yolo_v3.py 22.5 KB
Newer Older
F
FlyingQianMM 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
#
F
FlyingQianMM 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
F
FlyingQianMM 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
F
FlyingQianMM 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14 15 16 17 18 19

from __future__ import absolute_import
import math
import tqdm
import os.path as osp
import numpy as np
20
from multiprocessing.pool import ThreadPool
J
jiangjiajun 已提交
21 22 23
import paddle.fluid as fluid
import paddlex.utils.logging as logging
import paddlex
24 25
import copy
from paddlex.cv.transforms import arrange_transforms
F
FlyingQianMM 已提交
26
from paddlex.cv.datasets import generate_minibatch
J
jiangjiajun 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
from .base import BaseAPI
from collections import OrderedDict
from .utils.detection_eval import eval_results, bbox2out


class YOLOv3(BaseAPI):
    """构建YOLOv3,并实现其训练、评估、预测和模型导出。

    Args:
        num_classes (int): 类别数。默认为80。
        backbone (str): YOLOv3的backbone网络,取值范围为['DarkNet53',
            'ResNet34', 'MobileNetV1', 'MobileNetV3_large']。默认为'MobileNetV1'。
        anchors (list|tuple): anchor框的宽度和高度,为None时表示使用默认值
                    [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
                    [59, 119], [116, 90], [156, 198], [373, 326]]。
        anchor_masks (list|tuple): 在计算YOLOv3损失时,使用anchor的mask索引,为None时表示使用默认值
                    [[6, 7, 8], [3, 4, 5], [0, 1, 2]]。
        ignore_threshold (float): 在计算YOLOv3损失时,IoU大于`ignore_threshold`的预测框的置信度被忽略。默认为0.7。
        nms_score_threshold (float): 检测框的置信度得分阈值,置信度得分低于阈值的框应该被忽略。默认为0.01。
        nms_topk (int): 进行NMS时,根据置信度保留的最大检测框数。默认为1000。
        nms_keep_topk (int): 进行NMS后,每个图像要保留的总检测框数。默认为100。
M
mamingjie-China 已提交
48
        nms_iou_threshold (float): 进行NMS时,用于剔除检测框IoU的阈值。默认为0.45。
J
jiangjiajun 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
        label_smooth (bool): 是否使用label smooth。默认值为False。
        train_random_shapes (list|tuple): 训练时从列表中随机选择图像大小。默认值为[320, 352, 384, 416, 448, 480, 512, 544, 576, 608]。
    """

    def __init__(self,
                 num_classes=80,
                 backbone='MobileNetV1',
                 anchors=None,
                 anchor_masks=None,
                 ignore_threshold=0.7,
                 nms_score_threshold=0.01,
                 nms_topk=1000,
                 nms_keep_topk=100,
                 nms_iou_threshold=0.45,
                 label_smooth=False,
                 train_random_shapes=[
                     320, 352, 384, 416, 448, 480, 512, 544, 576, 608
66
                 ]):
J
jiangjiajun 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
        self.init_params = locals()
        super(YOLOv3, self).__init__('detector')
        backbones = [
            'DarkNet53', 'ResNet34', 'MobileNetV1', 'MobileNetV3_large'
        ]
        assert backbone in backbones, "backbone should be one of {}".format(
            backbones)
        self.backbone = backbone
        self.num_classes = num_classes
        self.anchors = anchors
        self.anchor_masks = anchor_masks
        self.ignore_threshold = ignore_threshold
        self.nms_score_threshold = nms_score_threshold
        self.nms_topk = nms_topk
        self.nms_keep_topk = nms_keep_topk
        self.nms_iou_threshold = nms_iou_threshold
        self.label_smooth = label_smooth
        self.sync_bn = True
        self.train_random_shapes = train_random_shapes
86
        self.fixed_input_shape = None
J
jiangjiajun 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

    def _get_backbone(self, backbone_name):
        if backbone_name == 'DarkNet53':
            backbone = paddlex.cv.nets.DarkNet(norm_type='sync_bn')
        elif backbone_name == 'ResNet34':
            backbone = paddlex.cv.nets.ResNet(
                norm_type='sync_bn',
                layers=34,
                freeze_norm=False,
                norm_decay=0.,
                feature_maps=[3, 4, 5],
                freeze_at=0)
        elif backbone_name == 'MobileNetV1':
            backbone = paddlex.cv.nets.MobileNetV1(norm_type='sync_bn')
        elif backbone_name.startswith('MobileNetV3'):
J
jiangjiajun 已提交
102
            model_name = backbone_name.split('_')[1]
J
jiangjiajun 已提交
103
            backbone = paddlex.cv.nets.MobileNetV3(
J
jiangjiajun 已提交
104
                norm_type='sync_bn', model_name=model_name)
J
jiangjiajun 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        return backbone

    def build_net(self, mode='train'):
        model = paddlex.cv.nets.detection.YOLOv3(
            backbone=self._get_backbone(self.backbone),
            num_classes=self.num_classes,
            mode=mode,
            anchors=self.anchors,
            anchor_masks=self.anchor_masks,
            ignore_threshold=self.ignore_threshold,
            label_smooth=self.label_smooth,
            nms_score_threshold=self.nms_score_threshold,
            nms_topk=self.nms_topk,
            nms_keep_topk=self.nms_keep_topk,
            nms_iou_threshold=self.nms_iou_threshold,
C
Channingss 已提交
120
            train_random_shapes=self.train_random_shapes,
121
            fixed_input_shape=self.fixed_input_shape)
J
jiangjiajun 已提交
122 123 124 125 126 127 128 129 130 131 132 133
        inputs = model.generate_inputs()
        model_out = model.build_net(inputs)
        outputs = OrderedDict([('bbox', model_out)])
        if mode == 'train':
            self.optimizer.minimize(model_out)
            outputs = OrderedDict([('loss', model_out)])
        return inputs, outputs

    def default_optimizer(self, learning_rate, warmup_steps, warmup_start_lr,
                          lr_decay_epochs, lr_decay_gamma,
                          num_steps_each_epoch):
        if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
J
jiangjiajun 已提交
134 135 136 137 138 139 140 141 142 143
            logging.error(
                "In function train(), parameters should satisfy: warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset",
                exit=False)
            logging.error(
                "See this doc for more information: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice",
                exit=False)
            logging.error(
                "warmup_steps should less than {} or lr_decay_epochs[0] greater than {}, please modify 'lr_decay_epochs' or 'warmup_steps' in train function".
                format(lr_decay_epochs[0] * num_steps_each_epoch, warmup_steps
                       // num_steps_each_epoch))
J
jiangjiajun 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
        values = [(lr_decay_gamma**i) * learning_rate
                  for i in range(len(lr_decay_epochs) + 1)]
        lr_decay = fluid.layers.piecewise_decay(
            boundaries=boundaries, values=values)
        lr_warmup = fluid.layers.linear_lr_warmup(
            learning_rate=lr_decay,
            warmup_steps=warmup_steps,
            start_lr=warmup_start_lr,
            end_lr=learning_rate)
        optimizer = fluid.optimizer.Momentum(
            learning_rate=lr_warmup,
            momentum=0.9,
            regularization=fluid.regularizer.L2DecayRegularizer(5e-04))
        return optimizer

    def train(self,
              num_epochs,
              train_dataset,
              train_batch_size=8,
              eval_dataset=None,
              save_interval_epochs=20,
              log_interval_steps=2,
              save_dir='output',
              pretrain_weights='IMAGENET',
              optimizer=None,
              learning_rate=1.0 / 8000,
              warmup_steps=1000,
              warmup_start_lr=0.0,
              lr_decay_epochs=[213, 240],
              lr_decay_gamma=0.1,
              metric=None,
              use_vdl=False,
              sensitivities_file=None,
F
FlyingQianMM 已提交
178 179
              eval_metric_loss=0.05,
              early_stop=False,
180 181
              early_stop_patience=5,
              resume_checkpoint=None):
J
jiangjiajun 已提交
182 183 184 185 186 187 188 189 190 191 192 193
        """训练。

        Args:
            num_epochs (int): 训练迭代轮数。
            train_dataset (paddlex.datasets): 训练数据读取器。
            train_batch_size (int): 训练数据batch大小。目前检测仅支持单卡评估,训练数据batch大小与显卡
                数量之商为验证数据batch大小。默认值为8。
            eval_dataset (paddlex.datasets): 验证数据读取器。
            save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为20。
            log_interval_steps (int): 训练日志输出间隔(单位:迭代次数)。默认为10。
            save_dir (str): 模型保存路径。默认值为'output'。
            pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
194 195
                则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',
                则自动下载在COCO数据集上预训练的模型权重;若为None,则不使用预训练模型。默认为'IMAGENET'。
J
jiangjiajun 已提交
196 197 198 199 200 201 202 203 204 205 206 207
            optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:
                fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
            learning_rate (float): 默认优化器的学习率。默认为1.0/8000。
            warmup_steps (int):  默认优化器进行warmup过程的步数。默认为1000。
            warmup_start_lr (int): 默认优化器warmup的起始学习率。默认为0.0。
            lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[213, 240]。
            lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
            metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认值为None。
            use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
            sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
                则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
            eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
F
FlyingQianMM 已提交
208 209 210
            early_stop (bool): 是否使用提前终止训练策略。默认值为False。
            early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
                连续下降或持平,则终止训练。默认值为5。
211
            resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
J
jiangjiajun 已提交
212 213 214 215 216 217

        Raises:
            ValueError: 评估类型不在指定列表中。
            ValueError: 模型从inference model进行加载。
        """
        if not self.trainable:
J
jiangjiajun 已提交
218
            raise ValueError("Model is not trainable from load_model method.")
J
jiangjiajun 已提交
219 220 221
        if metric is None:
            if isinstance(train_dataset, paddlex.datasets.CocoDetection):
                metric = 'COCO'
222 223
            elif isinstance(train_dataset, paddlex.datasets.VOCDetection) or \
                    isinstance(train_dataset, paddlex.datasets.EasyDataDet):
J
jiangjiajun 已提交
224 225 226
                metric = 'VOC'
            else:
                raise ValueError(
227
                    "train_dataset should be datasets.VOCDetection or datasets.COCODetection or datasets.EasyDataDet."
J
jiangjiajun 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
                )
        assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"
        self.metric = metric

        self.labels = train_dataset.labels
        # 构建训练网络
        if optimizer is None:
            # 构建默认的优化策略
            num_steps_each_epoch = train_dataset.num_samples // train_batch_size
            optimizer = self.default_optimizer(
                learning_rate=learning_rate,
                warmup_steps=warmup_steps,
                warmup_start_lr=warmup_start_lr,
                lr_decay_epochs=lr_decay_epochs,
                lr_decay_gamma=lr_decay_gamma,
                num_steps_each_epoch=num_steps_each_epoch)
        self.optimizer = optimizer
        # 构建训练、验证、预测网络
        self.build_program()
        # 初始化网络权重
248 249 250 251 252 253 254
        self.net_initialize(
            startup_prog=fluid.default_startup_program(),
            pretrain_weights=pretrain_weights,
            save_dir=save_dir,
            sensitivities_file=sensitivities_file,
            eval_metric_loss=eval_metric_loss,
            resume_checkpoint=resume_checkpoint)
J
jiangjiajun 已提交
255 256 257 258 259 260 261 262 263
        # 训练
        self.train_loop(
            num_epochs=num_epochs,
            train_dataset=train_dataset,
            train_batch_size=train_batch_size,
            eval_dataset=eval_dataset,
            save_interval_epochs=save_interval_epochs,
            log_interval_steps=log_interval_steps,
            save_dir=save_dir,
F
FlyingQianMM 已提交
264 265 266
            use_vdl=use_vdl,
            early_stop=early_stop,
            early_stop_patience=early_stop_patience)
J
jiangjiajun 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

    def evaluate(self,
                 eval_dataset,
                 batch_size=1,
                 epoch_id=None,
                 metric=None,
                 return_details=False):
        """评估。

        Args:
            eval_dataset (paddlex.datasets): 验证数据读取器。
            batch_size (int): 验证数据批大小。默认为1。
            epoch_id (int): 当前评估模型所在的训练轮数。
            metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认为None,
                根据用户传入的Dataset自动选择,如为VOCDetection,则metric为'VOC';
                如为COCODetection,则metric为'COCO'。
            return_details (bool): 是否返回详细信息。

        Returns:
            tuple (metrics, eval_details) | dict (metrics): 当return_details为True时,返回(metrics, eval_details),
                当return_details为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'或者’bbox_map‘,
                分别表示平均准确率平均值在各个IoU阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。
                eval_details为dict,包含关键字:'bbox',对应元素预测结果列表,每个预测结果由图像id、
                预测框类别id、预测框坐标、预测框得分;’gt‘:真实标注框相关信息。
        """
F
FlyingQianMM 已提交
292 293 294 295 296
        arrange_transforms(
            model_type=self.model_type,
            class_name=self.__class__.__name__,
            transforms=eval_dataset.transforms,
            mode='eval')
J
jiangjiajun 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        if metric is None:
            if hasattr(self, 'metric') and self.metric is not None:
                metric = self.metric
            else:
                if isinstance(eval_dataset, paddlex.datasets.CocoDetection):
                    metric = 'COCO'
                elif isinstance(eval_dataset, paddlex.datasets.VOCDetection):
                    metric = 'VOC'
                else:
                    raise Exception(
                        "eval_dataset should be datasets.VOCDetection or datasets.COCODetection."
                    )
        assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"

        total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
        results = list()

        data_generator = eval_dataset.generator(
            batch_size=batch_size, drop_last=False)
316 317 318
        logging.info(
            "Start to evaluating(total_samples={}, total_steps={})...".format(
                eval_dataset.num_samples, total_steps))
J
jiangjiajun 已提交
319 320 321 322 323
        for step, data in tqdm.tqdm(
                enumerate(data_generator()), total=total_steps):
            images = np.array([d[0] for d in data])
            im_sizes = np.array([d[1] for d in data])
            feed_data = {'image': images, 'im_size': im_sizes}
J
jiangjiajun 已提交
324 325 326 327 328 329
            with fluid.scope_guard(self.scope):
                outputs = self.exe.run(
                    self.test_prog,
                    feed=[feed_data],
                    fetch_list=list(self.test_outputs.values()),
                    return_numpy=False)
J
jiangjiajun 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
            res = {
                'bbox': (np.array(outputs[0]),
                         outputs[0].recursive_sequence_lengths())
            }
            res_id = [np.array([d[2]]) for d in data]
            res['im_id'] = (res_id, [])
            if metric == 'VOC':
                res_gt_box = [d[3].reshape(-1, 4) for d in data]
                res_gt_label = [d[4].reshape(-1, 1) for d in data]
                res_is_difficult = [d[5].reshape(-1, 1) for d in data]
                res_id = [np.array([d[2]]) for d in data]
                res['gt_box'] = (res_gt_box, [])
                res['gt_label'] = (res_gt_label, [])
                res['is_difficult'] = (res_is_difficult, [])
            results.append(res)
F
FlyingQianMM 已提交
345 346
            logging.debug("[EVAL] Epoch={}, Step={}/{}".format(epoch_id, step +
                                                               1, total_steps))
J
jiangjiajun 已提交
347 348 349
        box_ap_stats, eval_details = eval_results(
            results, metric, eval_dataset.coco_gt, with_background=False)
        evaluate_metrics = OrderedDict(
F
FlyingQianMM 已提交
350 351
            zip(['bbox_mmap'
                 if metric == 'COCO' else 'bbox_map'], box_ap_stats))
J
jiangjiajun 已提交
352 353 354 355
        if return_details:
            return evaluate_metrics, eval_details
        return evaluate_metrics

356 357 358 359 360 361 362 363 364 365 366
    @staticmethod
    def _preprocess(images, transforms, model_type, class_name, thread_num=1):
        arrange_transforms(
            model_type=model_type,
            class_name=class_name,
            transforms=transforms,
            mode='test')
        pool = ThreadPool(thread_num)
        batch_data = pool.map(transforms, images)
        pool.close()
        pool.join()
F
FlyingQianMM 已提交
367
        padding_batch = generate_minibatch(batch_data)
368 369 370 371 372 373 374 375
        im = np.array(
            [data[0] for data in padding_batch],
            dtype=padding_batch[0][0].dtype)
        im_size = np.array([data[1] for data in padding_batch], dtype=np.int32)

        return im, im_size

    @staticmethod
376
    def _postprocess(res, batch_size, num_classes, labels):
377 378 379 380 381 382 383 384 385 386 387
        clsid2catid = dict({i: i for i in range(num_classes)})
        xywh_results = bbox2out([res], clsid2catid)
        preds = [[] for i in range(batch_size)]
        for xywh_res in xywh_results:
            image_id = xywh_res['image_id']
            del xywh_res['image_id']
            xywh_res['category'] = labels[xywh_res['category_id']]
            preds[image_id].append(xywh_res)

        return preds

J
jiangjiajun 已提交
388 389 390 391
    def predict(self, img_file, transforms=None):
        """预测。

        Args:
392
            img_file (str|np.ndarray): 预测图像路径,或者是解码后的排列格式为(H, W, C)且类型为float32且为BGR格式的数组。
J
jiangjiajun 已提交
393 394 395 396
            transforms (paddlex.det.transforms): 数据预处理操作。

        Returns:
            list: 预测结果列表,每个预测结果由预测框类别标签、
F
FlyingQianMM 已提交
397 398
              预测框类别名称、预测框坐标(坐标格式为[xmin, ymin, w, h])、
              预测框得分组成。
J
jiangjiajun 已提交
399 400 401
        """
        if transforms is None and not hasattr(self, 'test_transforms'):
            raise Exception("transforms need to be defined, now is None.")
402 403
        if isinstance(img_file, (str, np.ndarray)):
            images = [img_file]
J
jiangjiajun 已提交
404
        else:
405 406 407 408 409 410 411
            raise Exception("img_file must be str/np.ndarray")

        if transforms is None:
            transforms = self.test_transforms
        im, im_size = YOLOv3._preprocess(images, transforms, self.model_type,
                                         self.__class__.__name__)

J
jiangjiajun 已提交
412
        with fluid.scope_guard(self.scope):
413 414 415 416 417 418
            result = self.exe.run(self.test_prog,
                                  feed={'image': im,
                                        'im_size': im_size},
                                  fetch_list=list(self.test_outputs.values()),
                                  return_numpy=False,
                                  use_program_cache=True)
419

J
jiangjiajun 已提交
420 421
        res = {
            k: (np.array(v), v.recursive_sequence_lengths())
422
            for k, v in zip(list(self.test_outputs.keys()), result)
J
jiangjiajun 已提交
423
        }
424 425 426
        res['im_id'] = (np.array(
            [[i] for i in range(len(images))]).astype('int32'), [[]])
        preds = YOLOv3._postprocess(res,
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
                                    len(images), self.num_classes, self.labels)
        return preds[0]

    def batch_predict(self, img_file_list, transforms=None, thread_num=2):
        """预测。

        Args:
            img_file_list (list|tuple): 对列表(或元组)中的图像同时进行预测,列表中的元素可以是图像路径,也可以是解码后的排列格式为(H,W,C)
                且类型为float32且为BGR格式的数组。
            transforms (paddlex.det.transforms): 数据预处理操作。
            thread_num (int): 并发执行各图像预处理时的线程数。
        Returns:
            list: 每个元素都为列表,表示各图像的预测结果。在各图像的预测结果列表中,每个预测结果由预测框类别标签、
              预测框类别名称、预测框坐标(坐标格式为[xmin, ymin, w, h])、
              预测框得分组成。
        """
        if transforms is None and not hasattr(self, 'test_transforms'):
            raise Exception("transforms need to be defined, now is None.")

        if not isinstance(img_file_list, (list, tuple)):
            raise Exception("im_file must be list/tuple")

        if transforms is None:
            transforms = self.test_transforms
        im, im_size = YOLOv3._preprocess(img_file_list, transforms,
                                         self.model_type,
                                         self.__class__.__name__, thread_num)

455 456 457 458 459 460 461
        with fluid.scope_guard(self.scope):
            result = self.exe.run(self.test_prog,
                                  feed={'image': im,
                                        'im_size': im_size},
                                  fetch_list=list(self.test_outputs.values()),
                                  return_numpy=False,
                                  use_program_cache=True)
462

463 464 465 466 467 468 469
        res = {
            k: (np.array(v), v.recursive_sequence_lengths())
            for k, v in zip(list(self.test_outputs.keys()), result)
        }
        res['im_id'] = (np.array(
            [[i] for i in range(len(img_file_list))]).astype('int32'), [[]])
        preds = YOLOv3._postprocess(res,
470 471 472
                                    len(img_file_list), self.num_classes,
                                    self.labels)
        return preds