Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
e8e48533
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 1 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e8e48533
编写于
5月 07, 2020
作者:
B
Bai Yifan
提交者:
GitHub
5月 07, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add multi-cards search&final support in DARTS (#226) (#257)
* support multi-cards in darts
上级
cb5edebc
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
158 addition
and
54 deletion
+158
-54
demo/darts/README.md
demo/darts/README.md
+40
-1
demo/darts/search.py
demo/darts/search.py
+2
-1
demo/darts/train.py
demo/darts/train.py
+18
-12
demo/darts/train_imagenet.py
demo/darts/train_imagenet.py
+14
-10
docs/zh_cn/api_cn/darts.rst
docs/zh_cn/api_cn/darts.rst
+1
-1
paddleslim/nas/darts/architect.py
paddleslim/nas/darts/architect.py
+50
-7
paddleslim/nas/darts/train_search.py
paddleslim/nas/darts/train_search.py
+33
-22
未找到文件。
demo/darts/README.md
浏览文件 @
e8e48533
...
...
@@ -2,9 +2,31 @@
本示例介绍如何使用PaddlePaddle进行可微分架构搜索,可以直接使用
[
DARTS
](
https://arxiv.org/abs/1806.09055
)
和
[
PC-DARTS
](
https://arxiv.org/abs/1907.05737
)
两种方法,也支持自定义修改后使用其他可微分架构搜索算法。
本示例目录结构如下:
```
├── genotypes.py 搜索过程得到的模型结构Genotypes
│
├── model.py 对搜索得到的子网络组网
│
├── model_search.py 对搜索前的超网络组网
│
├── operations.py 用于搜索的多种运算符组合
│
├── reader.py 数据读取与增广部分
│
├── search.py 模型结构搜索入口
│
├── train.py CIFAR10数据集评估训练入口
│
├── train_imagenet.py ImageNet数据集评估训练入口
│
├── visualize.py 模型结构可视化入口
```
## 依赖项
> PaddlePaddle >= 1.7
.0, graphviz >= 0.11.1
PaddlePaddle >= 1.8.0, PaddleSlim >= 1.1
.0, graphviz >= 0.11.1
## 数据集
...
...
@@ -21,6 +43,14 @@ python search.py --unrolled=True # DARTS的二阶近似搜索方法
python search.py
--method
=
'PC-DARTS'
--batch_size
=
256
--learning_rate
=
0.1
--arch_learning_rate
=
6e-4
--epochs_no_archopt
=
15
# PC-DARTS搜索方法
```
也可以使用多卡进行模型结构搜索,以4卡为例(GPU id: 0-3), 启动命令如下:
```
bash
python
-m
paddle.distributed.launch
--selected_gpus
=
0,1,2,3
--log_dir
./mylog search.py
--use_data_parallel
1
```
因为使用多卡训练总的BatchSize会扩大n倍,n代表卡数,为了获得与单卡相当的准确率效果,请相应的将初始学习率扩大n倍。
模型结构随搜索轮数的变化如图1所示。需要注意的是,图中准确率Acc并不代表该结构最终准确率,为了获得当前结构的最佳准确率,请对得到的genotype做网络结构评估训练。
![
networks
](
images/networks.gif
)
...
...
@@ -40,6 +70,15 @@ python train.py --arch='PC_DARTS' # 在CIFAR10数据集上对搜索
python train_imagenet.py
--arch
=
'PC_DARTS'
# 在ImageNet数据集上对搜索得到的结构评估训练
```
同样,也支持用多卡进行评估训练, 以4卡为例(GPU id: 0-3), 启动命令如下:
```
bash
python
-m
paddle.distributed.launch
--selected_gpus
=
0,1,2,3
--log_dir
./mylog train.py
--use_data_parallel
1
--arch
=
'DARTS_V2'
python
-m
paddle.distributed.launch
--selected_gpus
=
0,1,2,3
--log_dir
./mylog train_imagenet.py
--use_data_parallel
1
--arch
=
'DARTS_V2'
```
同理,使用多卡训练总的BatchSize会扩大n倍,n代表卡数,为了获得与单卡相当的准确率效果,请相应的将初始学习率扩大n倍。
对搜索到的
`DARTS_V1`
、
`DARTS_V2`
和
`PC-DARTS`
做评估训练的结果如下:
| 模型结构 | 数据集 | 准确率 |
...
...
demo/darts/search.py
浏览文件 @
e8e48533
...
...
@@ -80,6 +80,7 @@ def main(args):
model
,
train_reader
,
valid_reader
,
place
,
learning_rate
=
args
.
learning_rate
,
batchsize
=
args
.
batch_size
,
num_imgs
=
args
.
trainset_num
,
...
...
@@ -87,8 +88,8 @@ def main(args):
unrolled
=
args
.
unrolled
,
num_epochs
=
args
.
epochs
,
epochs_no_archopt
=
args
.
epochs_no_archopt
,
use_gpu
=
args
.
use_gpu
,
use_data_parallel
=
args
.
use_data_parallel
,
save_dir
=
args
.
model_save_dir
,
log_freq
=
args
.
log_freq
)
searcher
.
train
()
...
...
demo/darts/train.py
浏览文件 @
e8e48533
...
...
@@ -19,13 +19,14 @@ from __future__ import print_function
import
os
import
sys
import
ast
import
logging
import
argparse
import
functools
import
logging
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.base
import
to_variable
from
paddleslim.common
import
AvgrageMeter
,
get_logger
from
paddleslim.nas.darts
import
count_parameters_in_MB
import
genotypes
import
reader
...
...
@@ -140,9 +141,6 @@ def main(args):
if
args
.
use_data_parallel
else
fluid
.
CUDAPlace
(
0
)
with
fluid
.
dygraph
.
guard
(
place
):
if
args
.
use_data_parallel
:
strategy
=
fluid
.
dygraph
.
parallel
.
prepare_context
()
genotype
=
eval
(
"genotypes.%s"
%
args
.
arch
)
model
=
Network
(
C
=
args
.
init_channels
,
...
...
@@ -151,7 +149,12 @@ def main(args):
auxiliary
=
args
.
auxiliary
,
genotype
=
genotype
)
step_per_epoch
=
int
(
args
.
trainset_num
/
args
.
batch_size
)
logger
.
info
(
"param size = {:.6f}MB"
.
format
(
count_parameters_in_MB
(
model
.
parameters
())))
device_num
=
fluid
.
dygraph
.
parallel
.
Env
().
nranks
step_per_epoch
=
int
(
args
.
trainset_num
/
(
args
.
batch_size
*
device_num
))
learning_rate
=
fluid
.
dygraph
.
CosineDecay
(
args
.
learning_rate
,
step_per_epoch
,
args
.
epochs
)
clip
=
fluid
.
clip
.
GradientClipByGlobalNorm
(
clip_norm
=
args
.
grad_clip
)
...
...
@@ -163,18 +166,21 @@ def main(args):
grad_clip
=
clip
)
if
args
.
use_data_parallel
:
strategy
=
fluid
.
dygraph
.
parallel
.
prepare_context
()
model
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
model
,
strategy
)
train_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
6
4
,
capacity
=
102
4
,
use_double_buffer
=
True
,
iterable
=
True
,
return_list
=
True
)
return_list
=
True
,
use_multiprocess
=
True
)
valid_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
6
4
,
capacity
=
102
4
,
use_double_buffer
=
True
,
iterable
=
True
,
return_list
=
True
)
return_list
=
True
,
use_multiprocess
=
True
)
train_reader
=
reader
.
train_valid
(
batch_size
=
args
.
batch_size
,
...
...
@@ -186,13 +192,13 @@ def main(args):
is_train
=
False
,
is_shuffle
=
False
,
args
=
args
)
train_loader
.
set_batch_generator
(
train_reader
,
places
=
place
)
valid_loader
.
set_batch_generator
(
valid_reader
,
places
=
place
)
if
args
.
use_data_parallel
:
train_reader
=
fluid
.
contrib
.
reader
.
distributed_batch_reader
(
train_reader
)
train_loader
.
set_batch_generator
(
train_reader
,
places
=
place
)
valid_loader
.
set_batch_generator
(
valid_reader
,
places
=
place
)
save_parameters
=
(
not
args
.
use_data_parallel
)
or
(
args
.
use_data_parallel
and
fluid
.
dygraph
.
parallel
.
Env
().
local_rank
==
0
)
...
...
demo/darts/train_imagenet.py
浏览文件 @
e8e48533
...
...
@@ -19,13 +19,15 @@ from __future__ import print_function
import
os
import
sys
import
ast
import
logging
import
argparse
import
functools
import
logging
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.base
import
to_variable
from
paddleslim.common
import
AvgrageMeter
,
get_logger
from
paddleslim.nas.darts
import
count_parameters_in_MB
import
genotypes
import
reader
from
model
import
NetworkImageNet
as
Network
...
...
@@ -152,9 +154,6 @@ def main(args):
if
args
.
use_data_parallel
else
fluid
.
CUDAPlace
(
0
)
with
fluid
.
dygraph
.
guard
(
place
):
if
args
.
use_data_parallel
:
strategy
=
fluid
.
dygraph
.
parallel
.
prepare_context
()
genotype
=
eval
(
"genotypes.%s"
%
args
.
arch
)
model
=
Network
(
C
=
args
.
init_channels
,
...
...
@@ -163,7 +162,12 @@ def main(args):
auxiliary
=
args
.
auxiliary
,
genotype
=
genotype
)
step_per_epoch
=
int
(
args
.
trainset_num
/
args
.
batch_size
)
logger
.
info
(
"param size = {:.6f}MB"
.
format
(
count_parameters_in_MB
(
model
.
parameters
())))
device_num
=
fluid
.
dygraph
.
parallel
.
Env
().
nranks
step_per_epoch
=
int
(
args
.
trainset_num
/
(
args
.
batch_size
*
device_num
))
learning_rate
=
fluid
.
dygraph
.
ExponentialDecay
(
args
.
learning_rate
,
step_per_epoch
,
...
...
@@ -179,6 +183,7 @@ def main(args):
grad_clip
=
clip
)
if
args
.
use_data_parallel
:
strategy
=
fluid
.
dygraph
.
parallel
.
prepare_context
()
model
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
model
,
strategy
)
train_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
...
...
@@ -199,20 +204,19 @@ def main(args):
valid_reader
=
fluid
.
io
.
batch
(
reader
.
imagenet_reader
(
args
.
data_dir
,
'val'
),
batch_size
=
args
.
batch_size
)
train_loader
.
set_sample_list_generator
(
train_reader
,
places
=
place
)
valid_loader
.
set_sample_list_generator
(
valid_reader
,
places
=
place
)
if
args
.
use_data_parallel
:
train_reader
=
fluid
.
contrib
.
reader
.
distributed_batch_reader
(
train_reader
)
train_loader
.
set_sample_list_generator
(
train_reader
,
places
=
place
)
valid_loader
.
set_sample_list_generator
(
valid_reader
,
places
=
place
)
save_parameters
=
(
not
args
.
use_data_parallel
)
or
(
args
.
use_data_parallel
and
fluid
.
dygraph
.
parallel
.
Env
().
local_rank
==
0
)
best_top1
=
0
for
epoch
in
range
(
args
.
epochs
):
logg
ing
.
info
(
'Epoch {}, lr {:.6f}'
.
format
(
logg
er
.
info
(
'Epoch {}, lr {:.6f}'
.
format
(
epoch
,
optimizer
.
current_step_lr
()))
train_top1
,
train_top5
=
train
(
model
,
train_loader
,
optimizer
,
epoch
,
args
)
...
...
docs/zh_cn/api_cn/darts.rst
浏览文件 @
e8e48533
...
...
@@ -97,7 +97,7 @@ DARTSearch
model
=
SuperNet
()
train_reader
=
batch_generator_creator
()
valid_reader
=
batch_generator_creator
()
searcher
=
DARTSearch
(
model
,
train_reader
,
valid_reader
,
unrolled
=
Fals
e
)
searcher
=
DARTSearch
(
model
,
train_reader
,
valid_reader
,
plac
e
)
searcher
.
train
()
..
paddleslim/nas/darts/architect.py
浏览文件 @
e8e48533
# Copyright (c) 20
19
PaddlePaddle Authors. All Rights Reserved
# Copyright (c) 20
20
PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -21,7 +21,8 @@ from paddle.fluid.dygraph.base import to_variable
class
Architect
(
object
):
def
__init__
(
self
,
model
,
eta
,
arch_learning_rate
,
place
,
unrolled
):
def
__init__
(
self
,
model
,
eta
,
arch_learning_rate
,
place
,
unrolled
,
parallel
):
self
.
network_momentum
=
0.9
self
.
network_weight_decay
=
3e-4
self
.
eta
=
eta
...
...
@@ -34,6 +35,7 @@ class Architect(object):
parameter_list
=
self
.
model
.
arch_parameters
())
self
.
place
=
place
self
.
unrolled
=
unrolled
self
.
parallel
=
parallel
if
self
.
unrolled
:
self
.
unrolled_model
=
self
.
model
.
new
()
self
.
unrolled_model_params
=
[
...
...
@@ -49,6 +51,17 @@ class Architect(object):
self
.
network_weight_decay
),
parameter_list
=
self
.
unrolled_model_params
)
if
self
.
parallel
:
strategy
=
fluid
.
dygraph
.
parallel
.
prepare_context
()
self
.
parallel_model
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
self
.
model
,
strategy
)
if
self
.
unrolled
:
self
.
parallel_unrolled_model
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
self
.
unrolled_model
,
strategy
)
def
get_model
(
self
):
return
self
.
parallel_model
if
self
.
parallel
else
self
.
model
def
step
(
self
,
input_train
,
target_train
,
input_valid
,
target_valid
):
if
self
.
unrolled
:
params_grads
=
self
.
_backward_step_unrolled
(
...
...
@@ -61,7 +74,12 @@ class Architect(object):
def
_backward_step
(
self
,
input_valid
,
target_valid
):
loss
=
self
.
model
.
_loss
(
input_valid
,
target_valid
)
loss
.
backward
()
if
self
.
parallel
:
loss
=
self
.
parallel_model
.
scale_loss
(
loss
)
loss
.
backward
()
self
.
parallel_model
.
apply_collective_grads
()
else
:
loss
.
backward
()
return
loss
def
_backward_step_unrolled
(
self
,
input_train
,
target_train
,
input_valid
,
...
...
@@ -69,7 +87,14 @@ class Architect(object):
self
.
_compute_unrolled_model
(
input_train
,
target_train
)
unrolled_loss
=
self
.
unrolled_model
.
_loss
(
input_valid
,
target_valid
)
unrolled_loss
.
backward
()
if
self
.
parallel
:
unrolled_loss
=
self
.
parallel_unrolled_model
.
scale_loss
(
unrolled_loss
)
unrolled_loss
.
backward
()
self
.
parallel_unrolled_model
.
apply_collective_grads
()
else
:
unrolled_loss
.
backward
()
vector
=
[
to_variable
(
param
.
_grad_ivar
().
numpy
())
for
param
in
self
.
unrolled_model_params
...
...
@@ -93,7 +118,13 @@ class Architect(object):
self
.
model
.
parameters
()):
x
.
value
().
get_tensor
().
set
(
y
.
numpy
(),
self
.
place
)
loss
=
self
.
unrolled_model
.
_loss
(
input
,
target
)
loss
.
backward
()
if
self
.
parallel
:
loss
=
self
.
parallel_unrolled_model
.
scale_loss
(
loss
)
loss
.
backward
()
self
.
parallel_unrolled_model
.
apply_collective_grads
()
else
:
loss
.
backward
()
self
.
unrolled_optimizer
.
minimize
(
loss
)
self
.
unrolled_model
.
clear_gradients
()
...
...
@@ -112,7 +143,13 @@ class Architect(object):
param_p
=
param
+
grad
*
R
param
.
value
().
get_tensor
().
set
(
param_p
.
numpy
(),
self
.
place
)
loss
=
self
.
model
.
_loss
(
input
,
target
)
loss
.
backward
()
if
self
.
parallel
:
loss
=
self
.
parallel_model
.
scale_loss
(
loss
)
loss
.
backward
()
self
.
parallel_model
.
apply_collective_grads
()
else
:
loss
.
backward
()
grads_p
=
[
to_variable
(
param
.
_grad_ivar
().
numpy
())
for
param
in
self
.
model
.
arch_parameters
()
...
...
@@ -124,7 +161,13 @@ class Architect(object):
self
.
model
.
clear_gradients
()
loss
=
self
.
model
.
_loss
(
input
,
target
)
loss
.
backward
()
if
self
.
parallel
:
loss
=
self
.
parallel_model
.
scale_loss
(
loss
)
loss
.
backward
()
self
.
parallel_model
.
apply_collective_grads
()
else
:
loss
.
backward
()
grads_n
=
[
to_variable
(
param
.
_grad_ivar
().
numpy
())
for
param
in
self
.
model
.
arch_parameters
()
...
...
paddleslim/nas/darts/train_search.py
浏览文件 @
e8e48533
...
...
@@ -16,8 +16,9 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
__all__
=
[
'DARTSearch'
]
__all__
=
[
'DARTSearch'
,
'count_parameters_in_MB'
]
import
os
import
logging
import
numpy
as
np
import
paddle.fluid
as
fluid
...
...
@@ -67,19 +68,21 @@ class DARTSearch(object):
model
,
train_reader
,
valid_reader
,
place
,
learning_rate
=
0.025
,
batchsize
=
64
,
num_imgs
=
50000
,
arch_learning_rate
=
3e-4
,
unrolled
=
'False'
,
unrolled
=
False
,
num_epochs
=
50
,
epochs_no_archopt
=
0
,
use_gpu
=
True
,
use_data_parallel
=
False
,
save_dir
=
'./'
,
log_freq
=
50
):
self
.
model
=
model
self
.
train_reader
=
train_reader
self
.
valid_reader
=
valid_reader
self
.
place
=
place
,
self
.
learning_rate
=
learning_rate
self
.
batchsize
=
batchsize
self
.
num_imgs
=
num_imgs
...
...
@@ -87,14 +90,8 @@ class DARTSearch(object):
self
.
unrolled
=
unrolled
self
.
epochs_no_archopt
=
epochs_no_archopt
self
.
num_epochs
=
num_epochs
self
.
use_gpu
=
use_gpu
self
.
use_data_parallel
=
use_data_parallel
if
not
self
.
use_gpu
:
self
.
place
=
fluid
.
CPUPlace
()
elif
not
self
.
use_data_parallel
:
self
.
place
=
fluid
.
CUDAPlace
(
0
)
else
:
self
.
place
=
fluid
.
CUDAPlace
(
fluid
.
dygraph
.
parallel
.
Env
().
dev_id
)
self
.
save_dir
=
save_dir
self
.
log_freq
=
log_freq
def
train_one_epoch
(
self
,
train_loader
,
valid_loader
,
architect
,
optimizer
,
...
...
@@ -187,9 +184,13 @@ class DARTSearch(object):
]
logger
.
info
(
"param size = {:.6f}MB"
.
format
(
count_parameters_in_MB
(
model_parameters
)))
step_per_epoch
=
int
(
self
.
num_imgs
*
0.5
/
self
.
batchsize
)
device_num
=
fluid
.
dygraph
.
parallel
.
Env
().
nranks
step_per_epoch
=
int
(
self
.
num_imgs
*
0.5
/
(
self
.
batchsize
*
device_num
))
if
self
.
unrolled
:
step_per_epoch
*=
2
learning_rate
=
fluid
.
dygraph
.
CosineDecay
(
self
.
learning_rate
,
step_per_epoch
,
self
.
num_epochs
)
...
...
@@ -202,30 +203,37 @@ class DARTSearch(object):
grad_clip
=
clip
)
if
self
.
use_data_parallel
:
self
.
model
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
self
.
model
,
strategy
)
self
.
train_reader
=
fluid
.
contrib
.
reader
.
distributed_batch_reader
(
self
.
train_reader
)
self
.
valid_reader
=
fluid
.
contrib
.
reader
.
distributed_batch_reader
(
self
.
valid_reader
)
train_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
6
4
,
capacity
=
102
4
,
use_double_buffer
=
True
,
iterable
=
True
,
return_list
=
True
)
return_list
=
True
,
use_multiprocess
=
True
)
valid_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
6
4
,
capacity
=
102
4
,
use_double_buffer
=
True
,
iterable
=
True
,
return_list
=
True
)
return_list
=
True
,
use_multiprocess
=
True
)
train_loader
.
set_batch_generator
(
self
.
train_reader
,
places
=
self
.
place
)
valid_loader
.
set_batch_generator
(
self
.
valid_reader
,
places
=
self
.
place
)
architect
=
Architect
(
self
.
model
,
learning_rate
,
self
.
arch_learning_rate
,
self
.
place
,
self
.
unrolled
)
base_model
=
self
.
model
architect
=
Architect
(
model
=
self
.
model
,
eta
=
learning_rate
,
arch_learning_rate
=
self
.
arch_learning_rate
,
place
=
self
.
place
,
unrolled
=
self
.
unrolled
,
parallel
=
self
.
use_data_parallel
)
self
.
model
=
architect
.
get_model
()
save_parameters
=
(
not
self
.
use_data_parallel
)
or
(
self
.
use_data_parallel
and
...
...
@@ -234,7 +242,8 @@ class DARTSearch(object):
for
epoch
in
range
(
self
.
num_epochs
):
logger
.
info
(
'Epoch {}, lr {:.6f}'
.
format
(
epoch
,
optimizer
.
current_step_lr
()))
genotype
=
get_genotype
(
self
.
model
)
genotype
=
get_genotype
(
base_model
)
logger
.
info
(
'genotype = %s'
,
genotype
)
train_top1
=
self
.
train_one_epoch
(
train_loader
,
valid_loader
,
...
...
@@ -246,4 +255,6 @@ class DARTSearch(object):
logger
.
info
(
"Epoch {}, valid_acc {:.6f}"
.
format
(
epoch
,
valid_top1
))
if
save_parameters
:
fluid
.
save_dygraph
(
self
.
model
.
state_dict
(),
"./weights"
)
fluid
.
save_dygraph
(
self
.
model
.
state_dict
(),
os
.
path
.
join
(
self
.
save_dir
,
str
(
epoch
),
"params"
))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录