Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
1cb8d1bd
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1cb8d1bd
编写于
2月 03, 2020
作者:
W
whs
提交者:
GitHub
2月 03, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine quick start tutorial of pruning. (#49)
上级
648978cd
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
504 addition
and
56 deletion
+504
-56
demo/models/__init__.py
demo/models/__init__.py
+5
-1
demo/prune/README.md
demo/prune/README.md
+0
-0
demo/prune/image_classification_pruning_quick_start.ipynb
demo/prune/image_classification_pruning_quick_start.ipynb
+352
-0
docs/docs/tutorials/pruning_demo.md
docs/docs/tutorials/pruning_demo.md
+0
-42
docs/docs/tutorials/pruning_tutorial.md
docs/docs/tutorials/pruning_tutorial.md
+89
-0
docs/mkdocs.yml
docs/mkdocs.yml
+1
-0
paddleslim/__init__.py
paddleslim/__init__.py
+9
-0
paddleslim/models/util.py
paddleslim/models/util.py
+32
-0
paddleslim/prune/__init__.py
paddleslim/prune/__init__.py
+8
-6
paddleslim/prune/sensitive.py
paddleslim/prune/sensitive.py
+1
-1
paddleslim/prune/sensitive_pruner.py
paddleslim/prune/sensitive_pruner.py
+6
-5
paddleslim/version.py
paddleslim/version.py
+1
-1
未找到文件。
demo/models/__init__.py
浏览文件 @
1cb8d1bd
from
__future__
import
absolute_import
from
.mobilenet
import
MobileNet
from
.mobilenet
import
MobileNet
from
.resnet
import
ResNet34
,
ResNet50
from
.resnet
import
ResNet34
,
ResNet50
from
.resnet_vd
import
ResNet50_vd
from
.resnet_vd
import
ResNet50_vd
from
.mobilenet_v2
import
MobileNetV2
from
.mobilenet_v2
import
MobileNetV2
from
.pvanet
import
PVANet
from
.pvanet
import
PVANet
__all__
=
[
__all__
=
[
"model_list"
,
"MobileNet"
,
"ResNet34"
,
"ResNet50"
,
"MobileNetV2"
,
"PVANet"
,
"ResNet50_vd"
]
model_list
=
[
'MobileNet'
,
'ResNet34'
,
'ResNet50'
,
'MobileNetV2'
,
'PVANet'
,
'ResNet50_vd'
'MobileNet'
,
'ResNet34'
,
'ResNet50'
,
'MobileNetV2'
,
'PVANet'
,
'ResNet50_vd'
]
]
demo/prune/REAME.md
→
demo/prune/REA
D
ME.md
浏览文件 @
1cb8d1bd
文件已移动
demo/prune/image_classification_pruning_quick_start.ipynb
0 → 100644
浏览文件 @
1cb8d1bd
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 图像分类模型通道剪裁-快速开始\n",
"\n",
"该教程以图像分类模型MobileNetV1为例,说明如何快速使用[PaddleSlim的卷积通道剪裁接口]()。\n",
"该示例包含以下步骤:\n",
"\n",
"1. 导入依赖\n",
"2. 构建模型\n",
"3. 剪裁\n",
"4. 训练剪裁后的模型\n",
"\n",
"以下章节依次次介绍每个步骤的内容。\n",
"\n",
"## 1. 导入依赖\n",
"\n",
"PaddleSlim依赖Paddle1.7版本,请确认已正确安装Paddle,然后按以下方式导入Paddle和PaddleSlim:"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"import paddle\n",
"import paddle.fluid as fluid\n",
"import paddleslim as slim"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. 构建网络\n",
"\n",
"该章节构造一个用于对MNIST数据进行分类的分类模型,选用`MobileNetV1`,并将输入大小设置为`[1, 28, 28]`,输出类别数为10。\n",
"为了方便展示示例,我们在`paddleslim.models`下预定义了用于构建分类模型的方法,执行以下代码构建分类模型:"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"exe, train_program, val_program, inputs, outputs = slim.models.image_classification(\"MobileNet\", [1, 28, 28], 10, use_gpu=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
">注意:paddleslim.models下的API并非PaddleSlim常规API,是为了简化示例而封装预定义的一系列方法,比如:模型结构的定义、Program的构建等。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. 剪裁卷积层通道\n",
"\n",
"### 3.1 计算剪裁之前的FLOPs"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"FLOPs: 10907072.0\n"
]
}
],
"source": [
"FLOPs = slim.analysis.flops(train_program)\n",
"print(\"FLOPs: {}\".format(FLOPs))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3.2 剪裁\n",
"\n",
"我们这里对参数名为`conv2_1_sep_weights`和`conv2_2_sep_weights`的卷积层进行剪裁,分别剪掉20%和30%的通道数。\n",
"代码如下所示:"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"pruner = slim.prune.Pruner()\n",
"pruned_program, _, _ = pruner.prune(\n",
" train_program,\n",
" fluid.global_scope(),\n",
" params=[\"conv2_1_sep_weights\", \"conv2_2_sep_weights\"],\n",
" ratios=[0.33] * 2,\n",
" place=fluid.CPUPlace())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"以上操作会修改`train_program`中对应卷积层参数的定义,同时对`fluid.global_scope()`中存储的参数数组进行裁剪。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3.3 计算剪裁之后的FLOPs"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"FLOPs: 10907072.0\n"
]
}
],
"source": [
"FLOPs = paddleslim.analysis.flops(train_program)\n",
"print(\"FLOPs: {}\".format(FLOPs))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. 训练剪裁后的模型\n",
"\n",
"### 4.1 定义输入数据\n",
"\n",
"为了快速执行该示例,我们选取简单的MNIST数据,Paddle框架的`paddle.dataset.mnist`包定义了MNIST数据的下载和读取。\n",
"代码如下:"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"import paddle.dataset.mnist as reader\n",
"train_reader = paddle.batch(\n",
" reader.train(), batch_size=128, drop_last=True)\n",
"train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4.2 执行训练\n",
"以下代码执行了一个`epoch`的训练:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.1484375] [0.4921875] [2.6727316]\n",
"[0.125] [0.546875] [2.6547904]\n",
"[0.125] [0.5546875] [2.795205]\n",
"[0.1171875] [0.578125] [2.8561475]\n",
"[0.1875] [0.59375] [2.470603]\n",
"[0.1796875] [0.578125] [2.8031898]\n",
"[0.1484375] [0.6015625] [2.7530417]\n",
"[0.1953125] [0.640625] [2.711596]\n",
"[0.125] [0.59375] [2.8637898]\n",
"[0.1796875] [0.53125] [2.9473038]\n",
"[0.25] [0.671875] [2.3943179]\n",
"[0.25] [0.6953125] [2.632146]\n",
"[0.2578125] [0.7265625] [2.723265]\n",
"[0.359375] [0.765625] [2.4263484]\n",
"[0.3828125] [0.8203125] [2.226284]\n",
"[0.421875] [0.8203125] [1.8042578]\n",
"[0.4765625] [0.890625] [1.6841211]\n",
"[0.53125] [0.8671875] [2.1971617]\n",
"[0.5546875] [0.8984375] [1.5361531]\n",
"[0.53125] [0.890625] [1.7211896]\n",
"[0.5078125] [0.8984375] [1.6586945]\n",
"[0.53125] [0.9140625] [1.8980236]\n",
"[0.546875] [0.9453125] [1.5279069]\n",
"[0.5234375] [0.8828125] [1.7356458]\n",
"[0.6015625] [0.9765625] [1.0375824]\n",
"[0.5546875] [0.921875] [1.639497]\n",
"[0.6015625] [0.9375] [1.5469061]\n",
"[0.578125] [0.96875] [1.3573356]\n",
"[0.65625] [0.9453125] [1.3787829]\n",
"[0.640625] [0.9765625] [0.9946856]\n",
"[0.65625] [0.96875] [1.1651027]\n",
"[0.625] [0.984375] [1.0487883]\n",
"[0.7265625] [0.9609375] [1.2526855]\n",
"[0.7265625] [0.9765625] [1.2954011]\n",
"[0.65625] [0.96875] [1.1181556]\n",
"[0.71875] [0.9765625] [0.97891223]\n",
"[0.640625] [0.9609375] [1.2135172]\n",
"[0.7265625] [0.9921875] [0.8950747]\n",
"[0.7578125] [0.96875] [1.0864108]\n",
"[0.734375] [0.9921875] [0.8392239]\n",
"[0.796875] [0.9609375] [0.7012155]\n",
"[0.7734375] [0.9765625] [0.7409136]\n",
"[0.8046875] [0.984375] [0.6108341]\n",
"[0.796875] [0.9765625] [0.63867176]\n",
"[0.7734375] [0.984375] [0.64099216]\n",
"[0.7578125] [0.9453125] [0.83827704]\n",
"[0.8046875] [0.9921875] [0.5311729]\n",
"[0.8984375] [0.9921875] [0.36445504]\n",
"[0.859375] [0.9921875] [0.40577835]\n",
"[0.8125] [0.9765625] [0.64629185]\n",
"[0.84375] [1.] [0.38400555]\n",
"[0.890625] [0.9765625] [0.45866236]\n",
"[0.8828125] [0.9921875] [0.3711415]\n",
"[0.7578125] [0.9921875] [0.6650479]\n",
"[0.7578125] [0.984375] [0.9030752]\n",
"[0.8671875] [0.9921875] [0.3678714]\n",
"[0.7421875] [0.9765625] [0.7424855]\n",
"[0.7890625] [1.] [0.6212543]\n",
"[0.8359375] [1.] [0.58529043]\n",
"[0.8203125] [0.96875] [0.5860813]\n",
"[0.8671875] [0.9921875] [0.415236]\n",
"[0.8125] [1.] [0.60501564]\n",
"[0.796875] [0.9765625] [0.60677457]\n",
"[0.8515625] [1.] [0.5338207]\n",
"[0.8046875] [0.9921875] [0.54180473]\n",
"[0.875] [0.9921875] [0.7293667]\n",
"[0.84375] [0.9765625] [0.5581689]\n",
"[0.8359375] [1.] [0.50712734]\n",
"[0.8671875] [0.9921875] [0.55217856]\n",
"[0.765625] [0.96875] [0.8076792]\n",
"[0.953125] [1.] [0.17031987]\n",
"[0.890625] [0.9921875] [0.42383268]\n",
"[0.828125] [0.9765625] [0.49300486]\n",
"[0.8671875] [0.96875] [0.57985115]\n",
"[0.8515625] [1.] [0.4901033]\n",
"[0.921875] [1.] [0.34583277]\n",
"[0.8984375] [0.984375] [0.41139168]\n",
"[0.9296875] [1.] [0.20420414]\n",
"[0.921875] [0.984375] [0.24322833]\n",
"[0.921875] [0.9921875] [0.30570173]\n",
"[0.875] [0.9921875] [0.3866225]\n",
"[0.9140625] [0.9921875] [0.20813875]\n",
"[0.9140625] [1.] [0.17933217]\n",
"[0.8984375] [0.9921875] [0.32508463]\n",
"[0.9375] [1.] [0.24799153]\n",
"[0.9140625] [1.] [0.26146784]\n",
"[0.90625] [1.] [0.24672262]\n",
"[0.8828125] [1.] [0.34094217]\n",
"[0.90625] [1.] [0.2964819]\n",
"[0.9296875] [1.] [0.18237087]\n",
"[0.84375] [1.] [0.7182543]\n",
"[0.8671875] [0.984375] [0.508474]\n",
"[0.8828125] [0.9921875] [0.367172]\n",
"[0.9453125] [1.] [0.2366665]\n",
"[0.9375] [1.] [0.12494276]\n",
"[0.8984375] [1.] [0.3395289]\n",
"[0.890625] [0.984375] [0.30877113]\n",
"[0.90625] [1.] [0.29763448]\n",
"[0.8828125] [0.984375] [0.4845504]\n",
"[0.8515625] [1.] [0.45548072]\n",
"[0.8828125] [1.] [0.33331633]\n",
"[0.90625] [1.] [0.4024018]\n",
"[0.890625] [0.984375] [0.73405886]\n",
"[0.9609375] [0.9921875] [0.15409982]\n",
"[0.9140625] [0.984375] [0.37103674]\n",
"[0.953125] [1.] [0.17628372]\n",
"[0.890625] [1.] [0.36522508]\n",
"[0.8828125] [1.] [0.407708]\n",
"[0.9375] [0.984375] [0.25090045]\n",
"[0.890625] [0.984375] [0.35742313]\n",
"[0.921875] [0.9921875] [0.2751101]\n",
"[0.890625] [0.984375] [0.43053097]\n",
"[0.875] [0.9921875] [0.34412643]\n",
"[0.90625] [1.] [0.35595697]\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-21-92f72657bddc>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtrain_reader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0macc1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0macc5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mloss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mexe\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpruned_program\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtrain_feeder\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfeed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0macc1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0macc5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.5/dist-packages/paddle/fluid/executor.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, program, feed, fetch_list, feed_var_name, fetch_var_name, scope, return_numpy, use_program_cache)\u001b[0m\n\u001b[1;32m 776\u001b[0m \u001b[0mscope\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mscope\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 777\u001b[0m \u001b[0mreturn_numpy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mreturn_numpy\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 778\u001b[0;31m use_program_cache=use_program_cache)\n\u001b[0m\u001b[1;32m 779\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 780\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mEOFException\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.5/dist-packages/paddle/fluid/executor.py\u001b[0m in \u001b[0;36m_run_impl\u001b[0;34m(self, program, feed, fetch_list, feed_var_name, fetch_var_name, scope, return_numpy, use_program_cache)\u001b[0m\n\u001b[1;32m 829\u001b[0m \u001b[0mscope\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mscope\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 830\u001b[0m \u001b[0mreturn_numpy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mreturn_numpy\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 831\u001b[0;31m use_program_cache=use_program_cache)\n\u001b[0m\u001b[1;32m 832\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 833\u001b[0m \u001b[0mprogram\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mscope\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplace\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.5/dist-packages/paddle/fluid/executor.py\u001b[0m in \u001b[0;36m_run_program\u001b[0;34m(self, program, feed, fetch_list, feed_var_name, fetch_var_name, scope, return_numpy, use_program_cache)\u001b[0m\n\u001b[1;32m 903\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0muse_program_cache\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 904\u001b[0m self._default_executor.run(program.desc, scope, 0, True, True,\n\u001b[0;32m--> 905\u001b[0;31m fetch_var_name)\n\u001b[0m\u001b[1;32m 906\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 907\u001b[0m self._default_executor.run_prepared_ctx(ctx, scope, False, False,\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"for data in train_reader():\n",
" acc1, acc5, loss = exe.run(pruned_program, feed=train_feeder.feed(data), fetch_list=outputs)\n",
" print(acc1, acc5, loss)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
docs/docs/tutorials/pruning_demo.md
已删除
100755 → 0
浏览文件 @
648978cd
# 卷积通道剪裁示例
本示例将演示如何按指定的剪裁率对每个卷积层的通道数进行剪裁。该示例默认会自动下载并使用mnist数据。
当前示例支持以下分类模型:
-
MobileNetV1
-
MobileNetV2
-
ResNet50
-
PVANet
## 接口介绍
该示例使用了
`paddleslim.Pruner`
工具类,用户接口使用介绍请参考:
[
API文档
](
https://paddlepaddle.github.io/PaddleSlim/api/prune_api/
)
## 确定待裁参数
不同模型的参数命名不同,在剪裁前需要确定待裁卷积层的参数名称。可通过以下方法列出所有参数名:
```
python
for
param
in
program
.
global_block
().
all_parameters
():
print
(
"param name: {}; shape: {}"
.
format
(
param
.
name
,
param
.
shape
))
```
在
`train.py`
脚本中,提供了
`get_pruned_params`
方法,根据用户设置的选项
`--model`
确定要裁剪的参数。
## 启动裁剪任务
通过以下命令启动裁剪任务:
```
python
export
CUDA_VISIBLE_DEVICES
=
0
python
train
.
py
```
执行
`python train.py --help`
查看更多选项。
## 注意
1.
在接口
`paddle.Pruner.prune`
的参数中,
`params`
和
`ratios`
的长度需要一样。
docs/docs/tutorials/pruning_tutorial.md
0 → 100755
浏览文件 @
1cb8d1bd
# 图像分类模型通道剪裁-快速开始
该教程以图像分类模型MobileNetV1为例,说明如何快速使用
[
PaddleSlim的卷积通道剪裁接口
](
)。
该示例包含以下步骤:
1.
导入依赖
2.
构建模型
3.
剪裁
4.
训练剪裁后的模型
以下章节依次次介绍每个步骤的内容。
## 1. 导入依赖
PaddleSlim依赖Paddle1.7版本,请确认已正确安装Paddle,然后按以下方式导入Paddle和PaddleSlim:
```
import paddle
import paddle.fluid as fluid
import paddleslim as slim
```
## 2. 构建网络
该章节构造一个用于对MNIST数据进行分类的分类模型,选用
`MobileNetV1`
,并将输入大小设置为
`[1, 28, 28]`
,输出类别数为10。
为了方便展示示例,我们在
`paddleslim.models`
下预定义了用于构建分类模型的方法,执行以下代码构建分类模型:
```
exe, train_program, val_program, inputs, outputs =
slim.models.image_classification("MobileNet", [1, 28, 28], 10, use_gpu=False)
```
>注意:paddleslim.models下的API并非PaddleSlim常规API,是为了简化示例而封装预定义的一系列方法,比如:模型结构的定义、Program的构建等。
## 3. 剪裁卷积层通道
### 3.1 计算剪裁之前的FLOPs
```
FLOPs = slim.analysis.flops(train_program)
print("FLOPs: {}".format(FLOPs))
```
### 3.2 剪裁
我们这里对参数名为
`conv2_1_sep_weights`
和
`conv2_2_sep_weights`
的卷积层进行剪裁,分别剪掉20%和30%的通道数。
代码如下所示:
```
pruner = slim.prune.Pruner()
pruned_program, _, _ = pruner.prune(
train_program,
fluid.global_scope(),
params=["conv2_1_sep_weights", "conv2_2_sep_weights"],
ratios=[0.33] * 2,
place=fluid.CPUPlace())
```
以上操作会修改
`train_program`
中对应卷积层参数的定义,同时对
`fluid.global_scope()`
中存储的参数数组进行裁剪。
### 3.3 计算剪裁之后的FLOPs
```
FLOPs = paddleslim.analysis.flops(train_program)
print("FLOPs: {}".format(FLOPs))
```
## 4. 训练剪裁后的模型
### 4.1 定义输入数据
为了快速执行该示例,我们选取简单的MNIST数据,Paddle框架的
`paddle.dataset.mnist`
包定义了MNIST数据的下载和读取。
代码如下:
```
import paddle.dataset.mnist as reader
train_reader = paddle.batch(
reader.train(), batch_size=128, drop_last=True)
train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())
```
### 4.2 执行训练
以下代码执行了一个
`epoch`
的训练:
```
for data in train_reader():
acc1, acc5, loss = exe.run(pruned_program, feed=train_feeder.feed(data), fetch_list=outputs)
print(acc1, acc5, loss)
```
docs/mkdocs.yml
浏览文件 @
1cb8d1bd
...
@@ -4,6 +4,7 @@ nav:
...
@@ -4,6 +4,7 @@ nav:
-
Home
:
index.md
-
Home
:
index.md
-
模型库
:
model_zoo.md
-
模型库
:
model_zoo.md
-
教程
:
-
教程
:
-
图像分类模型通道剪裁-快速开始
:
tutorials/pruning_tutorial.md
-
离线量化
:
tutorials/quant_post_demo.md
-
离线量化
:
tutorials/quant_post_demo.md
-
量化训练
:
tutorials/quant_aware_demo.md
-
量化训练
:
tutorials/quant_aware_demo.md
-
Embedding量化
:
tutorials/quant_embedding_demo.md
-
Embedding量化
:
tutorials/quant_embedding_demo.md
...
...
paddleslim/__init__.py
浏览文件 @
1cb8d1bd
...
@@ -11,3 +11,12 @@
...
@@ -11,3 +11,12 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
from
__future__
import
absolute_import
from
paddleslim
import
models
from
paddleslim
import
prune
from
paddleslim
import
nas
from
paddleslim
import
analysis
from
paddleslim
import
dist
from
paddleslim
import
quant
__all__
=
[
'models'
,
'prune'
,
'nas'
,
'analysis'
,
'dist'
,
'quant'
]
paddleslim/models/util.py
0 → 100644
浏览文件 @
1cb8d1bd
from
__future__
import
absolute_import
import
paddle.fluid
as
fluid
from
..models
import
classification_models
__all__
=
[
"image_classification"
]
model_list
=
classification_models
.
model_list
def
image_classification
(
model
,
image_shape
,
class_num
,
use_gpu
=
False
):
assert
model
in
model_list
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_program
,
startup_program
):
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
model
=
classification_models
.
__dict__
[
model
]()
out
=
model
.
net
(
input
=
image
,
class_dim
=
class_num
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
val_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
opt
=
fluid
.
optimizer
.
Momentum
(
0.1
,
0.9
)
opt
.
minimize
(
avg_cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
return
exe
,
train_program
,
val_program
,
(
image
,
label
),
(
acc_top1
.
name
,
acc_top5
.
name
,
avg_cost
.
name
)
paddleslim/prune/__init__.py
浏览文件 @
1cb8d1bd
...
@@ -11,18 +11,20 @@
...
@@ -11,18 +11,20 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
from
__future__
import
absolute_import
from
.pruner
import
*
from
.pruner
import
*
import
pruner
from
..prune
import
pruner
from
.auto_pruner
import
*
from
.auto_pruner
import
*
import
auto_pruner
import
auto_pruner
from
.sensitive_pruner
import
*
from
.sensitive_pruner
import
*
import
sensitive_pruner
from
..prune
import
sensitive_pruner
from
.sensitive
import
*
from
.sensitive
import
*
import
sensitive
from
..prune
import
sensitive
from
prune_walker
import
*
from
.
prune_walker
import
*
import
prune_walker
from
..prune
import
prune_walker
from
io
import
*
from
io
import
*
import
io
from
..prune
import
io
__all__
=
[]
__all__
=
[]
...
...
paddleslim/prune/sensitive.py
浏览文件 @
1cb8d1bd
...
@@ -236,7 +236,7 @@ def get_ratios_by_loss(sensitivities, loss):
...
@@ -236,7 +236,7 @@ def get_ratios_by_loss(sensitivities, loss):
ratio
=
r0
+
(
loss
-
l0
)
*
(
r1
-
r0
)
/
(
l1
-
l0
)
ratio
=
r0
+
(
loss
-
l0
)
*
(
r1
-
r0
)
/
(
l1
-
l0
)
ratios
[
param
]
=
ratio
ratios
[
param
]
=
ratio
if
ratio
>
1
:
if
ratio
>
1
:
print
losses
,
ratio
,
(
r1
-
r0
)
/
(
l1
-
l0
),
i
_logger
.
info
(
losses
,
ratio
,
(
r1
-
r0
)
/
(
l1
-
l0
),
i
)
break
break
return
ratios
return
ratios
paddleslim/prune/sensitive_pruner.py
浏览文件 @
1cb8d1bd
...
@@ -64,7 +64,7 @@ class SensitivePruner(object):
...
@@ -64,7 +64,7 @@ class SensitivePruner(object):
exe
=
fluid
.
Executor
(
self
.
_place
)
exe
=
fluid
.
Executor
(
self
.
_place
)
checkpoints
=
self
.
_checkpoints
if
checkpoints
is
None
else
checkpoints
checkpoints
=
self
.
_checkpoints
if
checkpoints
is
None
else
checkpoints
print
(
"check points: {}"
.
format
(
checkpoints
))
_logger
.
info
(
"check points: {}"
.
format
(
checkpoints
))
main_program
=
None
main_program
=
None
eval_program
=
None
eval_program
=
None
if
checkpoints
is
not
None
:
if
checkpoints
is
not
None
:
...
@@ -87,8 +87,9 @@ class SensitivePruner(object):
...
@@ -87,8 +87,9 @@ class SensitivePruner(object):
with
fluid
.
scope_guard
(
self
.
_scope
):
with
fluid
.
scope_guard
(
self
.
_scope
):
fluid
.
io
.
load_persistables
(
exe
,
latest_ck_path
,
fluid
.
io
.
load_persistables
(
exe
,
latest_ck_path
,
main_program
,
"__params__"
)
main_program
,
"__params__"
)
print
(
"load checkpoint from: {}"
.
format
(
latest_ck_path
))
_logger
.
info
(
"load checkpoint from: {}"
.
format
(
latest_ck_path
))
print
(
"flops of eval program: {}"
.
format
(
flops
(
eval_program
)))
_logger
.
info
(
"flops of eval program: {}"
.
format
(
flops
(
eval_program
)))
return
main_program
,
eval_program
,
self
.
_iter
return
main_program
,
eval_program
,
self
.
_iter
def
greedy_prune
(
self
,
def
greedy_prune
(
self
,
...
@@ -108,7 +109,7 @@ class SensitivePruner(object):
...
@@ -108,7 +109,7 @@ class SensitivePruner(object):
self
.
_eval_func
,
self
.
_eval_func
,
sensitivities_file
=
sensitivities_file
,
sensitivities_file
=
sensitivities_file
,
pruned_flops_rate
=
pruned_flops_rate
)
pruned_flops_rate
=
pruned_flops_rate
)
print
sensitivities
_logger
.
info
(
sensitivities
)
params
,
ratios
=
self
.
_greedy_ratio_by_sensitive
(
sensitivities
,
topk
)
params
,
ratios
=
self
.
_greedy_ratio_by_sensitive
(
sensitivities
,
topk
)
_logger
.
info
(
"Pruning: {} by {}"
.
format
(
params
,
ratios
))
_logger
.
info
(
"Pruning: {} by {}"
.
format
(
params
,
ratios
))
...
@@ -152,7 +153,7 @@ class SensitivePruner(object):
...
@@ -152,7 +153,7 @@ class SensitivePruner(object):
self
.
_eval_func
,
self
.
_eval_func
,
sensitivities_file
=
sensitivities_file
,
sensitivities_file
=
sensitivities_file
,
step_size
=
0.1
)
step_size
=
0.1
)
print
sensitivities
_logger
.
info
(
sensitivities
)
_
,
ratios
=
self
.
get_ratios_by_sensitive
(
sensitivities
,
pruned_flops
,
_
,
ratios
=
self
.
get_ratios_by_sensitive
(
sensitivities
,
pruned_flops
,
eval_program
)
eval_program
)
...
...
paddleslim/version.py
浏览文件 @
1cb8d1bd
...
@@ -14,4 +14,4 @@
...
@@ -14,4 +14,4 @@
# limitations under the License.
# limitations under the License.
""" PaddleSlim version string """
""" PaddleSlim version string """
__all__
=
[
"slim_version"
]
__all__
=
[
"slim_version"
]
slim_version
=
"
0.1
"
slim_version
=
"
1.0.0
"
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录