sa_nas_mobilenetv2.py 7.9 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
import sys
sys.path.append('..')
import numpy as np
import argparse
import ast
import time
import argparse
import ast
import logging
import paddle
import paddle.fluid as fluid
from paddleslim.nas.search_space.search_space_factory import SearchSpaceFactory
from paddleslim.analysis import flops
from paddleslim.nas import SANAS
from paddleslim.common import get_logger
from optimizer import create_optimizer
import imagenet_reader

_logger = get_logger(__name__, level=logging.INFO)


def create_data_loader(image_shape):
    data_shape = [-1] + image_shape
    data = fluid.data(name='data', shape=data_shape, dtype='float32')
    label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
    data_loader = fluid.io.DataLoader.from_generator(
        feed_list=[data, label],
        capacity=1024,
        use_double_buffer=True,
        iterable=True)
    return data_loader, data, label


def search_mobilenetv2(config, args, image_size):
    factory = SearchSpaceFactory()
    space = factory.get_search_space(config)
    ### start a server and a client
    sa_nas = SANAS(
        config,
        server_addr=("", 8889),
        init_temperature=args.init_temperature,
        reduce_rate=args.reduce_rate,
        search_steps=args.search_steps,
        is_server=True)
    ### start a client
    #sa_nas = SANAS(config, server_addr=("10.255.125.38", 8889), init_temperature=args.init_temperature, reduce_rate=args.reduce_rate, search_steps=args.search_steps, is_server=True)

    image_shape = [3, image_size, image_size]
    for step in range(args.search_steps):
        archs = sa_nas.next_archs()[0]

        train_program = fluid.Program()
        test_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            train_loader, data, label = create_data_loader(image_shape)
            output = archs(data)
            current_flops = flops(train_program)
            print('step: {}, current_flops: {}'.format(step, current_flops))
            if current_flops > args.max_flops:
                continue

            softmax_out = fluid.layers.softmax(input=output, use_cudnn=False)
            cost = fluid.layers.cross_entropy(input=softmax_out, label=label)
            avg_cost = fluid.layers.mean(cost)
            acc_top1 = fluid.layers.accuracy(
                input=softmax_out, label=label, k=1)
            acc_top5 = fluid.layers.accuracy(
                input=softmax_out, label=label, k=5)

            test_program = train_program.clone(for_test=True)

            optimizer = create_optimizer(args)
            optimizer.minimize(avg_cost)

        place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_program)

        if args.data == 'cifar10':
            train_reader = paddle.batch(
                paddle.reader.shuffle(
                    paddle.dataset.cifar.train10(cycle=False), buf_size=1024),
                batch_size=args.batch_size,
                drop_last=True)

            test_reader = paddle.batch(
                paddle.dataset.cifar.test10(cycle=False),
                batch_size=args.batch_size,
                drop_last=False)
        elif args.data == 'imagenet':
            train_reader = paddle.batch(
                imagenet_reader.train(),
                batch_size=args.batch_size,
                drop_last=True)
            test_reader = paddle.batch(
                imagenet_reader.val(),
                batch_size=args.batch_size,
                drop_last=False)

        test_loader, _, _ = create_data_loader(image_shape)
        train_loader.set_sample_list_generator(
            train_reader,
            places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
        test_loader.set_sample_list_generator(
            test_reader,
            places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())

        for epoch_id in range(args.retain_epoch):
            for batch_id, data in enumerate(train_loader()):
                fetches = [avg_cost.name]
                s_time = time.time()
                outs = exe.run(train_program, feed=data, fetch_list=fetches)[0]
                batch_time = time.time() - s_time
                if batch_id % 10 == 0:
                    _logger.info(
                        'TRAIN: steps: {}, epoch: {}, batch: {}, cost: {}, batch_time: {}ms'.
                        format(step, epoch_id, batch_id, outs[0], batch_time))

        for data in test_loader():
            test_fetches = [avg_cost.name, acc_top1.name, acc_top5.name]
            reward = exe.run(test_program, feed=data, fetch_list=fetches)[0]
        _logger.info(
            'TEST: step: {}, avg_cost: {}, acc_top1: {}, acc_top5: {}'.format(
                step, test_outs[0], test_outs[1], test_outs[2]))

        sa_nas.reward(float(avg_cost))


if __name__ == '__main__':

    parser = argparse.ArgumentParser(
        description='SA NAS MobileNetV2 cifar10 argparase')
    parser.add_argument(
        '--use_gpu',
        type=ast.literal_eval,
        default=True,
        help='Whether to use GPU in train/test model.')
    parser.add_argument(
        '--batch_size', type=int, default=256, help='batch size.')
    parser.add_argument(
        '--data',
        type=str,
        default='cifar10',
        choices=['cifar10', 'imagenet'],
        help='server address.')
    # controller
    parser.add_argument(
        '--reduce_rate', type=float, default=0.85, help='reduce rate.')
    parser.add_argument(
        '--init_temperature',
        type=float,
        default=10.24,
        help='init temperature.')
    # nas args
    parser.add_argument(
        '--max_flops', type=int, default=592948064, help='reduce rate.')
    parser.add_argument(
        '--retain_epoch', type=int, default=5, help='train epoch before val.')
    parser.add_argument(
        '--end_epoch', type=int, default=500, help='end epoch present client.')
    parser.add_argument(
        '--search_steps',
        type=int,
        default=100,
        help='controller server number.')
    parser.add_argument(
        '--server_address', type=str, default=None, help='server address.')
    # optimizer args
    parser.add_argument(
        '--lr_strategy',
        type=str,
        default='piecewise_decay',
        help='learning rate decay strategy.')
    parser.add_argument('--lr', type=float, default=0.1, help='learning rate.')
    parser.add_argument(
        '--l2_decay', type=float, default=1e-4, help='learning rate decay.')
    parser.add_argument(
        '--step_epochs',
        nargs='+',
        type=int,
        default=[30, 60, 90],
        help="piecewise decay step")
    parser.add_argument(
        '--momentum_rate',
        type=float,
        default=0.9,
        help='learning rate decay.')
    parser.add_argument(
        '--warm_up_epochs',
        type=float,
        default=5.0,
        help='learning rate decay.')
    parser.add_argument(
        '--num_epochs', type=int, default=120, help='learning rate decay.')
    parser.add_argument(
        '--decay_epochs', type=float, default=2.4, help='learning rate decay.')
    parser.add_argument(
        '--decay_rate', type=float, default=0.97, help='learning rate decay.')
    parser.add_argument(
        '--total_images',
        type=int,
        default=1281167,
        help='learning rate decay.')
    args = parser.parse_args()
    print(args)

    if args.data == 'cifar10':
        image_size = 32
        block_num = 3
    elif args.data == 'imagenet':
        image_size = 224
        block_num = 6
    else:
        raise NotImplemented(
            'data must in [cifar10, imagenet], but received: {}'.format(
                args.data))

    config_info = {
        'input_size': image_size,
        'output_size': 1,
        'block_num': block_num,
        'block_mask': None
    }
    config = [('MobileNetV2Space', config_info)]

    search_mobilenetv2(config, args, image_size)