提交 ab2942c1 编写于 作者: S sunyanfang01

modify the interpret

上级 25698c49
...@@ -274,20 +274,7 @@ class BaseClassifier(BaseAPI): ...@@ -274,20 +274,7 @@ class BaseClassifier(BaseAPI):
'score': result[0][0][l] 'score': result[0][0][l]
} for l in pred_label] } for l in pred_label]
return res return res
def interpretation_predict(self, images):
self.arrange_transforms(
transforms=self.test_transforms, mode='test')
new_imgs = []
for i in range(images.shape[0]):
img = images[i]
new_imgs.append(self.test_transforms(img)[0])
new_imgs = np.array(new_imgs)
result = self.exe.run(
self.test_prog,
feed={'image': new_imgs},
fetch_list=list(self.explanation_feats.values()))
return result
class ResNet18(BaseClassifier): class ResNet18(BaseClassifier):
def __init__(self, num_classes=1000): def __init__(self, num_classes=1000):
......
...@@ -13,6 +13,6 @@ ...@@ -13,6 +13,6 @@
# limitations under the License. # limitations under the License.
from __future__ import absolute_import from __future__ import absolute_import
from .cv.models.interpret import visualize from . import visualize
visualize = visualize.visualize visualize = visualize.visualize
\ No newline at end of file
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
def interpretation_predict(model, images):
model.arrange_transforms(
transforms=model.test_transforms, mode='test')
new_imgs = []
for i in range(images.shape[0]):
img = images[i]
new_imgs.append(model.test_transforms(img)[0])
new_imgs = np.array(new_imgs)
result = model.exe.run(
model.test_prog,
feed={'image': new_imgs},
fetch_list=list(model.explanation_feats.values()))
return result
\ No newline at end of file
...@@ -17,6 +17,7 @@ import cv2 ...@@ -17,6 +17,7 @@ import cv2
import copy import copy
import os.path as osp import os.path as osp
import numpy as np import numpy as np
from .interpretation_predict import interpretation_predict
from .core.interpretation import Interpretation from .core.interpretation import Interpretation
from .core.normlime_base import precompute_normlime_weights from .core.normlime_base import precompute_normlime_weights
...@@ -28,6 +29,18 @@ def visualize(img_file, ...@@ -28,6 +29,18 @@ def visualize(img_file,
num_samples=3000, num_samples=3000,
batch_size=50, batch_size=50,
save_dir='./'): save_dir='./'):
"""可解释性可视化。
Args:
img_file (str): 预测图像路径。
model (paddlex.cv.models): paddlex中的模型。
dataset (paddlex.datasets): 数据集读取器,默认为None。
algo (str): 可解释性方式,当前可选'lime'和'normlime'。
num_samples (int): 随机采样数量,默认为3000。
batch_size (int): 预测数据batch大小,默认为50。
save_dir (str): 可解释性可视化结果(保存为png格式文件)和中间文件存储路径。
"""
assert model.model_type == 'classifier', \
'Now the interpretation visualize only be supported in classifier!'
if model.status != 'Normal': if model.status != 'Normal':
raise Exception('The interpretation only can deal with the Normal model') raise Exception('The interpretation only can deal with the Normal model')
model.arrange_transforms( model.arrange_transforms(
...@@ -59,7 +72,7 @@ def get_lime_interpreter(img, model, dataset, num_samples=3000, batch_size=50): ...@@ -59,7 +72,7 @@ def get_lime_interpreter(img, model, dataset, num_samples=3000, batch_size=50):
image[i] = cv2.cvtColor(image[i], cv2.COLOR_RGB2BGR) image[i] = cv2.cvtColor(image[i], cv2.COLOR_RGB2BGR)
tmp_transforms = copy.deepcopy(model.test_transforms.transforms) tmp_transforms = copy.deepcopy(model.test_transforms.transforms)
model.test_transforms.transforms = model.test_transforms.transforms[-2:] model.test_transforms.transforms = model.test_transforms.transforms[-2:]
out = model.interpretation_predict(image) out = interpretation_predict(model, image)
model.test_transforms.transforms = tmp_transforms model.test_transforms.transforms = tmp_transforms
return out[0] return out[0]
labels_name = None labels_name = None
...@@ -78,7 +91,7 @@ def get_normlime_interpreter(img, model, dataset, num_samples=3000, batch_size=5 ...@@ -78,7 +91,7 @@ def get_normlime_interpreter(img, model, dataset, num_samples=3000, batch_size=5
image = image.astype('float32') image = image.astype('float32')
tmp_transforms = copy.deepcopy(model.test_transforms.transforms) tmp_transforms = copy.deepcopy(model.test_transforms.transforms)
model.test_transforms.transforms = model.test_transforms.transforms[-2:] model.test_transforms.transforms = model.test_transforms.transforms[-2:]
out = model.interpretation_predict(image) out = interpretation_predict(model, image)
model.test_transforms.transforms = tmp_transforms model.test_transforms.transforms = tmp_transforms
return out[0] return out[0]
def predict_func(image): def predict_func(image):
...@@ -87,7 +100,7 @@ def get_normlime_interpreter(img, model, dataset, num_samples=3000, batch_size=5 ...@@ -87,7 +100,7 @@ def get_normlime_interpreter(img, model, dataset, num_samples=3000, batch_size=5
image[i] = cv2.cvtColor(image[i], cv2.COLOR_RGB2BGR) image[i] = cv2.cvtColor(image[i], cv2.COLOR_RGB2BGR)
tmp_transforms = copy.deepcopy(model.test_transforms.transforms) tmp_transforms = copy.deepcopy(model.test_transforms.transforms)
model.test_transforms.transforms = model.test_transforms.transforms[-2:] model.test_transforms.transforms = model.test_transforms.transforms[-2:]
out = model.interpretation_predict(image) out = interpretation_predict(model, image)
model.test_transforms.transforms = tmp_transforms model.test_transforms.transforms = tmp_transforms
return out[0] return out[0]
labels_name = None labels_name = None
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册