sa_nas_mobilenetv2.py 9.5 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
import sys
sys.path.append('..')
import numpy as np
import argparse
import ast
import time
import argparse
import ast
import logging
import paddle
import paddle.fluid as fluid
from paddleslim.nas.search_space.search_space_factory import SearchSpaceFactory
from paddleslim.analysis import flops
from paddleslim.nas import SANAS
from paddleslim.common import get_logger
from optimizer import create_optimizer
import imagenet_reader

_logger = get_logger(__name__, level=logging.INFO)


def create_data_loader(image_shape):
    data_shape = [-1] + image_shape
    data = fluid.data(name='data', shape=data_shape, dtype='float32')
    label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
    data_loader = fluid.io.DataLoader.from_generator(
        feed_list=[data, label],
        capacity=1024,
        use_double_buffer=True,
        iterable=True)
    return data_loader, data, label


C
ceci3 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
def build_program(main_program,
                  startup_program,
                  image_shape,
                  archs,
                  args,
                  is_test=False):
    with fluid.program_guard(main_program, startup_program):
        data_loader, data, label = create_data_loader(image_shape)
        output = archs(data)

        softmax_out = fluid.layers.softmax(input=output, use_cudnn=False)
        cost = fluid.layers.cross_entropy(input=softmax_out, label=label)
        avg_cost = fluid.layers.mean(cost)
        acc_top1 = fluid.layers.accuracy(input=softmax_out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=softmax_out, label=label, k=5)

        if is_test == False:
            optimizer = create_optimizer(args)
            optimizer.minimize(avg_cost)
    return data_loader, avg_cost, acc_top1, acc_top5


C
ceci3 已提交
56
def search_mobilenetv2(config, args, image_size, is_server=True):
C
ceci3 已提交
57 58
    factory = SearchSpaceFactory()
    space = factory.get_search_space(config)
C
ceci3 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    if is_server:
        ### start a server and a client
        sa_nas = SANAS(
            config,
            server_addr=("", 8883),
            init_temperature=args.init_temperature,
            reduce_rate=args.reduce_rate,
            search_steps=args.search_steps,
            is_server=True)
    else:
        ### start a client
        sa_nas = SANAS(
            config,
            server_addr=("10.255.125.38", 8883),
            init_temperature=args.init_temperature,
            reduce_rate=args.reduce_rate,
            search_steps=args.search_steps,
            is_server=False)
C
ceci3 已提交
77 78 79 80 81 82 83 84

    image_shape = [3, image_size, image_size]
    for step in range(args.search_steps):
        archs = sa_nas.next_archs()[0]

        train_program = fluid.Program()
        test_program = fluid.Program()
        startup_program = fluid.Program()
C
ceci3 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        train_loader, avg_cost, acc_top1, acc_top5 = build_program(
            train_program, startup_program, image_shape, archs, args)

        current_flops = flops(train_program)
        print('step: {}, current_flops: {}'.format(step, current_flops))
        if current_flops > args.max_flops:
            continue

        test_loader, test_avg_cost, test_acc_top1, test_acc_top5 = build_program(
            test_program,
            startup_program,
            image_shape,
            archs,
            args,
            is_test=True)
        test_program = test_program.clone(for_test=True)
C
ceci3 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

        place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_program)

        if args.data == 'cifar10':
            train_reader = paddle.batch(
                paddle.reader.shuffle(
                    paddle.dataset.cifar.train10(cycle=False), buf_size=1024),
                batch_size=args.batch_size,
                drop_last=True)

            test_reader = paddle.batch(
                paddle.dataset.cifar.test10(cycle=False),
                batch_size=args.batch_size,
                drop_last=False)
        elif args.data == 'imagenet':
            train_reader = paddle.batch(
                imagenet_reader.train(),
                batch_size=args.batch_size,
                drop_last=True)
            test_reader = paddle.batch(
                imagenet_reader.val(),
                batch_size=args.batch_size,
                drop_last=False)

C
ceci3 已提交
127
        #test_loader, _, _ = create_data_loader(image_shape)
C
ceci3 已提交
128 129 130
        train_loader.set_sample_list_generator(
            train_reader,
            places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
C
ceci3 已提交
131 132
        test_loader.set_sample_list_generator(test_reader, places=place)

C
ceci3 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        build_strategy = fluid.BuildStrategy()
        train_compiled_program = fluid.CompiledProgram(
            train_program).with_data_parallel(
                loss_name=avg_cost.name, build_strategy=build_strategy)
        for epoch_id in range(args.retain_epoch):
            for batch_id, data in enumerate(train_loader()):
                fetches = [avg_cost.name]
                s_time = time.time()
                outs = exe.run(train_compiled_program,
                               feed=data,
                               fetch_list=fetches)[0]
                batch_time = time.time() - s_time
                if batch_id % 10 == 0:
                    _logger.info(
                        'TRAIN: steps: {}, epoch: {}, batch: {}, cost: {}, batch_time: {}ms'.
                        format(step, epoch_id, batch_id, outs[0], batch_time))
C
ceci3 已提交
149

C
ceci3 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
        reward = []
        for batch_id, data in enumerate(test_loader()):
            test_fetches = [
                test_avg_cost.name, test_acc_top1.name, test_acc_top5.name
            ]
            batch_reward = exe.run(test_program,
                                   feed=data,
                                   fetch_list=test_fetches)
            reward_avg = np.mean(np.array(batch_reward), axis=1)
            reward.append(reward_avg)

            _logger.info(
                'TEST: step: {}, batch: {}, avg_cost: {}, acc_top1: {}, acc_top5: {}'.
C
ceci3 已提交
163 164
                format(step, batch_id, batch_reward[0], batch_reward[1],
                       batch_reward[2]))
C
ceci3 已提交
165 166

        finally_reward = np.mean(np.array(reward), axis=0)
C
ceci3 已提交
167
        _logger.info(
C
ceci3 已提交
168
            'FINAL TEST: avg_cost: {}, acc_top1: {}, acc_top5: {}'.format(
C
ceci3 已提交
169
                finally_reward[0], finally_reward[1], finally_reward[2]))
C
ceci3 已提交
170

C
ceci3 已提交
171
        sa_nas.reward(float(finally_reward[1]))
C
ceci3 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198


if __name__ == '__main__':

    parser = argparse.ArgumentParser(
        description='SA NAS MobileNetV2 cifar10 argparase')
    parser.add_argument(
        '--use_gpu',
        type=ast.literal_eval,
        default=True,
        help='Whether to use GPU in train/test model.')
    parser.add_argument(
        '--batch_size', type=int, default=256, help='batch size.')
    parser.add_argument(
        '--data',
        type=str,
        default='cifar10',
        choices=['cifar10', 'imagenet'],
        help='server address.')
    # controller
    parser.add_argument(
        '--reduce_rate', type=float, default=0.85, help='reduce rate.')
    parser.add_argument(
        '--init_temperature',
        type=float,
        default=10.24,
        help='init temperature.')
C
ceci3 已提交
199 200 201 202 203
    parser.add_argument(
        '--is_server',
        type=ast.literal_eval,
        default=True,
        help='Whether to start a server.')
C
ceci3 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    # nas args
    parser.add_argument(
        '--max_flops', type=int, default=592948064, help='reduce rate.')
    parser.add_argument(
        '--retain_epoch', type=int, default=5, help='train epoch before val.')
    parser.add_argument(
        '--end_epoch', type=int, default=500, help='end epoch present client.')
    parser.add_argument(
        '--search_steps',
        type=int,
        default=100,
        help='controller server number.')
    parser.add_argument(
        '--server_address', type=str, default=None, help='server address.')
    # optimizer args
    parser.add_argument(
        '--lr_strategy',
        type=str,
        default='piecewise_decay',
        help='learning rate decay strategy.')
    parser.add_argument('--lr', type=float, default=0.1, help='learning rate.')
    parser.add_argument(
        '--l2_decay', type=float, default=1e-4, help='learning rate decay.')
    parser.add_argument(
        '--step_epochs',
        nargs='+',
        type=int,
        default=[30, 60, 90],
        help="piecewise decay step")
    parser.add_argument(
        '--momentum_rate',
        type=float,
        default=0.9,
        help='learning rate decay.')
    parser.add_argument(
        '--warm_up_epochs',
        type=float,
        default=5.0,
        help='learning rate decay.')
    parser.add_argument(
        '--num_epochs', type=int, default=120, help='learning rate decay.')
    parser.add_argument(
        '--decay_epochs', type=float, default=2.4, help='learning rate decay.')
    parser.add_argument(
        '--decay_rate', type=float, default=0.97, help='learning rate decay.')
    parser.add_argument(
        '--total_images',
        type=int,
        default=1281167,
        help='learning rate decay.')
    args = parser.parse_args()
    print(args)

    if args.data == 'cifar10':
        image_size = 32
        block_num = 3
    elif args.data == 'imagenet':
        image_size = 224
        block_num = 6
    else:
        raise NotImplemented(
            'data must in [cifar10, imagenet], but received: {}'.format(
                args.data))

    config_info = {
        'input_size': image_size,
        'output_size': 1,
        'block_num': block_num,
        'block_mask': None
    }
    config = [('MobileNetV2Space', config_info)]

C
ceci3 已提交
276
    search_mobilenetv2(config, args, image_size, is_server=args.is_server)