// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "include/paddlex/paddlex.h" namespace PaddleX { void Model::create_predictor(const std::string& model_dir, bool use_gpu, bool use_trt, int gpu_id, std::string key, int batch_size) { // 读取配置文件 if (!load_config(model_dir)) { std::cerr << "Parse file 'model.yml' failed!" << std::endl; exit(-1); } paddle::AnalysisConfig config; std::string model_file = model_dir + OS_PATH_SEP + "__model__"; std::string params_file = model_dir + OS_PATH_SEP + "__params__"; #ifdef WITH_ENCRYPTION if (key != ""){ model_file = model_dir + OS_PATH_SEP + "__model__.encrypted"; params_file = model_dir + OS_PATH_SEP + "__params__.encrypted"; paddle_security_load_model(&config, key.c_str(), model_file.c_str(), params_file.c_str()); } #endif if (key == ""){ config.SetModel(model_file, params_file); } if (use_gpu) { config.EnableUseGpu(100, gpu_id); } else { config.DisableGpu(); } config.SwitchUseFeedFetchOps(false); config.SwitchSpecifyInputNames(true); // 开启内存优化 config.EnableMemoryOptim(); if (use_trt) { config.EnableTensorRtEngine( 1 << 20 /* workspace_size*/, 32 /* max_batch_size*/, 20 /* min_subgraph_size*/, paddle::AnalysisConfig::Precision::kFloat32 /* precision*/, true /* use_static*/, false /* use_calib_mode*/); } predictor_ = std::move(CreatePaddlePredictor(config)); inputs_batch_.assign(batch_size, ImageBlob()); } bool Model::load_config(const std::string& model_dir) { std::string yaml_file = model_dir + OS_PATH_SEP + "model.yml"; YAML::Node config = YAML::LoadFile(yaml_file); type = config["_Attributes"]["model_type"].as(); name = config["Model"].as(); std::string version = config["version"].as(); if (version[0] == '0') { std::cerr << "[Init] Version of the loaded model is lower than 1.0.0, deployment " << "cannot be done, please refer to " << "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/tutorials/deploy/upgrade_version.md " << "to transfer version." << std::endl; return false; } bool to_rgb = true; if (config["TransformsMode"].IsDefined()) { std::string mode = config["TransformsMode"].as(); if (mode == "BGR") { to_rgb = false; } else if (mode != "RGB") { std::cerr << "[Init] Only 'RGB' or 'BGR' is supported for TransformsMode" << std::endl; return false; } } // 构建数据处理流 transforms_.Init(config["Transforms"], to_rgb); // 读入label list labels.clear(); for (const auto& item : config["_Attributes"]["labels"]) { int index = labels.size(); labels[index] = item.as(); } return true; } bool Model::preprocess(const cv::Mat& input_im, ImageBlob* blob) { cv::Mat im = input_im.clone(); if (!transforms_.Run(&im, blob)) { return false; } return true; } // use openmp bool Model::preprocess(const std::vector &input_im_batch, std::vector &blob_batch) { int batch_size = inputs_batch_.size(); bool success = true; //int i; #pragma omp parallel for num_threads(batch_size) for(int i = 0; i < input_im_batch.size(); ++i) { cv::Mat im = input_im_batch[i].clone(); if(!transforms_.Run(&im, &blob_batch[i])){ success = false; } } return success; } bool Model::predict(const cv::Mat& im, ClsResult* result) { inputs_.clear(); if (type == "detector") { std::cerr << "Loading model is a 'detector', DetResult should be passed to " "function predict()!" << std::endl; return false; } else if (type == "segmenter") { std::cerr << "Loading model is a 'segmenter', SegResult should be passed " "to function predict()!" << std::endl; return false; } // 处理输入图像 if (!preprocess(im, &inputs_)) { std::cerr << "Preprocess failed!" << std::endl; return false; } // 使用加载的模型进行预测 auto in_tensor = predictor_->GetInputTensor("image"); int h = inputs_.new_im_size_[0]; int w = inputs_.new_im_size_[1]; in_tensor->Reshape({1, 3, h, w}); in_tensor->copy_from_cpu(inputs_.im_data_.data()); predictor_->ZeroCopyRun(); // 取出模型的输出结果 auto output_names = predictor_->GetOutputNames(); auto output_tensor = predictor_->GetOutputTensor(output_names[0]); std::vector output_shape = output_tensor->shape(); int size = 1; for (const auto& i : output_shape) { size *= i; } outputs_.resize(size); output_tensor->copy_to_cpu(outputs_.data()); // 对模型输出结果进行后处理 auto ptr = std::max_element(std::begin(outputs_), std::end(outputs_)); result->category_id = std::distance(std::begin(outputs_), ptr); result->score = *ptr; result->category = labels[result->category_id]; return true; } bool Model::predict(const std::vector &im_batch, std::vector &results) { for(auto &inputs: inputs_batch_) { inputs.clear(); } if (type == "detector") { std::cerr << "Loading model is a 'detector', DetResult should be passed to " "function predict()!" << std::endl; return false; } else if (type == "segmenter") { std::cerr << "Loading model is a 'segmenter', SegResult should be passed " "to function predict()!" << std::endl; return false; } // 处理输入图像 if (!preprocess(im_batch, inputs_batch_)) { std::cerr << "Preprocess failed!" << std::endl; return false; } // 使用加载的模型进行预测 int batch_size = im_batch.size(); auto in_tensor = predictor_->GetInputTensor("image"); int h = inputs_batch_[0].new_im_size_[0]; int w = inputs_batch_[0].new_im_size_[1]; in_tensor->Reshape({batch_size, 3, h, w}); std::vector inputs_data(batch_size * 3 * h * w); for(int i = 0; i copy_from_cpu(inputs_data.data()); //in_tensor->copy_from_cpu(inputs_.im_data_.data()); predictor_->ZeroCopyRun(); // 取出模型的输出结果 auto output_names = predictor_->GetOutputNames(); auto output_tensor = predictor_->GetOutputTensor(output_names[0]); std::vector output_shape = output_tensor->shape(); int size = 1; for (const auto& i : output_shape) { size *= i; } outputs_.resize(size); output_tensor->copy_to_cpu(outputs_.data()); // 对模型输出结果进行后处理 int single_batch_size = size / batch_size; for(int i = 0; i < batch_size; ++i) { auto start_ptr = std::begin(outputs_); auto end_ptr = std::begin(outputs_); std::advance(start_ptr, i * single_batch_size); std::advance(end_ptr, (i + 1) * single_batch_size); auto ptr = std::max_element(start_ptr, end_ptr); results[i].category_id = std::distance(start_ptr, ptr); results[i].score = *ptr; results[i].category = labels[results[i].category_id]; } return true; } bool Model::predict(const cv::Mat& im, DetResult* result) { result->clear(); inputs_.clear(); if (type == "classifier") { std::cerr << "Loading model is a 'classifier', ClsResult should be passed " "to function predict()!" << std::endl; return false; } else if (type == "segmenter") { std::cerr << "Loading model is a 'segmenter', SegResult should be passed " "to function predict()!" << std::endl; return false; } // 处理输入图像 if (!preprocess(im, &inputs_)) { std::cerr << "Preprocess failed!" << std::endl; return false; } int h = inputs_.new_im_size_[0]; int w = inputs_.new_im_size_[1]; auto im_tensor = predictor_->GetInputTensor("image"); im_tensor->Reshape({1, 3, h, w}); im_tensor->copy_from_cpu(inputs_.im_data_.data()); if (name == "YOLOv3") { auto im_size_tensor = predictor_->GetInputTensor("im_size"); im_size_tensor->Reshape({1, 2}); im_size_tensor->copy_from_cpu(inputs_.ori_im_size_.data()); } else if (name == "FasterRCNN" || name == "MaskRCNN") { auto im_info_tensor = predictor_->GetInputTensor("im_info"); auto im_shape_tensor = predictor_->GetInputTensor("im_shape"); im_info_tensor->Reshape({1, 3}); im_shape_tensor->Reshape({1, 3}); float ori_h = static_cast(inputs_.ori_im_size_[0]); float ori_w = static_cast(inputs_.ori_im_size_[1]); float new_h = static_cast(inputs_.new_im_size_[0]); float new_w = static_cast(inputs_.new_im_size_[1]); float im_info[] = {new_h, new_w, inputs_.scale}; float im_shape[] = {ori_h, ori_w, 1.0}; im_info_tensor->copy_from_cpu(im_info); im_shape_tensor->copy_from_cpu(im_shape); } // 使用加载的模型进行预测 predictor_->ZeroCopyRun(); std::vector output_box; auto output_names = predictor_->GetOutputNames(); auto output_box_tensor = predictor_->GetOutputTensor(output_names[0]); std::vector output_box_shape = output_box_tensor->shape(); int size = 1; for (const auto& i : output_box_shape) { size *= i; } output_box.resize(size); output_box_tensor->copy_to_cpu(output_box.data()); if (size < 6) { std::cerr << "[WARNING] There's no object detected." << std::endl; return true; } int num_boxes = size / 6; // 解析预测框box for (int i = 0; i < num_boxes; ++i) { Box box; box.category_id = static_cast(round(output_box[i * 6])); box.category = labels[box.category_id]; box.score = output_box[i * 6 + 1]; float xmin = output_box[i * 6 + 2]; float ymin = output_box[i * 6 + 3]; float xmax = output_box[i * 6 + 4]; float ymax = output_box[i * 6 + 5]; float w = xmax - xmin + 1; float h = ymax - ymin + 1; box.coordinate = {xmin, ymin, w, h}; result->boxes.push_back(std::move(box)); } // 实例分割需解析mask if (name == "MaskRCNN") { std::vector output_mask; auto output_mask_tensor = predictor_->GetOutputTensor(output_names[1]); std::vector output_mask_shape = output_mask_tensor->shape(); int masks_size = 1; for (const auto& i : output_mask_shape) { masks_size *= i; } int mask_pixels = output_mask_shape[2] * output_mask_shape[3]; int classes = output_mask_shape[1]; output_mask.resize(masks_size); output_mask_tensor->copy_to_cpu(output_mask.data()); result->mask_resolution = output_mask_shape[2]; for (int i = 0; i < result->boxes.size(); ++i) { Box* box = &result->boxes[i]; auto begin_mask = output_mask.begin() + (i * classes + box->category_id) * mask_pixels; auto end_mask = begin_mask + mask_pixels; box->mask.data.assign(begin_mask, end_mask); box->mask.shape = {static_cast(box->coordinate[2]), static_cast(box->coordinate[3])}; } } return true; } bool Model::predict(const cv::Mat& im, SegResult* result) { result->clear(); inputs_.clear(); if (type == "classifier") { std::cerr << "Loading model is a 'classifier', ClsResult should be passed " "to function predict()!" << std::endl; return false; } else if (type == "detector") { std::cerr << "Loading model is a 'detector', DetResult should be passed to " "function predict()!" << std::endl; return false; } // 处理输入图像 if (!preprocess(im, &inputs_)) { std::cerr << "Preprocess failed!" << std::endl; return false; } int h = inputs_.new_im_size_[0]; int w = inputs_.new_im_size_[1]; auto im_tensor = predictor_->GetInputTensor("image"); im_tensor->Reshape({1, 3, h, w}); im_tensor->copy_from_cpu(inputs_.im_data_.data()); // 使用加载的模型进行预测 predictor_->ZeroCopyRun(); // 获取预测置信度,经过argmax后的labelmap auto output_names = predictor_->GetOutputNames(); auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]); std::vector output_label_shape = output_label_tensor->shape(); int size = 1; for (const auto& i : output_label_shape) { size *= i; result->label_map.shape.push_back(i); } result->label_map.data.resize(size); output_label_tensor->copy_to_cpu(result->label_map.data.data()); // 获取预测置信度scoremap auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]); std::vector output_score_shape = output_score_tensor->shape(); size = 1; for (const auto& i : output_score_shape) { size *= i; result->score_map.shape.push_back(i); } result->score_map.data.resize(size); output_score_tensor->copy_to_cpu(result->score_map.data.data()); // 解析输出结果到原图大小 std::vector label_map(result->label_map.data.begin(), result->label_map.data.end()); cv::Mat mask_label(result->label_map.shape[1], result->label_map.shape[2], CV_8UC1, label_map.data()); cv::Mat mask_score(result->score_map.shape[2], result->score_map.shape[3], CV_32FC1, result->score_map.data.data()); int idx = 1; int len_postprocess = inputs_.im_size_before_resize_.size(); for (std::vector::reverse_iterator iter = inputs_.reshape_order_.rbegin(); iter != inputs_.reshape_order_.rend(); ++iter) { if (*iter == "padding") { auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx]; inputs_.im_size_before_resize_.pop_back(); auto padding_w = before_shape[0]; auto padding_h = before_shape[1]; mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w)); mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w)); } else if (*iter == "resize") { auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx]; inputs_.im_size_before_resize_.pop_back(); auto resize_w = before_shape[0]; auto resize_h = before_shape[1]; cv::resize(mask_label, mask_label, cv::Size(resize_h, resize_w), 0, 0, cv::INTER_NEAREST); cv::resize(mask_score, mask_score, cv::Size(resize_h, resize_w), 0, 0, cv::INTER_LINEAR); } ++idx; } result->label_map.data.assign(mask_label.begin(), mask_label.end()); result->label_map.shape = {mask_label.rows, mask_label.cols}; result->score_map.data.assign(mask_score.begin(), mask_score.end()); result->score_map.shape = {mask_score.rows, mask_score.cols}; return true; } bool Model::predict(const std::vector &im_batch, std::vector &result) { for(auto &inputs: inputs_batch_) { inputs.clear(); } if (type == "classifier") { std::cerr << "Loading model is a 'classifier', ClsResult should be passed " "to function predict()!" << std::endl; return false; } else if (type == "detector") { std::cerr << "Loading model is a 'detector', DetResult should be passed to " "function predict()!" << std::endl; return false; } // 处理输入图像 if (!preprocess(im_batch, inputs_batch_)) { std::cerr << "Preprocess failed!" << std::endl; return false; } int batch_size = im_batch.size(); result.clear(); result.resize(batch_size); int h = inputs_batch_[0].new_im_size_[0]; int w = inputs_batch_[0].new_im_size_[1]; auto im_tensor = predictor_->GetInputTensor("image"); im_tensor->Reshape({batch_size, 3, h, w}); std::vector inputs_data(batch_size * 3 * h * w); for(int i = 0; i copy_from_cpu(inputs_data.data()); //im_tensor->copy_from_cpu(inputs_.im_data_.data()); // 使用加载的模型进行预测 predictor_->ZeroCopyRun(); // 获取预测置信度,经过argmax后的labelmap auto output_names = predictor_->GetOutputNames(); auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]); std::vector output_label_shape = output_label_tensor->shape(); int size = 1; for (const auto& i : output_label_shape) { size *= i; } std::vector output_labels(size, 0); output_label_tensor->copy_to_cpu(output_labels.data()); auto output_labels_iter = output_labels.begin(); int single_batch_size = size / batch_size; for(int i = 0; i < batch_size; ++i) { result[i].label_map.data.resize(single_batch_size); result[i].label_map.shape.push_back(1); for(int j = 1; j < output_label_shape.size(); ++j) { result[i].label_map.shape.push_back(output_label_shape[j]); } std::copy(output_labels_iter + i * single_batch_size, output_labels_iter + (i + 1) * single_batch_size, result[i].label_map.data.data()); } // 获取预测置信度scoremap auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]); std::vector output_score_shape = output_score_tensor->shape(); size = 1; for (const auto& i : output_score_shape) { size *= i; } std::vector output_scores(size, 0); output_score_tensor->copy_to_cpu(output_scores.data()); auto output_scores_iter = output_scores.begin(); int single_batch_score_size = size / batch_size; for(int i = 0; i < batch_size; ++i) { result[i].score_map.data.resize(single_batch_score_size); result[i].score_map.shape.push_back(1); for(int j = 1; j < output_score_shape.size(); ++j) { result[i].score_map.shape.push_back(output_score_shape[j]); } std::copy(output_scores_iter + i * single_batch_score_size, output_scores_iter + (i + 1) * single_batch_score_size, result[i].score_map.data.data()); } // 解析输出结果到原图大小 for(int i = 0; i < batch_size; ++i) { std::vector label_map(result[i].label_map.data.begin(), result[i].label_map.data.end()); cv::Mat mask_label(result[i].label_map.shape[1], result[i].label_map.shape[2], CV_8UC1, label_map.data()); cv::Mat mask_score(result[i].score_map.shape[2], result[i].score_map.shape[3], CV_32FC1, result[i].score_map.data.data()); int idx = 1; int len_postprocess = inputs_batch_[i].im_size_before_resize_.size(); for (std::vector::reverse_iterator iter = inputs_batch_[i].reshape_order_.rbegin(); iter != inputs_batch_[i].reshape_order_.rend(); ++iter) { if (*iter == "padding") { auto before_shape = inputs_batch_[i].im_size_before_resize_[len_postprocess - idx]; inputs_batch_[i].im_size_before_resize_.pop_back(); auto padding_w = before_shape[0]; auto padding_h = before_shape[1]; mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w)); mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w)); } else if (*iter == "resize") { auto before_shape = inputs_batch_[i].im_size_before_resize_[len_postprocess - idx]; inputs_batch_[i].im_size_before_resize_.pop_back(); auto resize_w = before_shape[0]; auto resize_h = before_shape[1]; cv::resize(mask_label, mask_label, cv::Size(resize_h, resize_w), 0, 0, cv::INTER_NEAREST); cv::resize(mask_score, mask_score, cv::Size(resize_h, resize_w), 0, 0, cv::INTER_LINEAR); } ++idx; } result[i].label_map.data.assign(mask_label.begin(), mask_label.end()); result[i].label_map.shape = {mask_label.rows, mask_label.cols}; result[i].score_map.data.assign(mask_score.begin(), mask_score.end()); result[i].score_map.shape = {mask_score.rows, mask_score.cols}; } return true; } } // namespce of PaddleX