train_imagenet.py 9.6 KB
Newer Older
B
Bai Yifan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import ast
22
import logging
B
Bai Yifan 已提交
23 24 25 26 27
import argparse
import functools

import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
28
from paddleslim.common import AvgrageMeter, get_logger
29 30
from paddleslim.nas.darts import count_parameters_in_MB

B
Bai Yifan 已提交
31 32
import genotypes
import reader
33
from model import NetworkImageNet as Network
B
Bai Yifan 已提交
34 35
sys.path[0] = os.path.join(os.path.dirname("__file__"), os.path.pardir)
from utility import add_arguments, print_arguments
36
logger = get_logger(__name__, level=logging.INFO)
B
Bai Yifan 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)

# yapf: disable
add_arg('use_multiprocess',  bool,  True,            "Whether use multiprocess reader.")
add_arg('num_workers',       int,   4,               "The multiprocess reader number.")
add_arg('data_dir',          str,   'dataset/ILSVRC2012',"The dir of dataset.")
add_arg('batch_size',        int,   128,             "Minibatch size.")
add_arg('learning_rate',     float, 0.1,             "The start learning rate.")
add_arg('decay_rate',        float, 0.97,            "The lr decay rate.")
add_arg('momentum',          float, 0.9,             "Momentum.")
add_arg('weight_decay',      float, 3e-5,            "Weight_decay.")
add_arg('use_gpu',           bool,  True,            "Whether use GPU.")
add_arg('epochs',            int,   250,             "Epoch number.")
add_arg('init_channels',     int,   48,              "Init channel number.")
add_arg('layers',            int,   14,              "Total number of layers.")
add_arg('class_num',         int,   1000,            "Class number of dataset.")
add_arg('trainset_num',      int,   1281167,         "Images number of trainset.")
add_arg('model_save_dir',    str,   'eval_imagenet', "The path to save model.")
add_arg('auxiliary',         bool,  True,            'Use auxiliary tower.')
add_arg('auxiliary_weight',  float, 0.4,             "Weight for auxiliary loss.")
add_arg('drop_path_prob',    float, 0.0,             "Drop path probability.")
add_arg('dropout',           float, 0.0,             "Dropout probability.")
add_arg('grad_clip',         float, 5,               "Gradient clipping.")
add_arg('label_smooth',      float, 0.1,             "Label smoothing.")
add_arg('arch',              str,   'DARTS_V2',      "Which architecture to use")
64
add_arg('log_freq',          int,   100,             'Report frequency')
B
Bai Yifan 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
add_arg('use_data_parallel', ast.literal_eval,  False, "The flag indicating whether to use data parallel mode to train the model.")
# yapf: enable


def cross_entropy_label_smooth(preds, targets, epsilon):
    preds = fluid.layers.softmax(preds)
    targets_one_hot = fluid.layers.one_hot(input=targets, depth=args.class_num)
    targets_smooth = fluid.layers.label_smooth(
        targets_one_hot, epsilon=epsilon, dtype="float32")
    loss = fluid.layers.cross_entropy(
        input=preds, label=targets_smooth, soft_label=True)
    return loss


def train(model, train_reader, optimizer, epoch, args):
    objs = AvgrageMeter()
    top1 = AvgrageMeter()
    top5 = AvgrageMeter()
    model.train()

    for step_id, data in enumerate(train_reader()):
        image_np, label_np = data
        image = to_variable(image_np)
        label = to_variable(label_np)
        label.stop_gradient = True
        logits, logits_aux = model(image, True)

        prec1 = fluid.layers.accuracy(input=logits, label=label, k=1)
        prec5 = fluid.layers.accuracy(input=logits, label=label, k=5)
        loss = fluid.layers.reduce_mean(
            cross_entropy_label_smooth(logits, label, args.label_smooth))

        if args.auxiliary:
            loss_aux = fluid.layers.reduce_mean(
                cross_entropy_label_smooth(logits_aux, label,
                                           args.label_smooth))
            loss = loss + args.auxiliary_weight * loss_aux

        if args.use_data_parallel:
            loss = model.scale_loss(loss)
            loss.backward()
            model.apply_collective_grads()
        else:
            loss.backward()

110
        optimizer.minimize(loss)
B
Bai Yifan 已提交
111 112 113 114 115 116 117
        model.clear_gradients()

        n = image.shape[0]
        objs.update(loss.numpy(), n)
        top1.update(prec1.numpy(), n)
        top5.update(prec5.numpy(), n)

118
        if step_id % args.log_freq == 0:
B
Bai Yifan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
            logger.info(
                "Train Epoch {}, Step {}, loss {:.6f}, acc_1 {:.6f}, acc_5 {:.6f}".
                format(epoch, step_id, objs.avg[0], top1.avg[0], top5.avg[0]))
    return top1.avg[0], top5.avg[0]


def valid(model, valid_reader, epoch, args):
    objs = AvgrageMeter()
    top1 = AvgrageMeter()
    top5 = AvgrageMeter()
    model.eval()

    for step_id, data in enumerate(valid_reader()):
        image_np, label_np = data
        image = to_variable(image_np)
        label = to_variable(label_np)
        logits, _ = model(image, False)
        prec1 = fluid.layers.accuracy(input=logits, label=label, k=1)
        prec5 = fluid.layers.accuracy(input=logits, label=label, k=5)
        loss = fluid.layers.reduce_mean(
            cross_entropy_label_smooth(logits, label, args.label_smooth))

        n = image.shape[0]
        objs.update(loss.numpy(), n)
        top1.update(prec1.numpy(), n)
        top5.update(prec5.numpy(), n)
145
        if step_id % args.log_freq == 0:
B
Bai Yifan 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            logger.info(
                "Valid Epoch {}, Step {}, loss {:.6f}, acc_1 {:.6f}, acc_5 {:.6f}".
                format(epoch, step_id, objs.avg[0], top1.avg[0], top5.avg[0]))
    return top1.avg[0], top5.avg[0]


def main(args):
    place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id) \
        if args.use_data_parallel else fluid.CUDAPlace(0)

    with fluid.dygraph.guard(place):
        genotype = eval("genotypes.%s" % args.arch)
        model = Network(
            C=args.init_channels,
            num_classes=args.class_num,
            layers=args.layers,
            auxiliary=args.auxiliary,
            genotype=genotype)

165 166 167 168 169 170
        logger.info("param size = {:.6f}MB".format(
            count_parameters_in_MB(model.parameters())))

        device_num = fluid.dygraph.parallel.Env().nranks
        step_per_epoch = int(args.trainset_num /
                             (args.batch_size * device_num))
B
Bai Yifan 已提交
171 172 173 174 175
        learning_rate = fluid.dygraph.ExponentialDecay(
            args.learning_rate,
            step_per_epoch,
            args.decay_rate,
            staircase=True)
176 177

        clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=args.grad_clip)
B
Bai Yifan 已提交
178 179 180 181
        optimizer = fluid.optimizer.MomentumOptimizer(
            learning_rate,
            momentum=args.momentum,
            regularization=fluid.regularizer.L2Decay(args.weight_decay),
182 183
            parameter_list=model.parameters(),
            grad_clip=clip)
B
Bai Yifan 已提交
184 185

        if args.use_data_parallel:
186
            strategy = fluid.dygraph.parallel.prepare_context()
B
Bai Yifan 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
            model = fluid.dygraph.parallel.DataParallel(model, strategy)

        train_loader = fluid.io.DataLoader.from_generator(
            capacity=64,
            use_double_buffer=True,
            iterable=True,
            return_list=True)
        valid_loader = fluid.io.DataLoader.from_generator(
            capacity=64,
            use_double_buffer=True,
            iterable=True,
            return_list=True)

        train_reader = fluid.io.batch(
            reader.imagenet_reader(args.data_dir, 'train'),
            batch_size=args.batch_size,
            drop_last=True)
        valid_reader = fluid.io.batch(
            reader.imagenet_reader(args.data_dir, 'val'),
            batch_size=args.batch_size)
        if args.use_data_parallel:
            train_reader = fluid.contrib.reader.distributed_batch_reader(
                train_reader)

211 212 213
        train_loader.set_sample_list_generator(train_reader, places=place)
        valid_loader.set_sample_list_generator(valid_reader, places=place)

B
Bai Yifan 已提交
214 215 216 217 218
        save_parameters = (not args.use_data_parallel) or (
            args.use_data_parallel and
            fluid.dygraph.parallel.Env().local_rank == 0)
        best_top1 = 0
        for epoch in range(args.epochs):
219
            logger.info('Epoch {}, lr {:.6f}'.format(
B
Bai Yifan 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
                epoch, optimizer.current_step_lr()))
            train_top1, train_top5 = train(model, train_loader, optimizer,
                                           epoch, args)
            logger.info("Epoch {}, train_top1 {:.6f}, train_top5 {:.6f}".
                        format(epoch, train_top1, train_top5))
            valid_top1, valid_top5 = valid(model, valid_loader, epoch, args)
            if valid_top1 > best_top1:
                best_top1 = valid_top1
                if save_parameters:
                    fluid.save_dygraph(model.state_dict(),
                                       args.model_save_dir + "/best_model")
            logger.info(
                "Epoch {}, valid_top1 {:.6f}, valid_top5 {:.6f}, best_valid_top1 {:6f}".
                format(epoch, valid_top1, valid_top5, best_top1))


if __name__ == '__main__':
    args = parser.parse_args()
    print_arguments(args)

    main(args)