compressor.py 30.0 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
import numpy as np
import inspect
C
ceci3 已提交
20
import shutil
C
ceci3 已提交
21 22
from collections import namedtuple
from collections.abc import Iterable
W
whs 已提交
23
from time import gmtime, strftime
24
import platform
C
ceci3 已提交
25 26
import paddle
import paddle.distributed.fleet as fleet
27
from ..quant.quanter import convert, quant_post
C
ceci3 已提交
28 29
from ..common.recover_program import recover_inference_program
from ..common import get_logger
C
ceci3 已提交
30 31
from ..common.patterns import get_patterns
from ..analysis import TableLatencyPredictor
Z
zhouzj 已提交
32
from .create_compressed_program import build_distill_program, build_quant_program, build_prune_program, remove_unused_var_nodes
C
ceci3 已提交
33
from .strategy_config import ProgramInfo, merge_config
34
from .auto_strategy import prepare_strategy, get_final_quant_config, create_strategy_config, create_train_config
C
ceci3 已提交
35 36 37

_logger = get_logger(__name__, level=logging.INFO)

C
ceci3 已提交
38 39
try:
    if platform.system().lower() == 'linux':
C
ceci3 已提交
40
        from ..quant import quant_post_hpo
C
ceci3 已提交
41 42 43
except Exception as e:
    _logger.warning(e)

C
ceci3 已提交
44 45 46 47 48 49 50 51

class AutoCompression:
    def __init__(self,
                 model_dir,
                 model_filename,
                 params_filename,
                 save_dir,
                 train_dataloader,
C
ceci3 已提交
52 53 54
                 train_config=None,
                 strategy_config=None,
                 target_speedup=None,
55
                 eval_callback=None,
C
ceci3 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
                 eval_dataloader=None,
                 deploy_hardware='gpu'):
        """
        Compress inference model automatically.

        Args:
            model_dir(str): The path of inference model that will be compressed, and
                the model and params that saved by ``paddle.static.io.save_inference_model``
                are under the path.
            model_filename(str, optional):  The name of model file. If parameters
                are saved in separate files, set it as 'None'. Default: 'None'.
            params_filename(str, optional): The name of params file.
                When all parameters are saved in a single file, set it
                as filename. If parameters are saved in separate files,
                set it as 'None'. Default : 'None'.
W
whs 已提交
71 72
            save_dir(str): The path to save compressed model. The models in this directory will be overwrited
                after calling 'compress()' function.
C
ceci3 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
            train_data_loader(Python Generator, Paddle.io.DataLoader): The
                Generator or Dataloader provides train data, and it could
                return a batch every time.
            train_config(dict, optional): The train config in the compression process, the key can 
                reference `<https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L103>`_ . 
                Only one strategy(quant_post with hyperparameter optimization) can set train_config 
                to None. Default: None. 
            strategy_config(dict, list(dict), optional): The strategy config. You can set single config to get multi-strategy config, such as
                1. set ``Quantization`` and ``Distillation`` to get quant_aware and distillation compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                2. set ``Quantization`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L73`_ .
                3. set ``Prune`` and ``Distillation`` to get prune and distillation compress config.
                    The Prune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                4. set ``UnstructurePrune`` and ``Distillation`` to get unstructureprune and distillation compress config.
                    The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L91`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                5. set ``Distillation`` to use one teacher modol to distillation student model.
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                6. set ``MultiTeacherDistillation`` to use multi-teacher to distillation student model.
                    The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L56`_ .

                If set to None, will choose a strategy automatically. Default: None.
            target_speedup(float, optional): target speedup ratio by the way of auto compress. Default: None.
            eval_callback(function, optional): eval function, define by yourself to return the metric of the inference program, can be used to judge the metric of compressed model. The documents of how to write eval function is `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/auto-compression/custom_function.rst`_ . ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
            eval_dataloader(paddle.io.Dataloader, optional):  The
                 Generator or Dataloader provides eval data, and it could
                 return a batch every time. ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
            deploy_hardware(str, optional): The hardware you want to deploy. Default: 'gpu'.
        """
C
ceci3 已提交
106
        self.model_dir = model_dir
C
ceci3 已提交
107 108
        if model_filename == 'None':
            model_filename = None
C
ceci3 已提交
109
        self.model_filename = model_filename
C
ceci3 已提交
110 111
        if params_filename == 'None':
            params_filename = None
C
ceci3 已提交
112
        self.params_filename = params_filename
C
ceci3 已提交
113
        self.final_dir = save_dir
W
whs 已提交
114 115
        if not os.path.exists(self.final_dir):
            os.makedirs(self.final_dir)
C
ceci3 已提交
116 117 118
        self.strategy_config = strategy_config
        self.train_config = train_config
        self.train_dataloader = train_dataloader
C
ceci3 已提交
119 120
        self.target_speedup = target_speedup
        self.eval_function = eval_callback
C
ceci3 已提交
121
        self.eval_dataloader = eval_dataloader if eval_dataloader is not None else train_dataloader
C
ceci3 已提交
122

C
ceci3 已提交
123
        paddle.enable_static()
C
ceci3 已提交
124 125 126

        if deploy_hardware in TableLatencyPredictor.hardware_list:
            self.deploy_hardware = deploy_hardware
C
ceci3 已提交
127
        else:
C
ceci3 已提交
128
            self.deploy_hardware = None
C
ceci3 已提交
129

C
ceci3 已提交
130 131 132
        self._exe, self._places = self._prepare_envs()
        self.model_type = self._get_model_type(self._exe, model_dir,
                                               model_filename, params_filename)
C
ceci3 已提交
133

C
ceci3 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        if self.train_config is not None and self.train_config.use_fleet:
            fleet.init(is_collective=True)

        if self.strategy_config is None:
            strategy_config = prepare_strategy(
                self.model_dir, self.model_filename, self.params_filename,
                self.target_speedup, self.deploy_hardware, self.model_type)
            self.strategy_config = strategy_config
        elif isinstance(self.strategy_config, dict):
            self.strategy_config = [self.strategy_config]
        elif isinstance(self.strategy_config, str):
            strategy_config = create_strategy_config(self.strategy_config,
                                                     self.model_type)

        self._strategy, self._config = self._prepare_strategy(
            self.strategy_config)

151 152 153 154 155
        # If train_config is None, set default train_config
        if self.train_config is None:
            self.train_config = create_train_config(self.strategy_config,
                                                    self.model_type)

C
ceci3 已提交
156 157
    def _prepare_envs(self):
        devices = paddle.device.get_device().split(':')[0]
C
ceci3 已提交
158 159 160 161
        places = paddle.device._convert_to_place(devices)
        exe = paddle.static.Executor(places)
        return exe, places

C
ceci3 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    def _get_model_type(self, exe, model_dir, model_filename, params_filename):
        [inference_program, _, _]= paddle.fluid.io.load_inference_model( \
            dirname=model_dir, \
            model_filename=model_filename, params_filename=params_filename,
            executor=exe)
        _, _, model_type = get_patterns(inference_program)
        return model_type

    def _prepare_strategy(self, strategy_config):
        if not isinstance(strategy_config, list):
            strategy_config = list(list(strategy_config))

        strategy = []
        config = []
        for strategy_c in strategy_config:
            quant_config = strategy_c.get("Quantization", None)
            hpo_config = strategy_c.get("HyperParameterOptimization", None)
            prune_config = strategy_c.get("Prune", None)
            unstructure_prune_config = strategy_c.get("UnstructurePrune", None)
            single_teacher_distill_config = strategy_c.get("Distillation", None)
            if single_teacher_distill_config is not None and single_teacher_distill_config.teacher_model_dir is None:
                single_teacher_distill_config = single_teacher_distill_config._replace(
                    teacher_model_dir=self.model_dir,
                    teacher_model_filename=self.model_filename,
                    teacher_params_filename=self.params_filename)

            multi_teacher_distill_config = strategy_c.get(
                "MultiTeacherDistillation", None)

            assert (single_teacher_distill_config is None) or (multi_teacher_distill_config is None), \
                "Distillation and MultiTeacherDistillation cannot be set at the same time."
            self._distill_config = single_teacher_distill_config if \
                   single_teacher_distill_config is not None else \
                   multi_teacher_distill_config

            ### case1: quant_config & hpo_config ==> PTQ & HPO
            if quant_config is not None and hpo_config is not None:
                strategy.append('ptq_hpo')
                config.append(merge_config(quant_config, hpo_config))

            ### case2: quant_config & distill config ==> QAT & Distill
            elif quant_config is not None and self._distill_config is not None:
                strategy.append('qat_dis')
                config.append(merge_config(quant_config, self._distill_config))

            ### case3: prune_config & distill config
            elif prune_config is not None and self._distill_config is not None:
                strategy.append('prune_dis')
                config.append(merge_config(prune_config, self._distill_config))

            ### case4: unstructure_config & distill config
            elif unstructure_prune_config is not None and self._distill_config is not None:
                strategy.append('unstructure_prune_dis')
                config.append(
                    merge_config(unstructure_prune_config,
                                 self._distill_config))

            ### case4: distill_config
            elif self._distill_config is not None:
                if single_teacher_distill_config is not None:
                    strategy.append('single_teacher_dis')
                    config.append(single_teacher_distill_config)
                else:
                    strategy.append('multi_teacher_dis')
                    config.append(multi_teacher_distill_config)
C
ceci3 已提交
227

C
ceci3 已提交
228 229 230 231 232
            ### case N: todo
            else:
                raise NotImplementedError(
                    "Not Implemented {} be set at the same time now".format(
                        strategy_c.keys()))
C
ceci3 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

        return strategy, config

    def _prepare_fleet_strategy(train_config):
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()

        strategy = fleet.DistributedStrategy()
        strategy.build_strategy = build_strategy
        if train_config.recompute_config is not None:
            strategy.recompute = True
            strategy.recompute_configs = { ** train_config.recompute_config}
        if train_config.sharding_config is not None:
            strategy.sharding = True
            strategy.sharding_configs = { ** train_config.sharding_config}
        if train_config.amp_config is not None:
            strategy.amp = True
            strategy.amp_configs = { ** train_config.amp_config}
251 252
        if train_config.asp_config is not None:
            strategy.asp = True
C
ceci3 已提交
253 254
        return strategy

C
ceci3 已提交
255 256
    def _prepare_program(self, program, feed_target_names, fetch_targets,
                         patterns, default_distill_node_pair, strategy, config):
C
ceci3 已提交
257 258 259 260 261
        train_program = recover_inference_program(program)
        startup_program = paddle.static.Program()
        train_program_info = ProgramInfo(startup_program, train_program,
                                         feed_target_names, fetch_targets)

C
ceci3 已提交
262
        config_dict = dict(config._asdict())
263 264 265
        if "prune_strategy" in config_dict and config_dict[
                "prune_strategy"] == "gmp" and config_dict[
                    'gmp_config'] is None:
Z
zhouzj 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278
            _logger.info(
                "Calculating the iterations per epoch……(It will take some time)")
            # NOTE:XXX: This way of calculating the iters needs to be improved.
            iters_per_epoch = len(list(self.train_dataloader()))
            total_iters = self.train_config.epochs * iters_per_epoch
            config_dict['gmp_config'] = {
                'stable_iterations': 0,
                'pruning_iterations': 0.45 * total_iters,
                'tunning_iterations': 0.45 * total_iters,
                'resume_iteration': -1,
                'pruning_steps': 100,
                'initial_ratio': 0.15,
            }
C
ceci3 已提交
279 280
        ### add prune program
        self._pruner = None
C
ceci3 已提交
281
        if 'prune' in strategy:
C
ceci3 已提交
282 283
            self._pruner, train_program_info = build_prune_program(
                self._exe, self._places, config_dict, train_program_info,
C
ceci3 已提交
284
                strategy, patterns, self.eval_dataloader)
C
ceci3 已提交
285 286 287 288 289 290 291

        if self.train_config.use_fleet:
            dist_strategy = _prepare_fleet_strategy(self.train_config)
        else:
            dist_strategy = None

        ### add distill program
C
ceci3 已提交
292
        if 'dis' in strategy:
C
ceci3 已提交
293 294 295 296 297 298 299
            train_program_info, test_program_info = build_distill_program(
                self._exe,
                self._places,
                config_dict,
                self.train_config._asdict(),
                train_program_info,
                pruner=self._pruner,
C
ceci3 已提交
300 301
                dist_strategy=dist_strategy,
                default_distill_node_pair=default_distill_node_pair)
C
ceci3 已提交
302 303 304

        self._quant_config = None
        ### add quant_aware program, quant always is last step
C
ceci3 已提交
305
        if 'qat' in strategy:
C
ceci3 已提交
306 307 308
            train_program_info, test_program_info, self._quant_config = build_quant_program(
                self._exe, self._places, config_dict, train_program_info,
                test_program_info)
Z
zhouzj 已提交
309 310
        if self.train_config.sparse_model:
            from ..prune.unstructured_pruner import UnstructuredPruner
Z
zhouzj 已提交
311
            # NOTE: The initialization parameter of this pruner doesn't work, it is only used to call the 'set_static_masks' function
Z
zhouzj 已提交
312 313 314 315 316 317
            self._pruner = UnstructuredPruner(
                train_program_info.program,
                mode='ratio',
                ratio=0.75,
                prune_params_type='conv1x1_only',
                place=self._places)
Z
zhouzj 已提交
318
            self._pruner.set_static_masks()  # Fixed model sparsity
C
ceci3 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

        self._exe.run(train_program_info.startup_program)

        if (not self.train_config.use_fleet
            ) and self.train_config.amp_config is not None:
            if hasattr(self.train_config.amp_config, 'use_pure_fp16'
                       ) and self.train_config.amp_config.use_pure_fp16:
                train_program_info.optimizer.amp_init(
                    self._places, scope=paddle.static.global_scope())

        if 'prune_algo' in config_dict and config_dict['prune_algo'] == 'asp':
            ### prune weight in scope
            self._pruner.prune_model(train_program_info.program)

        if not self.train_config.use_fleet:
            train_program_info = self._compiled_program(train_program_info,
C
ceci3 已提交
335
                                                        strategy)
C
ceci3 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
            test_program_info = self._compiled_program(test_program_info,
                                                       self._strategy)
        return train_program_info, test_program_info

    def _compiled_program(self, program_info, strategy):
        compiled_prog = paddle.static.CompiledProgram(program_info.program)
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()
        if 'qat' in strategy:
            build_strategy.memory_optimize = False
            build_strategy.enable_inplace = False
            build_strategy.fuse_all_reduce_ops = False
            build_strategy.sync_batch_norm = False

        compiled_prog = compiled_prog.with_data_parallel(
            loss_name=program_info.fetch_targets[0].name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)
        program_info.program = compiled_prog
        return program_info

    def compress(self):
W
whs 已提交
358 359 360 361 362 363 364
        # create a new temp directory in final dir
        s_datetime = strftime("%Y-%m-%d-%H:%M:%S", gmtime())
        tmp_base_name = "_".join(["tmp", str(os.getpid()), s_datetime])
        self.tmp_dir = os.path.join(self.final_dir, tmp_base_name)
        if not os.path.exists(self.tmp_dir):
            os.makedirs(self.tmp_dir)

C
ceci3 已提交
365 366 367 368 369 370 371 372 373
        for strategy_idx, (
                strategy,
                config) in enumerate(zip(self._strategy, self._config)):
            self.single_strategy_compress(strategy, config, strategy_idx)

        if strategy == 'ptq_hpo' and config.max_quant_count == 1 and platform.system(
        ).lower() == 'linux':
            ptq_loss = quant_post_hpo.g_min_emd_loss

C
ceci3 已提交
374 375 376 377 378 379
            final_quant_config = get_final_quant_config(ptq_loss)
            if final_quant_config is not None:
                quant_strategy, quant_config = self._prepare_strategy(
                    final_quant_config)
                self.single_strategy_compress(quant_strategy[0],
                                              quant_config[0], strategy_idx)
380
        tmp_model_path = os.path.join(
W
whs 已提交
381
            self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1)))
C
ceci3 已提交
382
        final_model_path = os.path.join(self.final_dir)
383 384
        if not os.path.exists(final_model_path):
            os.makedirs(final_model_path)
C
ceci3 已提交
385 386 387 388 389 390 391
        tmp_model_file = os.path.join(tmp_model_path, self.model_filename)
        tmp_params_file = os.path.join(tmp_model_path, self.params_filename)
        final_model_file = os.path.join(final_model_path, self.model_filename)
        final_params_file = os.path.join(final_model_path, self.params_filename)
        if paddle.distributed.get_rank() == 0:
            shutil.move(tmp_model_file, final_model_file)
            shutil.move(tmp_params_file, final_params_file)
W
whs 已提交
392
            shutil.rmtree(self.tmp_dir)
C
ceci3 已提交
393 394 395
            _logger.info(
                "==> Finished the ACT process and the final model is saved in:{}".
                format(final_model_path))
C
ceci3 已提交
396 397 398
        os._exit(0)

    def single_strategy_compress(self, strategy, config, strategy_idx):
399 400 401 402 403 404 405
        # start compress, including train/eval model
        # TODO: add the emd loss of evaluation model.
        if strategy == 'quant_post':
            quant_post(
                self._exe,
                model_dir=self.model_dir,
                quantize_model_path=os.path.join(
W
whs 已提交
406
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
                data_loader=self.train_dataloader,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
                batch_size=1,
                batch_nums=config.batch_num,
                algo=config.ptq_algo,
                round_type='round',
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
                quantizable_op_type=config.quantize_op_types,
                is_full_quantize=config.is_full_quantize,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                activation_quantize_type='range_abs_max',
                weight_quantize_type=config.weight_quantize_type,
                onnx_format=False)

        elif strategy == 'ptq_hpo':
427 428 429 430
            if platform.system().lower() != 'linux':
                raise NotImplementedError(
                    "post-quant-hpo is not support in system other than linux")

C
ceci3 已提交
431
            quant_post_hpo.quant_post_hpo(
C
ceci3 已提交
432 433 434
                self._exe,
                self._places,
                model_dir=self.model_dir,
C
ceci3 已提交
435
                quantize_model_path=os.path.join(
W
whs 已提交
436
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
C
ceci3 已提交
437 438 439 440 441 442 443
                train_dataloader=self.train_dataloader,
                eval_dataloader=self.eval_dataloader,
                eval_function=self.eval_function,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
C
ceci3 已提交
444 445 446 447 448 449 450 451
                quantizable_op_type=config.quantize_op_types,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                weight_quantize_type=config.weight_quantize_type,
                is_full_quantize=config.is_full_quantize,
                algo=config.ptq_algo,
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
C
ceci3 已提交
452
                batch_size=[1],
C
ceci3 已提交
453 454
                batch_num=config.batch_num,
                runcount_limit=config.max_quant_count)
C
ceci3 已提交
455 456

        else:
C
ceci3 已提交
457 458 459 460 461 462
            assert 'dis' in strategy, "Only support optimizer compressed model by distillation loss."

            if strategy_idx == 0:
                model_dir = self.model_dir
            else:
                model_dir = os.path.join(
W
whs 已提交
463
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx)))
C
ceci3 已提交
464 465

            [inference_program, feed_target_names, fetch_targets]= paddle.fluid.io.load_inference_model( \
C
ceci3 已提交
466
                dirname=model_dir, \
C
ceci3 已提交
467 468 469 470
                model_filename=self.model_filename, params_filename=self.params_filename,
                executor=self._exe)

            ### used to check whether the dataloader is right
C
ceci3 已提交
471
            self.metric_before_compressed = None
C
ceci3 已提交
472
            if self.eval_function is not None and self.train_config.origin_metric is not None:
C
ceci3 已提交
473
                _logger.info("start to test metric before compress")
C
ceci3 已提交
474 475 476 477 478 479 480 481 482 483 484
                metric = self.eval_function(self._exe, inference_program,
                                            feed_target_names, fetch_targets)
                _logger.info("metric of compressed model is: {}".format(metric))
                buf = 0.05
                if metric < (float(self.train_config.origin_metric) - buf) or \
                        metric > (float(self.train_config.origin_metric) + buf):
                    raise RuntimeError("target metric of pretrained model is {}, \
                          but now is {}, Please check the format of evaluation dataset \
                          or check the origin_metric in train_config"
                                                                     .format(\
                          self.train_config.origin_metric, metric))
C
ceci3 已提交
485 486 487 488
                self.metric_before_compressed = metric

            patterns, default_distill_node_pair, _ = get_patterns(
                inference_program)
C
ceci3 已提交
489 490

            train_program_info, test_program_info = self._prepare_program(
C
ceci3 已提交
491 492
                inference_program, feed_target_names, fetch_targets, patterns,
                default_distill_node_pair, strategy, config)
Z
zhouzj 已提交
493 494 495
            if 'unstructure' in self._strategy:
                test_program_info.program._program = remove_unused_var_nodes(
                    test_program_info.program._program)
C
ceci3 已提交
496
            test_program_info = self._start_train(train_program_info,
C
ceci3 已提交
497 498
                                                  test_program_info, strategy)
            self._save_model(test_program_info, strategy, strategy_idx)
C
ceci3 已提交
499

C
ceci3 已提交
500
    def _start_train(self, train_program_info, test_program_info, strategy):
C
ceci3 已提交
501 502 503 504 505 506
        best_metric = -1.0
        for epoch_id in range(self.train_config.epochs):
            for batch_id, data in enumerate(self.train_dataloader()):
                np_probs_float, = self._exe.run(train_program_info.program, \
                    feed=data, \
                    fetch_list=train_program_info.fetch_targets)
507 508
                if not isinstance(train_program_info.learning_rate, float):
                    train_program_info.learning_rate.step()
C
ceci3 已提交
509
                if 'unstructure' in strategy:
C
ceci3 已提交
510 511 512 513 514 515 516 517 518 519
                    self._pruner.step()

                if self.train_config.logging_iter is None:
                    logging_iter = 10
                else:
                    logging_iter = self.train_config.logging_iter
                if batch_id % int(logging_iter) == 0:
                    _logger.info("epoch: {}, batch: {}, loss: {}".format(
                        epoch_id, batch_id, np_probs_float))

520 521
                if batch_id % int(
                        self.train_config.eval_iter) == 0 and batch_id != 0:
C
ceci3 已提交
522 523 524
                    if self.eval_function is not None:

                        # GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation. 
C
ceci3 已提交
525
                        if 'unstructure' in strategy:
C
ceci3 已提交
526 527 528 529 530 531 532 533
                            self._pruner.update_params()

                        metric = self.eval_function(
                            self._exe, test_program_info.program,
                            test_program_info.feed_target_names,
                            test_program_info.fetch_targets)

                        _logger.info(
C
ceci3 已提交
534 535
                            "epoch: {}, batch: {} metric of compressed model is: {}, best metric of compressed model is {}".
                            format(epoch_id, batch_id, metric, best_metric))
C
ceci3 已提交
536 537 538
                        if metric > best_metric:
                            paddle.static.save(
                                program=test_program_info.program._program,
W
whs 已提交
539
                                model_path=os.path.join(self.tmp_dir,
C
ceci3 已提交
540
                                                        'best_model'))
C
ceci3 已提交
541 542 543 544 545 546
                            best_metric = metric
                            if self.metric_before_compressed is not None and float(
                                    abs(best_metric -
                                        self.metric_before_compressed)
                            ) / self.metric_before_compressed <= 0.005:
                                break
C
ceci3 已提交
547 548
                        if self.train_config.target_metric is not None:
                            if metric > float(self.train_config.target_metric):
C
ceci3 已提交
549
                                break
C
ceci3 已提交
550 551

                    else:
552 553 554
                        _logger.warning(
                            "Not set eval function, so unable to test accuracy performance."
                        )
C
ceci3 已提交
555

Z
zhouzj 已提交
556 557 558
        if 'unstructure' in self._strategy or self.train_config.sparse_model:
            self._pruner.update_params()

C
ceci3 已提交
559 560
        return test_program_info

C
ceci3 已提交
561
    def _save_model(self, test_program_info, strategy, strategy_idx):
C
ceci3 已提交
562 563 564
        test_program = test_program_info.program._program if isinstance(
            test_program_info.program,
            paddle.static.CompiledProgram) else test_program_info.program
C
ceci3 已提交
565

W
whs 已提交
566
        if os.path.exists(os.path.join(self.tmp_dir, 'best_model.pdparams')):
567
            paddle.static.load(test_program,
W
whs 已提交
568 569 570 571
                               os.path.join(self.tmp_dir, 'best_model'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdmodel'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdopt'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdparams'))
C
ceci3 已提交
572 573 574 575 576 577 578

        if 'qat' in strategy:
            float_program, int8_program = convert(test_program_info.program._program, self._places, self._quant_config, \
                                          scope=paddle.static.global_scope(), \
                                          save_int8=True)
            test_program_info.program = float_program

W
whs 已提交
579
        model_dir = os.path.join(self.tmp_dir,
C
ceci3 已提交
580 581 582 583 584 585 586
                                 'strategy_{}'.format(str(strategy_idx + 1)))
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
        paddle.fluid.io.save_inference_model(
            dirname=str(model_dir),
            feeded_var_names=test_program_info.feed_target_names,
            target_vars=test_program_info.fetch_targets,
C
ceci3 已提交
587
            executor=self._exe,
588
            main_program=test_program,
C
ceci3 已提交
589 590
            model_filename=self.model_filename,
            params_filename=self.params_filename)