188 189 190 191
        self.net_initialize(
            startup_prog=fluid.default_startup_program(),
            pretrain_weights=pretrain_weights,
            save_dir=save_dir,
            sensitivities_file=sensitivities_file,
            eval_metric_loss=eval_metric_loss,
            resume_checkpoint=resume_checkpoint)
J
jiangjiajun 已提交
192 193 194 195 196 197 198 199 200
        # 训练
        self.train_loop(
            num_epochs=num_epochs,
            train_dataset=train_dataset,
            train_batch_size=train_batch_size,
            eval_dataset=eval_dataset,
            save_interval_epochs=save_interval_epochs,
            log_interval_steps=log_interval_steps,
            save_dir=save_dir,
F
FlyingQianMM 已提交
201 202 203
            use_vdl=use_vdl,
            early_stop=early_stop,
            early_stop_patience=early_stop_patience)
J
jiangjiajun 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

    def evaluate(self,
                 eval_dataset,
                 batch_size=1,
                 epoch_id=None,
                 return_details=False):
        """评估。
        Args:
            eval_dataset (paddlex.datasets): 验证数据读取器。
            batch_size (int): 验证数据批大小。默认为1。
            epoch_id (int): 当前评估模型所在的训练轮数。
            return_details (bool): 是否返回详细信息。
        Returns:
          dict: 当return_details为False时,返回dict, 包含关键字:'acc1'、'acc5',
              分别表示最大值的accuracy、前5个最大值的accuracy。
          tuple (metrics, eval_details): 当return_details为True时,增加返回dict,
              包含关键字:'true_labels'、'pred_scores',分别代表真实类别id、每个类别的预测得分。
        """
J
jiangjiajun 已提交
222
        self.arrange_transforms(transforms=eval_dataset.transforms, mode='eval')
J
jiangjiajun 已提交
223 224 225 226 227 228 229 230 231 232 233
        data_generator = eval_dataset.generator(
            batch_size=batch_size, drop_last=False)
        k = min(5, self.num_classes)
        total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
        true_labels = list()
        pred_scores = list()
        if not hasattr(self, 'parallel_test_prog'):
            self.parallel_test_prog = fluid.CompiledProgram(
                self.test_prog).with_data_parallel(
                    share_vars_from=self.parallel_train_prog)
        batch_size_each_gpu = self._get_single_card_bs(batch_size)
J
jiangjiajun 已提交
234 235
        logging.info("Start to evaluating(total_samples={}, total_steps={})...".
                     format(eval_dataset.num_samples, total_steps))
J
jiangjiajun 已提交
236 237 238 239 240 241 242 243 244
        for step, data in tqdm.tqdm(
                enumerate(data_generator()), total=total_steps):
            images = np.array([d[0] for d in data]).astype('float32')
            labels = [d[1] for d in data]
            num_samples = images.shape[0]
            if num_samples < batch_size:
                num_pad_samples = batch_size - num_samples
                pad_images = np.tile(images[0:1], (num_pad_samples, 1, 1, 1))
                images = np.concatenate([images, pad_images])
245 246 247
            outputs = self.exe.run(self.parallel_test_prog,
                                   feed={'image': images},
                                   fetch_list=list(self.test_outputs.values()))
J
jiangjiajun 已提交
248 249 250
            outputs = [outputs[0][:num_samples]]
            true_labels.extend(labels)
            pred_scores.extend(outputs[0].tolist())
251 252
            logging.debug("[EVAL] Epoch={}, Step={}/{}".format(epoch_id, step +
                                                               1, total_steps))
J
jiangjiajun 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

        pred_top1_label = np.argsort(pred_scores)[:, -1]
        pred_topk_label = np.argsort(pred_scores)[:, -k:]
        acc1 = sum(pred_top1_label == true_labels) / len(true_labels)
        acck = sum(
            [np.isin(x, y)
             for x, y in zip(true_labels, pred_topk_label)]) / len(true_labels)
        metrics = OrderedDict([('acc1', acc1), ('acc{}'.format(k), acck)])
        if return_details:
            eval_details = {
                'true_labels': true_labels,
                'pred_scores': pred_scores
            }
            return metrics, eval_details
        return metrics

    def predict(self, img_file, transforms=None, topk=1):
        """预测。
        Args:
            img_file (str): 预测图像路径。
            transforms (paddlex.cls.transforms): 数据预处理操作。
            topk (int): 预测时前k个最大值。
        Returns:
            list: 其中元素均为字典。字典的关键字为'category_id'、'category'、'score',
            分别对应预测类别id、预测类别标签、预测得分。
        """
        if transforms is None and not hasattr(self, 'test_transforms'):
            raise Exception("transforms need to be defined, now is None.")
        true_topk = min(self.num_classes, topk)
        if transforms is not None:
            self.arrange_transforms(transforms=transforms, mode='test')
            im = transforms(img_file)
        else:
            self.arrange_transforms(
                transforms=self.test_transforms, mode='test')
            im = self.test_transforms(img_file)
289 290
        result = self.exe.run(self.test_prog,
                              feed={'image': im},
J
jiangjiajun 已提交
291 292
                              fetch_list=list(self.test_outputs.values()),
                              use_program_cache=True)
J
jiangjiajun 已提交
293 294 295 296 297 298 299
        pred_label = np.argsort(result[0][0])[::-1][:true_topk]
        res = [{
            'category_id': l,
            'category': self.labels[l],
            'score': result[0][0][l]
        } for l in pred_label]
        return res
S
sunyanfang01 已提交
300

J
jiangjiajun 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

class ResNet18(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(ResNet18, self).__init__(
            model_name='ResNet18', num_classes=num_classes)


class ResNet34(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(ResNet34, self).__init__(
            model_name='ResNet34', num_classes=num_classes)


class ResNet50(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(ResNet50, self).__init__(
            model_name='ResNet50', num_classes=num_classes)


class ResNet101(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(ResNet101, self).__init__(
            model_name='ResNet101', num_classes=num_classes)


class ResNet50_vd(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(ResNet50_vd, self).__init__(
            model_name='ResNet50_vd', num_classes=num_classes)


class ResNet101_vd(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(ResNet101_vd, self).__init__(
            model_name='ResNet101_vd', num_classes=num_classes)
J
jiangjiajun 已提交
336 337


S
sunyanfang01 已提交
338 339
class ResNet50_vd_ssld(BaseClassifier):
    def __init__(self, num_classes=1000):
J
jiangjiajun 已提交
340 341 342 343
        super(ResNet50_vd_ssld, self).__init__(
            model_name='ResNet50_vd_ssld', num_classes=num_classes)


S
sunyanfang01 已提交
344 345
class ResNet101_vd_ssld(BaseClassifier):
    def __init__(self, num_classes=1000):
J
jiangjiajun 已提交
346 347
        super(ResNet101_vd_ssld, self).__init__(
            model_name='ResNet101_vd_ssld', num_classes=num_classes)
J
jiangjiajun 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377


class DarkNet53(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(DarkNet53, self).__init__(
            model_name='DarkNet53', num_classes=num_classes)


class MobileNetV1(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(MobileNetV1, self).__init__(
            model_name='MobileNetV1', num_classes=num_classes)


class MobileNetV2(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(MobileNetV2, self).__init__(
            model_name='MobileNetV2', num_classes=num_classes)


class MobileNetV3_small(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(MobileNetV3_small, self).__init__(
            model_name='MobileNetV3_small', num_classes=num_classes)


class MobileNetV3_large(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(MobileNetV3_large, self).__init__(
            model_name='MobileNetV3_large', num_classes=num_classes)
J
jiangjiajun 已提交
378 379


S
sunyanfang01 已提交
380 381
class MobileNetV3_small_ssld(BaseClassifier):
    def __init__(self, num_classes=1000):
J
jiangjiajun 已提交
382 383
        super(MobileNetV3_small_ssld, self).__init__(
            model_name='MobileNetV3_small_ssld', num_classes=num_classes)
S
sunyanfang01 已提交
384 385 386 387


class MobileNetV3_large_ssld(BaseClassifier):
    def __init__(self, num_classes=1000):
J
jiangjiajun 已提交
388 389
        super(MobileNetV3_large_ssld, self).__init__(
            model_name='MobileNetV3_large_ssld', num_classes=num_classes)
J
jiangjiajun 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425


class Xception65(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(Xception65, self).__init__(
            model_name='Xception65', num_classes=num_classes)


class Xception41(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(Xception41, self).__init__(
            model_name='Xception41', num_classes=num_classes)


class DenseNet121(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(DenseNet121, self).__init__(
            model_name='DenseNet121', num_classes=num_classes)


class DenseNet161(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(DenseNet161, self).__init__(
            model_name='DenseNet161', num_classes=num_classes)


class DenseNet201(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(DenseNet201, self).__init__(
            model_name='DenseNet201', num_classes=num_classes)


class ShuffleNetV2(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(ShuffleNetV2, self).__init__(
            model_name='ShuffleNetV2', num_classes=num_classes)
426 427 428 429 430 431


class HRNet_W18(BaseClassifier):
    def __init__(self, num_classes=1000):
        super(HRNet_W18, self).__init__(
            model_name='HRNet_W18', num_classes=num_classes)
J
jiangjiajun 已提交
432 433 434 435 436 437 438


class AlexNet(BaseClassifier):
    def __init__(self, num_classes=1000, input_shape=None):
        super(AlexNet, self).__init__(
            model_name='AlexNet', num_classes=num_classes)
        self.fixed_input_shape = input_shape