Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
44b48c82
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
44b48c82
编写于
2月 03, 2020
作者:
F
faninSM
提交者:
GitHub
2月 03, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add demo of auto pruning (#39)
上级
1cb8d1bd
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
515 addition
and
0 deletion
+515
-0
demo/auto_prune/README.md
demo/auto_prune/README.md
+63
-0
demo/auto_prune/train_finetune.py
demo/auto_prune/train_finetune.py
+202
-0
demo/auto_prune/train_iterator.py
demo/auto_prune/train_iterator.py
+250
-0
未找到文件。
demo/auto_prune/README.md
0 → 100644
浏览文件 @
44b48c82
该示例介绍如何使用自动裁剪。
该示例使用默认会自动下载并使用MNIST数据。支持以下模型:
-
MobileNetV1
-
MobileNetV2
-
ResNet50
## 1. 接口介绍
该示例涉及以下接口:
-
[paddleslim.prune.AutoPruner])
-
[paddleslim.prune.Pruner])
## 2. 运行示例
提供两种自动裁剪模式,直接以裁剪目标进行一次自动裁剪,和多次迭代的方式进行裁剪。
###2.1一次裁剪
在路径
`PaddleSlim/demo/auto_prune`
下执行以下代码运行示例:
```
export CUDA_VISIBLE_DEVICES=0
python train.py --model "MobileNet"
从log中获取搜索的最佳裁剪率列表,加入到train_finetune.py的ratiolist中,如下命令finetune得到最终结果
python train_finetune.py --model "MobileNet" --lr 0.1 --num_epochs 120 --step_epochs 30 60 90
```
通过
`python train.py --help`
查看更多选项。
###2.2多次迭代裁剪
在路径
`PaddleSlim/demo/auto_prune`
下执行以下代码运行示例:
```
export CUDA_VISIBLE_DEVICES=0
python train_iterator.py --model "MobileNet"
从log中获取本次迭代搜索的最佳裁剪率列表,加入到train_finetune.py的ratiolist中,如下命令开始finetune本次搜索到的结果
python train_finetune.py --model "MobileNet"
将第一次迭代的最佳裁剪率列表,加入到train_iterator.py 的ratiolist中,如下命令进行第二次迭代
python train_iterator.py --model "MobileNet" --pretrained_model "checkpoint/Mobilenet/19"
finetune第二次迭代搜索结果,并继续重复迭代,直到获得目标裁剪率的结果
...
如下命令finetune最终结果
python train_finetune.py --model "MobileNet" --pretrained_model "checkpoint/Mobilenet/19" --num_epochs 70 --step_epochs 10 40
```
## 3. 注意
### 3.1 一次裁剪
在
`paddleslim.prune.AutoPruner`
接口的参数中,pruned_flops表示期望的最低flops剪切率。
### 3.2 多次迭代裁剪
单次迭代的裁剪目标,建议不高于10%。
在load前次迭代结果时,需要删除checkpoint下learning_rate、@LR_DECAY_COUNTER@等文件,避免继承之前的learning_rate,影响finetune效果。
demo/auto_prune/train_finetune.py
0 → 100644
浏览文件 @
44b48c82
import
os
import
sys
import
logging
import
paddle
import
argparse
import
functools
import
math
import
paddle.fluid
as
fluid
import
imagenet_reader
as
reader
import
models
from
utility
import
add_arguments
,
print_arguments
import
numpy
as
np
import
time
from
paddleslim.prune
import
Pruner
from
paddleslim.analysis
import
flops
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'batch_size'
,
int
,
64
*
4
,
"Minibatch size."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether to use GPU or not."
)
add_arg
(
'model'
,
str
,
"MobileNet"
,
"The target model."
)
add_arg
(
'model_save_dir'
,
str
,
"./"
,
"checkpoint model."
)
add_arg
(
'pretrained_model'
,
str
,
"../pretrained_model/MobileNetV1_pretained"
,
"Whether to use pretrained model."
)
add_arg
(
'lr'
,
float
,
0.01
,
"The learning rate used to fine-tune pruned model."
)
add_arg
(
'lr_strategy'
,
str
,
"piecewise_decay"
,
"The learning rate decay strategy."
)
add_arg
(
'l2_decay'
,
float
,
3e-5
,
"The l2_decay parameter."
)
add_arg
(
'momentum_rate'
,
float
,
0.9
,
"The value of momentum_rate."
)
add_arg
(
'num_epochs'
,
int
,
20
,
"The number of total epochs."
)
add_arg
(
'total_images'
,
int
,
1281167
,
"The number of total training images."
)
parser
.
add_argument
(
'--step_epochs'
,
nargs
=
'+'
,
type
=
int
,
default
=
[
5
,
15
],
help
=
"piecewise decay step"
)
add_arg
(
'config_file'
,
str
,
None
,
"The config file for compression with yaml format."
)
# yapf: enable
model_list
=
[
m
for
m
in
dir
(
models
)
if
"__"
not
in
m
]
ratiolist
=
[
# [0.06, 0.0, 0.09, 0.03, 0.09, 0.02, 0.05, 0.03, 0.0, 0.07, 0.07, 0.05, 0.08],
# [0.08, 0.02, 0.03, 0.13, 0.1, 0.06, 0.03, 0.04, 0.14, 0.02, 0.03, 0.02, 0.01],
]
def
save_model
(
args
,
exe
,
train_prog
,
eval_prog
,
info
):
model_path
=
os
.
path
.
join
(
args
.
model_save_dir
,
args
.
model
,
str
(
info
))
if
not
os
.
path
.
isdir
(
model_path
):
os
.
makedirs
(
model_path
)
fluid
.
io
.
save_persistables
(
exe
,
model_path
,
main_program
=
train_prog
)
print
(
"Already save model in %s"
%
(
model_path
))
def
piecewise_decay
(
args
):
step
=
int
(
math
.
ceil
(
float
(
args
.
total_images
)
/
args
.
batch_size
))
bd
=
[
step
*
e
for
e
in
args
.
step_epochs
]
lr
=
[
args
.
lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
args
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
args
.
l2_decay
))
return
optimizer
def
cosine_decay
(
args
):
step
=
int
(
math
.
ceil
(
float
(
args
.
total_images
)
/
args
.
batch_size
))
learning_rate
=
fluid
.
layers
.
cosine_decay
(
learning_rate
=
args
.
lr
,
step_each_epoch
=
step
,
epochs
=
args
.
num_epochs
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
args
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
args
.
l2_decay
))
return
optimizer
def
create_optimizer
(
args
):
if
args
.
lr_strategy
==
"piecewise_decay"
:
return
piecewise_decay
(
args
)
elif
args
.
lr_strategy
==
"cosine_decay"
:
return
cosine_decay
(
args
)
def
compress
(
args
):
class_dim
=
1000
image_shape
=
"3,224,224"
image_shape
=
[
int
(
m
)
for
m
in
image_shape
.
split
(
","
)]
assert
args
.
model
in
model_list
,
"{} is not in lists: {}"
.
format
(
args
.
model
,
model_list
)
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# model definition
model
=
models
.
__dict__
[
args
.
model
]()
out
=
model
.
net
(
input
=
image
,
class_dim
=
class_dim
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
val_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
opt
=
create_optimizer
(
args
)
opt
.
minimize
(
avg_cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
if
args
.
pretrained_model
:
def
if_exist
(
var
):
exist
=
os
.
path
.
exists
(
os
.
path
.
join
(
args
.
pretrained_model
,
var
.
name
))
print
(
"exist"
,
exist
)
return
exist
#fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist)
val_reader
=
paddle
.
batch
(
reader
.
val
(),
batch_size
=
args
.
batch_size
)
train_reader
=
paddle
.
batch
(
reader
.
train
(),
batch_size
=
args
.
batch_size
,
drop_last
=
True
)
train_feeder
=
feeder
=
fluid
.
DataFeeder
([
image
,
label
],
place
)
val_feeder
=
feeder
=
fluid
.
DataFeeder
([
image
,
label
],
place
,
program
=
val_program
)
def
test
(
epoch
,
program
):
batch_id
=
0
acc_top1_ns
=
[]
acc_top5_ns
=
[]
for
data
in
val_reader
():
start_time
=
time
.
time
()
acc_top1_n
,
acc_top5_n
=
exe
.
run
(
program
,
feed
=
train_feeder
.
feed
(
data
),
fetch_list
=
[
acc_top1
.
name
,
acc_top5
.
name
])
end_time
=
time
.
time
()
print
(
"Eval epoch[{}] batch[{}] - acc_top1: {}; acc_top5: {}; time: {}"
.
format
(
epoch
,
batch_id
,
np
.
mean
(
acc_top1_n
),
np
.
mean
(
acc_top5_n
),
end_time
-
start_time
))
acc_top1_ns
.
append
(
np
.
mean
(
acc_top1_n
))
acc_top5_ns
.
append
(
np
.
mean
(
acc_top5_n
))
batch_id
+=
1
print
(
"Final eval epoch[{}] - acc_top1: {}; acc_top5: {}"
.
format
(
epoch
,
np
.
mean
(
np
.
array
(
acc_top1_ns
)),
np
.
mean
(
np
.
array
(
acc_top5_ns
))))
def
train
(
epoch
,
program
):
build_strategy
=
fluid
.
BuildStrategy
()
exec_strategy
=
fluid
.
ExecutionStrategy
()
train_program
=
fluid
.
compiler
.
CompiledProgram
(
program
).
with_data_parallel
(
loss_name
=
avg_cost
.
name
,
build_strategy
=
build_strategy
,
exec_strategy
=
exec_strategy
)
batch_id
=
0
for
data
in
train_reader
():
start_time
=
time
.
time
()
loss_n
,
acc_top1_n
,
acc_top5_n
,
lr_n
=
exe
.
run
(
train_program
,
feed
=
train_feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
.
name
,
acc_top1
.
name
,
acc_top5
.
name
,
"learning_rate"
])
end_time
=
time
.
time
()
loss_n
=
np
.
mean
(
loss_n
)
acc_top1_n
=
np
.
mean
(
acc_top1_n
)
acc_top5_n
=
np
.
mean
(
acc_top5_n
)
lr_n
=
np
.
mean
(
lr_n
)
print
(
"epoch[{}]-batch[{}] - loss: {}; acc_top1: {}; acc_top5: {};lrn: {}; time: {}"
.
format
(
epoch
,
batch_id
,
loss_n
,
acc_top1_n
,
acc_top5_n
,
lr_n
,
end_time
-
start_time
))
batch_id
+=
1
params
=
[]
for
param
in
fluid
.
default_main_program
().
global_block
().
all_parameters
():
#if "_weights" in param.name and "conv1_weights" not in param.name:
if
"_sep_weights"
in
param
.
name
:
params
.
append
(
param
.
name
)
print
(
"fops before pruning: {}"
.
format
(
flops
(
fluid
.
default_main_program
())))
pruned_program_iter
=
fluid
.
default_main_program
()
pruned_val_program_iter
=
val_program
for
ratios
in
ratiolist
:
pruner
=
Pruner
()
pruned_val_program_iter
=
pruner
.
prune
(
pruned_val_program_iter
,
fluid
.
global_scope
(),
params
=
params
,
ratios
=
ratios
,
place
=
place
,
only_graph
=
True
)
pruned_program_iter
=
pruner
.
prune
(
pruned_program_iter
,
fluid
.
global_scope
(),
params
=
params
,
ratios
=
ratios
,
place
=
place
)
print
(
"fops after pruning: {}"
.
format
(
flops
(
pruned_program_iter
)))
""" do not inherit learning rate """
if
(
os
.
path
.
exists
(
args
.
pretrained_model
+
"/learning_rate"
)):
os
.
remove
(
args
.
pretrained_model
+
"/learning_rate"
)
if
(
os
.
path
.
exists
(
args
.
pretrained_model
+
"/@LR_DECAY_COUNTER@"
)):
os
.
remove
(
args
.
pretrained_model
+
"/@LR_DECAY_COUNTER@"
)
fluid
.
io
.
load_vars
(
exe
,
args
.
pretrained_model
,
main_program
=
pruned_program_iter
,
predicate
=
if_exist
)
pruned_program
=
pruned_program_iter
pruned_val_program
=
pruned_val_program_iter
for
i
in
range
(
args
.
num_epochs
):
train
(
i
,
pruned_program
)
test
(
i
,
pruned_val_program
)
save_model
(
args
,
exe
,
pruned_program
,
pruned_val_program
,
i
)
def
main
():
args
=
parser
.
parse_args
()
print_arguments
(
args
)
compress
(
args
)
if
__name__
==
'__main__'
:
main
()
demo/auto_prune/train_iterator.py
0 → 100644
浏览文件 @
44b48c82
import
os
import
sys
import
logging
import
paddle
import
argparse
import
functools
import
math
import
time
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddleslim.prune
import
AutoPruner
from
paddleslim.common
import
get_logger
from
paddleslim.analysis
import
flops
from
paddleslim.prune
import
Pruner
sys
.
path
.
append
(
sys
.
path
[
0
]
+
"/../"
)
import
models
from
utility
import
add_arguments
,
print_arguments
_logger
=
get_logger
(
__name__
,
level
=
logging
.
INFO
)
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'batch_size'
,
int
,
64
*
4
,
"Minibatch size."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether to use GPU or not."
)
add_arg
(
'model'
,
str
,
"MobileNet"
,
"The target model."
)
add_arg
(
'pretrained_model'
,
str
,
"../pretrained_model/MobileNetV1_pretained"
,
"Whether to use pretrained model."
)
add_arg
(
'model_save_dir'
,
str
,
"./"
,
"checkpoint model."
)
add_arg
(
'lr'
,
float
,
0.1
,
"The learning rate used to fine-tune pruned model."
)
add_arg
(
'lr_strategy'
,
str
,
"piecewise_decay"
,
"The learning rate decay strategy."
)
add_arg
(
'l2_decay'
,
float
,
3e-5
,
"The l2_decay parameter."
)
add_arg
(
'momentum_rate'
,
float
,
0.9
,
"The value of momentum_rate."
)
add_arg
(
'num_epochs'
,
int
,
120
,
"The number of total epochs."
)
add_arg
(
'total_images'
,
int
,
1281167
,
"The number of total training images."
)
parser
.
add_argument
(
'--step_epochs'
,
nargs
=
'+'
,
type
=
int
,
default
=
[
30
,
60
,
90
],
help
=
"piecewise decay step"
)
add_arg
(
'config_file'
,
str
,
None
,
"The config file for compression with yaml format."
)
add_arg
(
'data'
,
str
,
"mnist"
,
"Which data to use. 'mnist' or 'imagenet'"
)
add_arg
(
'log_period'
,
int
,
10
,
"Log period in batches."
)
add_arg
(
'test_period'
,
int
,
10
,
"Test period in epoches."
)
# yapf: enable
model_list
=
[
m
for
m
in
dir
(
models
)
if
"__"
not
in
m
]
ratiolist
=
[
# [0.06, 0.0, 0.09, 0.03, 0.09, 0.02, 0.05, 0.03, 0.0, 0.07, 0.07, 0.05, 0.08],
# [0.08, 0.02, 0.03, 0.13, 0.1, 0.06, 0.03, 0.04, 0.14, 0.02, 0.03, 0.02, 0.01],
]
def
piecewise_decay
(
args
):
step
=
int
(
math
.
ceil
(
float
(
args
.
total_images
)
/
args
.
batch_size
))
bd
=
[
step
*
e
for
e
in
args
.
step_epochs
]
lr
=
[
args
.
lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
args
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
args
.
l2_decay
))
return
optimizer
def
cosine_decay
(
args
):
step
=
int
(
math
.
ceil
(
float
(
args
.
total_images
)
/
args
.
batch_size
))
learning_rate
=
fluid
.
layers
.
cosine_decay
(
learning_rate
=
args
.
lr
,
step_each_epoch
=
step
,
epochs
=
args
.
num_epochs
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
args
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
args
.
l2_decay
))
return
optimizer
def
create_optimizer
(
args
):
if
args
.
lr_strategy
==
"piecewise_decay"
:
return
piecewise_decay
(
args
)
elif
args
.
lr_strategy
==
"cosine_decay"
:
return
cosine_decay
(
args
)
def
compress
(
args
):
train_reader
=
None
test_reader
=
None
if
args
.
data
==
"mnist"
:
import
paddle.dataset.mnist
as
reader
train_reader
=
reader
.
train
()
val_reader
=
reader
.
test
()
class_dim
=
10
image_shape
=
"1,28,28"
elif
args
.
data
==
"imagenet"
:
import
imagenet_reader
as
reader
train_reader
=
reader
.
train
()
val_reader
=
reader
.
val
()
class_dim
=
1000
image_shape
=
"3,224,224"
else
:
raise
ValueError
(
"{} is not supported."
.
format
(
args
.
data
))
image_shape
=
[
int
(
m
)
for
m
in
image_shape
.
split
(
","
)]
assert
args
.
model
in
model_list
,
"{} is not in lists: {}"
.
format
(
args
.
model
,
model_list
)
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# model definition
model
=
models
.
__dict__
[
args
.
model
]()
out
=
model
.
net
(
input
=
image
,
class_dim
=
class_dim
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
val_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
opt
=
create_optimizer
(
args
)
opt
.
minimize
(
avg_cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
if
args
.
pretrained_model
:
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
args
.
pretrained_model
,
var
.
name
))
# fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist)
val_reader
=
paddle
.
batch
(
val_reader
,
batch_size
=
args
.
batch_size
)
train_reader
=
paddle
.
batch
(
train_reader
,
batch_size
=
args
.
batch_size
,
drop_last
=
True
)
train_feeder
=
feeder
=
fluid
.
DataFeeder
([
image
,
label
],
place
)
val_feeder
=
feeder
=
fluid
.
DataFeeder
(
[
image
,
label
],
place
,
program
=
val_program
)
def
test
(
epoch
,
program
):
batch_id
=
0
acc_top1_ns
=
[]
acc_top5_ns
=
[]
for
data
in
val_reader
():
start_time
=
time
.
time
()
acc_top1_n
,
acc_top5_n
=
exe
.
run
(
program
,
feed
=
train_feeder
.
feed
(
data
),
fetch_list
=
[
acc_top1
.
name
,
acc_top5
.
name
])
end_time
=
time
.
time
()
if
batch_id
%
args
.
log_period
==
0
:
_logger
.
info
(
"Eval epoch[{}] batch[{}] - acc_top1: {}; acc_top5: {}; time: {}"
.
format
(
epoch
,
batch_id
,
np
.
mean
(
acc_top1_n
),
np
.
mean
(
acc_top5_n
),
end_time
-
start_time
))
acc_top1_ns
.
append
(
np
.
mean
(
acc_top1_n
))
acc_top5_ns
.
append
(
np
.
mean
(
acc_top5_n
))
batch_id
+=
1
_logger
.
info
(
"Final eval epoch[{}] - acc_top1: {}; acc_top5: {}"
.
format
(
epoch
,
np
.
mean
(
np
.
array
(
acc_top1_ns
)),
np
.
mean
(
np
.
array
(
acc_top5_ns
))))
return
np
.
mean
(
np
.
array
(
acc_top1_ns
))
def
train
(
epoch
,
program
):
build_strategy
=
fluid
.
BuildStrategy
()
exec_strategy
=
fluid
.
ExecutionStrategy
()
train_program
=
fluid
.
compiler
.
CompiledProgram
(
program
).
with_data_parallel
(
loss_name
=
avg_cost
.
name
,
build_strategy
=
build_strategy
,
exec_strategy
=
exec_strategy
)
batch_id
=
0
for
data
in
train_reader
():
start_time
=
time
.
time
()
loss_n
,
acc_top1_n
,
acc_top5_n
=
exe
.
run
(
train_program
,
feed
=
train_feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
.
name
,
acc_top1
.
name
,
acc_top5
.
name
])
end_time
=
time
.
time
()
loss_n
=
np
.
mean
(
loss_n
)
acc_top1_n
=
np
.
mean
(
acc_top1_n
)
acc_top5_n
=
np
.
mean
(
acc_top5_n
)
if
batch_id
%
args
.
log_period
==
0
:
_logger
.
info
(
"epoch[{}]-batch[{}] - loss: {}; acc_top1: {}; acc_top5: {}; time: {}"
.
format
(
epoch
,
batch_id
,
loss_n
,
acc_top1_n
,
acc_top5_n
,
end_time
-
start_time
))
batch_id
+=
1
params
=
[]
for
param
in
fluid
.
default_main_program
().
global_block
().
all_parameters
():
if
"_sep_weights"
in
param
.
name
:
params
.
append
(
param
.
name
)
pruned_program_iter
=
fluid
.
default_main_program
()
pruned_val_program_iter
=
val_program
for
ratios
in
ratiolist
:
pruner
=
Pruner
()
pruned_val_program_iter
=
pruner
.
prune
(
pruned_val_program_iter
,
fluid
.
global_scope
(),
params
=
params
,
ratios
=
ratios
,
place
=
place
,
only_graph
=
True
)
pruned_program_iter
=
pruner
.
prune
(
pruned_program_iter
,
fluid
.
global_scope
(),
params
=
params
,
ratios
=
ratios
,
place
=
place
)
print
(
"fops after pruning: {}"
.
format
(
flops
(
pruned_program_iter
)))
fluid
.
io
.
load_vars
(
exe
,
args
.
pretrained_model
,
main_program
=
pruned_program_iter
,
predicate
=
if_exist
)
pruner
=
AutoPruner
(
pruned_val_program_iter
,
fluid
.
global_scope
(),
place
,
params
=
params
,
init_ratios
=
[
0.1
]
*
len
(
params
),
pruned_flops
=
0.1
,
pruned_latency
=
None
,
server_addr
=
(
""
,
0
),
init_temperature
=
100
,
reduce_rate
=
0.85
,
max_try_times
=
300
,
max_client_num
=
10
,
search_steps
=
100
,
max_ratios
=
0.2
,
min_ratios
=
0.
,
is_server
=
True
,
key
=
"auto_pruner"
)
while
True
:
pruned_program
,
pruned_val_program
=
pruner
.
prune
(
pruned_program_iter
,
pruned_val_program_iter
)
for
i
in
range
(
0
):
train
(
i
,
pruned_program
)
score
=
test
(
0
,
pruned_val_program
)
pruner
.
reward
(
score
)
def
main
():
args
=
parser
.
parse_args
()
print_arguments
(
args
)
compress
(
args
)
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录