sa_nas_mobilenetv2.py 9.2 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
import sys
sys.path.append('..')
import numpy as np
import argparse
import ast
import time
import argparse
import ast
import logging
import paddle
import paddle.fluid as fluid
from paddleslim.nas.search_space.search_space_factory import SearchSpaceFactory
from paddleslim.analysis import flops
from paddleslim.nas import SANAS
from paddleslim.common import get_logger
from optimizer import create_optimizer
import imagenet_reader

_logger = get_logger(__name__, level=logging.INFO)


def create_data_loader(image_shape):
    data_shape = [-1] + image_shape
    data = fluid.data(name='data', shape=data_shape, dtype='float32')
    label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
    data_loader = fluid.io.DataLoader.from_generator(
        feed_list=[data, label],
        capacity=1024,
        use_double_buffer=True,
        iterable=True)
    return data_loader, data, label


C
ceci3 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
def build_program(main_program,
                  startup_program,
                  image_shape,
                  archs,
                  args,
                  is_test=False):
    with fluid.program_guard(main_program, startup_program):
        data_loader, data, label = create_data_loader(image_shape)
        output = archs(data)

        softmax_out = fluid.layers.softmax(input=output, use_cudnn=False)
        cost = fluid.layers.cross_entropy(input=softmax_out, label=label)
        avg_cost = fluid.layers.mean(cost)
        acc_top1 = fluid.layers.accuracy(input=softmax_out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=softmax_out, label=label, k=5)

        if is_test == False:
            optimizer = create_optimizer(args)
            optimizer.minimize(avg_cost)
    return data_loader, avg_cost, acc_top1, acc_top5


C
ceci3 已提交
56 57 58 59 60 61
def search_mobilenetv2(config, args, image_size):
    factory = SearchSpaceFactory()
    space = factory.get_search_space(config)
    ### start a server and a client
    sa_nas = SANAS(
        config,
C
ceci3 已提交
62
        server_addr=("", 8883),
C
ceci3 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76
        init_temperature=args.init_temperature,
        reduce_rate=args.reduce_rate,
        search_steps=args.search_steps,
        is_server=True)
    ### start a client
    #sa_nas = SANAS(config, server_addr=("10.255.125.38", 8889), init_temperature=args.init_temperature, reduce_rate=args.reduce_rate, search_steps=args.search_steps, is_server=True)

    image_shape = [3, image_size, image_size]
    for step in range(args.search_steps):
        archs = sa_nas.next_archs()[0]

        train_program = fluid.Program()
        test_program = fluid.Program()
        startup_program = fluid.Program()
C
ceci3 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        train_loader, avg_cost, acc_top1, acc_top5 = build_program(
            train_program, startup_program, image_shape, archs, args)

        current_flops = flops(train_program)
        print('step: {}, current_flops: {}'.format(step, current_flops))
        if current_flops > args.max_flops:
            continue

        test_loader, test_avg_cost, test_acc_top1, test_acc_top5 = build_program(
            test_program,
            startup_program,
            image_shape,
            archs,
            args,
            is_test=True)
        test_program = test_program.clone(for_test=True)
C
ceci3 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

        place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_program)

        if args.data == 'cifar10':
            train_reader = paddle.batch(
                paddle.reader.shuffle(
                    paddle.dataset.cifar.train10(cycle=False), buf_size=1024),
                batch_size=args.batch_size,
                drop_last=True)

            test_reader = paddle.batch(
                paddle.dataset.cifar.test10(cycle=False),
                batch_size=args.batch_size,
                drop_last=False)
        elif args.data == 'imagenet':
            train_reader = paddle.batch(
                imagenet_reader.train(),
                batch_size=args.batch_size,
                drop_last=True)
            test_reader = paddle.batch(
                imagenet_reader.val(),
                batch_size=args.batch_size,
                drop_last=False)

C
ceci3 已提交
119
        #test_loader, _, _ = create_data_loader(image_shape)
C
ceci3 已提交
120 121 122
        train_loader.set_sample_list_generator(
            train_reader,
            places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
C
ceci3 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        test_loader.set_sample_list_generator(test_reader, places=place)

        #build_strategy = fluid.BuildStrategy()
        #train_compiled_program = fluid.CompiledProgram(
        #    train_program).with_data_parallel(
        #        loss_name=avg_cost.name, build_strategy=build_strategy)
        #for epoch_id in range(args.retain_epoch):
        #    for batch_id, data in enumerate(train_loader()):
        #        fetches = [avg_cost.name]
        #        s_time = time.time()
        #        outs = exe.run(train_compiled_program,
        #                       feed=data,
        #                       fetch_list=fetches)[0]
        #        batch_time = time.time() - s_time
        #        if batch_id % 10 == 0:
        #            _logger.info(
        #                'TRAIN: steps: {}, epoch: {}, batch: {}, cost: {}, batch_time: {}ms'.
        #                format(step, epoch_id, batch_id, outs[0], batch_time))
C
ceci3 已提交
141

C
ceci3 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154
        reward = []
        for batch_id, data in enumerate(test_loader()):
            test_fetches = [
                test_avg_cost.name, test_acc_top1.name, test_acc_top5.name
            ]
            batch_reward = exe.run(test_program,
                                   feed=data,
                                   fetch_list=test_fetches)
            reward_avg = np.mean(np.array(batch_reward), axis=1)
            reward.append(reward_avg)

            _logger.info(
                'TEST: step: {}, batch: {}, avg_cost: {}, acc_top1: {}, acc_top5: {}'.
C
ceci3 已提交
155 156
                format(step, batch_id, batch_reward[0], batch_reward[1],
                       batch_reward[2]))
C
ceci3 已提交
157 158

        finally_reward = np.mean(np.array(reward), axis=0)
C
ceci3 已提交
159
        _logger.info(
C
ceci3 已提交
160 161
            'FINAL TEST: avg_cost: {}, acc_top1: {}, acc_top5: {}'.format(
                step, finally_reward[0], finally_reward[1], finally_reward[2]))
C
ceci3 已提交
162

C
ceci3 已提交
163
        sa_nas.reward(float(finally_reward[1]))
C
ceci3 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263


if __name__ == '__main__':

    parser = argparse.ArgumentParser(
        description='SA NAS MobileNetV2 cifar10 argparase')
    parser.add_argument(
        '--use_gpu',
        type=ast.literal_eval,
        default=True,
        help='Whether to use GPU in train/test model.')
    parser.add_argument(
        '--batch_size', type=int, default=256, help='batch size.')
    parser.add_argument(
        '--data',
        type=str,
        default='cifar10',
        choices=['cifar10', 'imagenet'],
        help='server address.')
    # controller
    parser.add_argument(
        '--reduce_rate', type=float, default=0.85, help='reduce rate.')
    parser.add_argument(
        '--init_temperature',
        type=float,
        default=10.24,
        help='init temperature.')
    # nas args
    parser.add_argument(
        '--max_flops', type=int, default=592948064, help='reduce rate.')
    parser.add_argument(
        '--retain_epoch', type=int, default=5, help='train epoch before val.')
    parser.add_argument(
        '--end_epoch', type=int, default=500, help='end epoch present client.')
    parser.add_argument(
        '--search_steps',
        type=int,
        default=100,
        help='controller server number.')
    parser.add_argument(
        '--server_address', type=str, default=None, help='server address.')
    # optimizer args
    parser.add_argument(
        '--lr_strategy',
        type=str,
        default='piecewise_decay',
        help='learning rate decay strategy.')
    parser.add_argument('--lr', type=float, default=0.1, help='learning rate.')
    parser.add_argument(
        '--l2_decay', type=float, default=1e-4, help='learning rate decay.')
    parser.add_argument(
        '--step_epochs',
        nargs='+',
        type=int,
        default=[30, 60, 90],
        help="piecewise decay step")
    parser.add_argument(
        '--momentum_rate',
        type=float,
        default=0.9,
        help='learning rate decay.')
    parser.add_argument(
        '--warm_up_epochs',
        type=float,
        default=5.0,
        help='learning rate decay.')
    parser.add_argument(
        '--num_epochs', type=int, default=120, help='learning rate decay.')
    parser.add_argument(
        '--decay_epochs', type=float, default=2.4, help='learning rate decay.')
    parser.add_argument(
        '--decay_rate', type=float, default=0.97, help='learning rate decay.')
    parser.add_argument(
        '--total_images',
        type=int,
        default=1281167,
        help='learning rate decay.')
    args = parser.parse_args()
    print(args)

    if args.data == 'cifar10':
        image_size = 32
        block_num = 3
    elif args.data == 'imagenet':
        image_size = 224
        block_num = 6
    else:
        raise NotImplemented(
            'data must in [cifar10, imagenet], but received: {}'.format(
                args.data))

    config_info = {
        'input_size': image_size,
        'output_size': 1,
        'block_num': block_num,
        'block_mask': None
    }
    config = [('MobileNetV2Space', config_info)]

    search_mobilenetv2(config, args, image_size)