diff --git a/demo/auto_prune/README.md b/demo/auto_prune/README.md new file mode 100644 index 0000000000000000000000000000000000000000..9ada4cf4c848ef24e296aa3ebf4724c707354199 --- /dev/null +++ b/demo/auto_prune/README.md @@ -0,0 +1,63 @@ +该示例介绍如何使用自动裁剪。 +该示例使用默认会自动下载并使用MNIST数据。支持以下模型: + +- MobileNetV1 +- MobileNetV2 +- ResNet50 + +## 1. 接口介绍 + +该示例涉及以下接口: + +- [paddleslim.prune.AutoPruner]) +- [paddleslim.prune.Pruner]) + +## 2. 运行示例 + + +提供两种自动裁剪模式,直接以裁剪目标进行一次自动裁剪,和多次迭代的方式进行裁剪。 + +###2.1一次裁剪 + +在路径`PaddleSlim/demo/auto_prune`下执行以下代码运行示例: + +``` +export CUDA_VISIBLE_DEVICES=0 +python train.py --model "MobileNet" +从log中获取搜索的最佳裁剪率列表,加入到train_finetune.py的ratiolist中,如下命令finetune得到最终结果 +python train_finetune.py --model "MobileNet" --lr 0.1 --num_epochs 120 --step_epochs 30 60 90 + +``` + +通过`python train.py --help`查看更多选项。 + + +###2.2多次迭代裁剪 + +在路径`PaddleSlim/demo/auto_prune`下执行以下代码运行示例: + +``` +export CUDA_VISIBLE_DEVICES=0 +python train_iterator.py --model "MobileNet" +从log中获取本次迭代搜索的最佳裁剪率列表,加入到train_finetune.py的ratiolist中,如下命令开始finetune本次搜索到的结果 +python train_finetune.py --model "MobileNet" +将第一次迭代的最佳裁剪率列表,加入到train_iterator.py 的ratiolist中,如下命令进行第二次迭代 +python train_iterator.py --model "MobileNet" --pretrained_model "checkpoint/Mobilenet/19" +finetune第二次迭代搜索结果,并继续重复迭代,直到获得目标裁剪率的结果 +... +如下命令finetune最终结果 +python train_finetune.py --model "MobileNet" --pretrained_model "checkpoint/Mobilenet/19" --num_epochs 70 --step_epochs 10 40 +``` + + +## 3. 注意 + +### 3.1 一次裁剪 + +在`paddleslim.prune.AutoPruner`接口的参数中,pruned_flops表示期望的最低flops剪切率。 + + +### 3.2 多次迭代裁剪 + +单次迭代的裁剪目标,建议不高于10%。 +在load前次迭代结果时,需要删除checkpoint下learning_rate、@LR_DECAY_COUNTER@等文件,避免继承之前的learning_rate,影响finetune效果。 diff --git a/demo/auto_prune/train_finetune.py b/demo/auto_prune/train_finetune.py new file mode 100644 index 0000000000000000000000000000000000000000..6508f435bb52cfc0421c77bc0c893bff7f315d03 --- /dev/null +++ b/demo/auto_prune/train_finetune.py @@ -0,0 +1,202 @@ +import os +import sys +import logging +import paddle +import argparse +import functools +import math +import paddle.fluid as fluid +import imagenet_reader as reader +import models +from utility import add_arguments, print_arguments +import numpy as np +import time +from paddleslim.prune import Pruner +from paddleslim.analysis import flops + +parser = argparse.ArgumentParser(description=__doc__) +add_arg = functools.partial(add_arguments, argparser=parser) +# yapf: disable +add_arg('batch_size', int, 64 * 4, "Minibatch size.") +add_arg('use_gpu', bool, True, "Whether to use GPU or not.") +add_arg('model', str, "MobileNet", "The target model.") +add_arg('model_save_dir', str, "./", "checkpoint model.") +add_arg('pretrained_model', str, "../pretrained_model/MobileNetV1_pretained", "Whether to use pretrained model.") +add_arg('lr', float, 0.01, "The learning rate used to fine-tune pruned model.") +add_arg('lr_strategy', str, "piecewise_decay", "The learning rate decay strategy.") +add_arg('l2_decay', float, 3e-5, "The l2_decay parameter.") +add_arg('momentum_rate', float, 0.9, "The value of momentum_rate.") +add_arg('num_epochs', int, 20, "The number of total epochs.") +add_arg('total_images', int, 1281167, "The number of total training images.") +parser.add_argument('--step_epochs', nargs='+', type=int, default=[5, 15], help="piecewise decay step") +add_arg('config_file', str, None, "The config file for compression with yaml format.") +# yapf: enable + +model_list = [m for m in dir(models) if "__" not in m] +ratiolist = [ +# [0.06, 0.0, 0.09, 0.03, 0.09, 0.02, 0.05, 0.03, 0.0, 0.07, 0.07, 0.05, 0.08], +# [0.08, 0.02, 0.03, 0.13, 0.1, 0.06, 0.03, 0.04, 0.14, 0.02, 0.03, 0.02, 0.01], + ] + + +def save_model(args, exe, train_prog, eval_prog,info): + model_path = os.path.join(args.model_save_dir, args.model, str(info)) + if not os.path.isdir(model_path): + os.makedirs(model_path) + fluid.io.save_persistables(exe, model_path, main_program=train_prog) + print("Already save model in %s" % (model_path)) + + +def piecewise_decay(args): + step = int(math.ceil(float(args.total_images) / args.batch_size)) + bd = [step * e for e in args.step_epochs] + lr = [args.lr * (0.1**i) for i in range(len(bd) + 1)] + learning_rate = fluid.layers.piecewise_decay(boundaries=bd, values=lr) + optimizer = fluid.optimizer.Momentum( + learning_rate=learning_rate, + momentum=args.momentum_rate, + regularization=fluid.regularizer.L2Decay(args.l2_decay)) + return optimizer + +def cosine_decay(args): + step = int(math.ceil(float(args.total_images) / args.batch_size)) + learning_rate = fluid.layers.cosine_decay( + learning_rate=args.lr, + step_each_epoch=step, + epochs=args.num_epochs) + optimizer = fluid.optimizer.Momentum( + learning_rate=learning_rate, + momentum=args.momentum_rate, + regularization=fluid.regularizer.L2Decay(args.l2_decay)) + return optimizer + +def create_optimizer(args): + if args.lr_strategy == "piecewise_decay": + return piecewise_decay(args) + elif args.lr_strategy == "cosine_decay": + return cosine_decay(args) + +def compress(args): + class_dim=1000 + image_shape="3,224,224" + image_shape = [int(m) for m in image_shape.split(",")] + assert args.model in model_list, "{} is not in lists: {}".format(args.model, model_list) + image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') + label = fluid.layers.data(name='label', shape=[1], dtype='int64') + # model definition + model = models.__dict__[args.model]() + out = model.net(input=image, class_dim=class_dim) + cost = fluid.layers.cross_entropy(input=out, label=label) + avg_cost = fluid.layers.mean(x=cost) + acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1) + acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5) + val_program = fluid.default_main_program().clone(for_test=True) + opt = create_optimizer(args) + opt.minimize(avg_cost) + place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() + exe = fluid.Executor(place) + exe.run(fluid.default_startup_program()) + + if args.pretrained_model: + def if_exist(var): + exist = os.path.exists(os.path.join(args.pretrained_model, var.name)) + print("exist",exist) + return exist + #fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist) + + val_reader = paddle.batch(reader.val(), batch_size=args.batch_size) + train_reader = paddle.batch( + reader.train(), batch_size=args.batch_size, drop_last=True) + + train_feeder = feeder = fluid.DataFeeder([image, label], place) + val_feeder = feeder = fluid.DataFeeder([image, label], place, program=val_program) + + def test(epoch, program): + batch_id = 0 + acc_top1_ns = [] + acc_top5_ns = [] + for data in val_reader(): + start_time = time.time() + acc_top1_n, acc_top5_n = exe.run(program, + feed=train_feeder.feed(data), + fetch_list=[acc_top1.name, acc_top5.name]) + end_time = time.time() + print("Eval epoch[{}] batch[{}] - acc_top1: {}; acc_top5: {}; time: {}".format(epoch, batch_id, np.mean(acc_top1_n), np.mean(acc_top5_n), end_time-start_time)) + acc_top1_ns.append(np.mean(acc_top1_n)) + acc_top5_ns.append(np.mean(acc_top5_n)) + batch_id += 1 + + print("Final eval epoch[{}] - acc_top1: {}; acc_top5: {}".format(epoch, np.mean(np.array(acc_top1_ns)), np.mean(np.array(acc_top5_ns)))) + + + def train(epoch, program): + + build_strategy = fluid.BuildStrategy() + exec_strategy = fluid.ExecutionStrategy() + train_program = fluid.compiler.CompiledProgram( + program).with_data_parallel( + loss_name=avg_cost.name, + build_strategy=build_strategy, + exec_strategy=exec_strategy) + + batch_id = 0 + for data in train_reader(): + start_time = time.time() + loss_n, acc_top1_n, acc_top5_n,lr_n = exe.run(train_program, + feed=train_feeder.feed(data), + fetch_list=[avg_cost.name, acc_top1.name, acc_top5.name,"learning_rate"]) + end_time = time.time() + loss_n = np.mean(loss_n) + acc_top1_n = np.mean(acc_top1_n) + acc_top5_n = np.mean(acc_top5_n) + lr_n = np.mean(lr_n) + print("epoch[{}]-batch[{}] - loss: {}; acc_top1: {}; acc_top5: {};lrn: {}; time: {}".format(epoch, batch_id, loss_n, acc_top1_n, acc_top5_n, lr_n,end_time-start_time)) + batch_id += 1 + + params = [] + for param in fluid.default_main_program().global_block().all_parameters(): + #if "_weights" in param.name and "conv1_weights" not in param.name: + if "_sep_weights" in param.name: + params.append(param.name) + print("fops before pruning: {}".format(flops(fluid.default_main_program()))) + pruned_program_iter = fluid.default_main_program() + pruned_val_program_iter = val_program + for ratios in ratiolist: + pruner = Pruner() + pruned_val_program_iter = pruner.prune(pruned_val_program_iter, + fluid.global_scope(), + params=params, + ratios=ratios, + place=place, + only_graph=True) + + + pruned_program_iter = pruner.prune(pruned_program_iter, + fluid.global_scope(), + params=params, + ratios=ratios, + place=place) + print("fops after pruning: {}".format(flops(pruned_program_iter))) + + """ do not inherit learning rate """ + if(os.path.exists(args.pretrained_model + "/learning_rate")): + os.remove( args.pretrained_model + "/learning_rate") + if(os.path.exists(args.pretrained_model + "/@LR_DECAY_COUNTER@")): + os.remove( args.pretrained_model + "/@LR_DECAY_COUNTER@") + fluid.io.load_vars(exe, args.pretrained_model , main_program = pruned_program_iter, predicate=if_exist) + + pruned_program = pruned_program_iter + pruned_val_program = pruned_val_program_iter + for i in range(args.num_epochs): + train(i, pruned_program) + test(i, pruned_val_program) + save_model(args,exe,pruned_program,pruned_val_program,i) + +def main(): + args = parser.parse_args() + print_arguments(args) + compress(args) + + +if __name__ == '__main__': + main() diff --git a/demo/auto_prune/train_iterator.py b/demo/auto_prune/train_iterator.py new file mode 100644 index 0000000000000000000000000000000000000000..b30531ea9b7e7247fe44db958f1dd08759580cfb --- /dev/null +++ b/demo/auto_prune/train_iterator.py @@ -0,0 +1,250 @@ +import os +import sys +import logging +import paddle +import argparse +import functools +import math +import time +import numpy as np +import paddle.fluid as fluid +from paddleslim.prune import AutoPruner +from paddleslim.common import get_logger +from paddleslim.analysis import flops +from paddleslim.prune import Pruner +sys.path.append(sys.path[0] + "/../") +import models +from utility import add_arguments, print_arguments + +_logger = get_logger(__name__, level=logging.INFO) + +parser = argparse.ArgumentParser(description=__doc__) +add_arg = functools.partial(add_arguments, argparser=parser) +# yapf: disable +add_arg('batch_size', int, 64 * 4, "Minibatch size.") +add_arg('use_gpu', bool, True, "Whether to use GPU or not.") +add_arg('model', str, "MobileNet", "The target model.") +add_arg('pretrained_model', str, "../pretrained_model/MobileNetV1_pretained", "Whether to use pretrained model.") +add_arg('model_save_dir', str, "./", "checkpoint model.") +add_arg('lr', float, 0.1, "The learning rate used to fine-tune pruned model.") +add_arg('lr_strategy', str, "piecewise_decay", "The learning rate decay strategy.") +add_arg('l2_decay', float, 3e-5, "The l2_decay parameter.") +add_arg('momentum_rate', float, 0.9, "The value of momentum_rate.") +add_arg('num_epochs', int, 120, "The number of total epochs.") +add_arg('total_images', int, 1281167, "The number of total training images.") +parser.add_argument('--step_epochs', nargs='+', type=int, default=[30, 60, 90], help="piecewise decay step") +add_arg('config_file', str, None, "The config file for compression with yaml format.") +add_arg('data', str, "mnist", "Which data to use. 'mnist' or 'imagenet'") +add_arg('log_period', int, 10, "Log period in batches.") +add_arg('test_period', int, 10, "Test period in epoches.") +# yapf: enable + +model_list = [m for m in dir(models) if "__" not in m] +ratiolist = [ +# [0.06, 0.0, 0.09, 0.03, 0.09, 0.02, 0.05, 0.03, 0.0, 0.07, 0.07, 0.05, 0.08], +# [0.08, 0.02, 0.03, 0.13, 0.1, 0.06, 0.03, 0.04, 0.14, 0.02, 0.03, 0.02, 0.01], + ] + +def piecewise_decay(args): + step = int(math.ceil(float(args.total_images) / args.batch_size)) + bd = [step * e for e in args.step_epochs] + lr = [args.lr * (0.1**i) for i in range(len(bd) + 1)] + learning_rate = fluid.layers.piecewise_decay(boundaries=bd, values=lr) + optimizer = fluid.optimizer.Momentum( + learning_rate=learning_rate, + momentum=args.momentum_rate, + regularization=fluid.regularizer.L2Decay(args.l2_decay)) + return optimizer + + +def cosine_decay(args): + step = int(math.ceil(float(args.total_images) / args.batch_size)) + learning_rate = fluid.layers.cosine_decay( + learning_rate=args.lr, step_each_epoch=step, epochs=args.num_epochs) + optimizer = fluid.optimizer.Momentum( + learning_rate=learning_rate, + momentum=args.momentum_rate, + regularization=fluid.regularizer.L2Decay(args.l2_decay)) + return optimizer + + +def create_optimizer(args): + if args.lr_strategy == "piecewise_decay": + return piecewise_decay(args) + elif args.lr_strategy == "cosine_decay": + return cosine_decay(args) + + +def compress(args): + + train_reader = None + test_reader = None + if args.data == "mnist": + import paddle.dataset.mnist as reader + train_reader = reader.train() + val_reader = reader.test() + class_dim = 10 + image_shape = "1,28,28" + elif args.data == "imagenet": + import imagenet_reader as reader + train_reader = reader.train() + val_reader = reader.val() + class_dim = 1000 + image_shape = "3,224,224" + else: + raise ValueError("{} is not supported.".format(args.data)) + + image_shape = [int(m) for m in image_shape.split(",")] + assert args.model in model_list, "{} is not in lists: {}".format( + args.model, model_list) + image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') + label = fluid.layers.data(name='label', shape=[1], dtype='int64') + # model definition + model = models.__dict__[args.model]() + out = model.net(input=image, class_dim=class_dim) + cost = fluid.layers.cross_entropy(input=out, label=label) + avg_cost = fluid.layers.mean(x=cost) + acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1) + acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5) + val_program = fluid.default_main_program().clone(for_test=True) + opt = create_optimizer(args) + opt.minimize(avg_cost) + place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() + exe = fluid.Executor(place) + exe.run(fluid.default_startup_program()) + + if args.pretrained_model: + + def if_exist(var): + return os.path.exists( + os.path.join(args.pretrained_model, var.name)) + +# fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist) + + val_reader = paddle.batch(val_reader, batch_size=args.batch_size) + train_reader = paddle.batch( + train_reader, batch_size=args.batch_size, drop_last=True) + + train_feeder = feeder = fluid.DataFeeder([image, label], place) + val_feeder = feeder = fluid.DataFeeder( + [image, label], place, program=val_program) + + def test(epoch, program): + batch_id = 0 + acc_top1_ns = [] + acc_top5_ns = [] + for data in val_reader(): + start_time = time.time() + acc_top1_n, acc_top5_n = exe.run( + program, + feed=train_feeder.feed(data), + fetch_list=[acc_top1.name, acc_top5.name]) + end_time = time.time() + if batch_id % args.log_period == 0: + _logger.info( + "Eval epoch[{}] batch[{}] - acc_top1: {}; acc_top5: {}; time: {}". + format(epoch, batch_id, + np.mean(acc_top1_n), + np.mean(acc_top5_n), end_time - start_time)) + acc_top1_ns.append(np.mean(acc_top1_n)) + acc_top5_ns.append(np.mean(acc_top5_n)) + batch_id += 1 + + _logger.info("Final eval epoch[{}] - acc_top1: {}; acc_top5: {}". + format(epoch, + np.mean(np.array(acc_top1_ns)), + np.mean(np.array(acc_top5_ns)))) + return np.mean(np.array(acc_top1_ns)) + + def train(epoch, program): + + build_strategy = fluid.BuildStrategy() + exec_strategy = fluid.ExecutionStrategy() + train_program = fluid.compiler.CompiledProgram( + program).with_data_parallel( + loss_name=avg_cost.name, + build_strategy=build_strategy, + exec_strategy=exec_strategy) + + batch_id = 0 + for data in train_reader(): + start_time = time.time() + loss_n, acc_top1_n, acc_top5_n = exe.run( + train_program, + feed=train_feeder.feed(data), + fetch_list=[avg_cost.name, acc_top1.name, acc_top5.name]) + end_time = time.time() + loss_n = np.mean(loss_n) + acc_top1_n = np.mean(acc_top1_n) + acc_top5_n = np.mean(acc_top5_n) + if batch_id % args.log_period == 0: + _logger.info( + "epoch[{}]-batch[{}] - loss: {}; acc_top1: {}; acc_top5: {}; time: {}". + format(epoch, batch_id, loss_n, acc_top1_n, acc_top5_n, + end_time - start_time)) + batch_id += 1 + + params = [] + for param in fluid.default_main_program().global_block().all_parameters(): + if "_sep_weights" in param.name: + params.append(param.name) + + pruned_program_iter = fluid.default_main_program() + pruned_val_program_iter = val_program + + for ratios in ratiolist: + pruner = Pruner() + pruned_val_program_iter = pruner.prune(pruned_val_program_iter, + fluid.global_scope(), + params=params, + ratios=ratios, + place=place, + only_graph=True) + + + pruned_program_iter = pruner.prune(pruned_program_iter, + fluid.global_scope(), + params=params, + ratios=ratios, + place=place) + print("fops after pruning: {}".format(flops(pruned_program_iter))) + fluid.io.load_vars(exe, args.pretrained_model , main_program = pruned_program_iter, predicate=if_exist) + + pruner = AutoPruner( + pruned_val_program_iter, + fluid.global_scope(), + place, + params=params, + init_ratios=[0.1] * len(params), + pruned_flops=0.1, + pruned_latency=None, + server_addr=("", 0), + init_temperature=100, + reduce_rate=0.85, + max_try_times=300, + max_client_num=10, + search_steps=100, + max_ratios=0.2, + min_ratios=0., + is_server=True, + key="auto_pruner") + + while True: + pruned_program, pruned_val_program = pruner.prune( + pruned_program_iter, pruned_val_program_iter) + for i in range(0): + train(i, pruned_program) + score = test(0, pruned_val_program) + pruner.reward(score) + + + + +def main(): + args = parser.parse_args() + print_arguments(args) + compress(args) + + +if __name__ == '__main__': + main()