mobilenetv2.py 10.6 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
C
ceci3 已提交
20 21
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
22
from .search_space_base import SearchSpaceBase
C
ceci3 已提交
23
from .base_layer import conv_bn_layer
24
from .search_space_registry import SEARCHSPACE
C
ceci3 已提交
25

26 27
__all__ = ["MobileNetV2Space"]

28 29

@SEARCHSPACE.register
C
ceci3 已提交
30
class MobileNetV2Space(SearchSpaceBase):
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    def __init__(self,
                 input_size,
                 output_size,
                 block_num,
                 scale=1.0,
                 class_dim=1000):
        super(MobileNetV2Space, self).__init__(input_size, output_size,
                                               block_num)
        self.head_num = np.array([3, 4, 8, 12, 16, 24, 32])  #7
        self.filter_num1 = np.array([3, 4, 8, 12, 16, 24, 32, 48])  #8
        self.filter_num2 = np.array([8, 12, 16, 24, 32, 48, 64, 80])  #8
        self.filter_num3 = np.array([16, 24, 32, 48, 64, 80, 96, 128])  #8
        self.filter_num4 = np.array(
            [24, 32, 48, 64, 80, 96, 128, 144, 160, 192])  #10
        self.filter_num5 = np.array(
            [32, 48, 64, 80, 96, 128, 144, 160, 192, 224])  #10
        self.filter_num6 = np.array(
            [64, 80, 96, 128, 144, 160, 192, 224, 256, 320, 384, 512])  #12
        self.k_size = np.array([3, 5])  #2
        self.multiply = np.array([1, 2, 3, 4, 6])  #5
        self.repeat = np.array([1, 2, 3, 4, 5, 6])  #6
        self.scale = scale
        self.class_dim = class_dim
C
ceci3 已提交
54

C
ceci3 已提交
55

C
ceci3 已提交
56 57
    def init_tokens(self):
        """
C
ceci3 已提交
58
        The initial token send to controller.
C
ceci3 已提交
59 60
        The first one is the index of the first layers' channel in self.head_num,
        each line in the following represent the index of the [expansion_factor, filter_num, repeat_num, kernel_size]
C
ceci3 已提交
61 62
        """
        # original MobileNetV2
W
wanghaoshuang 已提交
63
        # yapf: disable
C
ceci3 已提交
64
        init_token_base =  [4,          # 1, 16, 1
W
wanghaoshuang 已提交
65 66 67 68 69 70 71 72
                4, 5, 1, 0, # 6, 24, 1
                4, 5, 1, 0, # 6, 24, 2
                4, 4, 2, 0, # 6, 32, 3
                4, 4, 3, 0, # 6, 64, 4
                4, 5, 2, 0, # 6, 96, 3
                4, 7, 2, 0, # 6, 160, 3
                4, 9, 0, 0] # 6, 320, 1
        # yapf: enable
C
ceci3 已提交
73 74 75 76 77 78 79

        if self.block_num < 5: 
            self.token_len = 1 + (self.block_num - 1) * 4
        else:
            self.token_len = 1 + (self.block_num + 2 * (self.block_num - 5)) * 4 

        return init_token_base[:self.token_len]
C
ceci3 已提交
80 81 82 83 84 85

    def range_table(self):
        """
        get range table of current search space 
        """
        # head_num + 7 * [multiple(expansion_factor), filter_num, repeat, kernel_size]
W
wanghaoshuang 已提交
86
        # yapf: disable
C
ceci3 已提交
87
        range_table_base =  [7,
W
wanghaoshuang 已提交
88 89 90 91 92 93 94 95
                5, 8, 6, 2,
                5, 8, 6, 2,
                5, 8, 6, 2,
                5, 8, 6, 2,
                5, 10, 6, 2,
                5, 10, 6, 2,
                5, 12, 6, 2]
        # yapf: enable
C
ceci3 已提交
96
        return range_table_base[:self.token_len]
C
ceci3 已提交
97 98 99

    def token2arch(self, tokens=None):
        """
C
ceci3 已提交
100
        return net_arch function
C
ceci3 已提交
101
        """
C
ceci3 已提交
102

103 104
        assert self.block_num < 7, 'block number must less than 7, but receive block number is {}'.format(
            self.block_num)
C
ceci3 已提交
105

C
ceci3 已提交
106 107
        if tokens is None:
            tokens = self.init_tokens()
C
ceci3 已提交
108

C
ceci3 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        bottleneck_params_list = []
        if self.block_num >= 1: bottleneck_params_list.append((1, self.head_num[tokens[0]], 1, 1, 3)) 
        if self.block_num >= 2: bottleneck_params_list.append((self.multiply[tokens[1]], self.filter_num1[tokens[2]],
                                       self.repeat[tokens[3]], 2, self.k_size[tokens[4]])) 
        if self.block_num >= 3: bottleneck_params_list.append((self.multiply[tokens[5]], self.filter_num1[tokens[6]],
                                       self.repeat[tokens[7]], 2, self.k_size[tokens[8]])) 
        if self.block_num >= 4: bottleneck_params_list.append((self.multiply[tokens[9]], self.filter_num2[tokens[10]],
                                       self.repeat[tokens[11]], 2, self.k_size[tokens[12]])) 
        if self.block_num >= 5: 
            bottleneck_params_list.append((self.multiply[tokens[13]], self.filter_num3[tokens[14]],
                                       self.repeat[tokens[15]], 2, self.k_size[tokens[16]])) 
            bottleneck_params_list.append((self.multiply[tokens[17]], self.filter_num3[tokens[18]],
                                       self.repeat[tokens[19]], 1, self.k_size[tokens[20]])) 
        if self.block_num >= 6: 
            bottleneck_params_list.append((self.multiply[tokens[21]], self.filter_num5[tokens[22]],
                                       self.repeat[tokens[23]], 2, self.k_size[tokens[24]]))
            bottleneck_params_list.append((self.multiply[tokens[25]], self.filter_num6[tokens[26]],
                                       self.repeat[tokens[27]], 1, self.k_size[tokens[28]])) 
        
C
ceci3 已提交
128
        def net_arch(input):
C
ceci3 已提交
129
            #conv1
C
ceci3 已提交
130
            # all padding is 'SAME' in the conv2d, can compute the actual padding automatic. 
C
ceci3 已提交
131
            input = conv_bn_layer(
C
ceci3 已提交
132 133 134 135
                input,
                num_filters=int(32 * self.scale),
                filter_size=3,
                stride=2,
C
ceci3 已提交
136 137
                padding='SAME',
                act='relu6',
C
ceci3 已提交
138
                name='mobilenetv2_conv1_1')
C
ceci3 已提交
139 140 141 142 143 144 145

            # bottleneck sequences
            i = 1
            in_c = int(32 * self.scale)
            for layer_setting in bottleneck_params_list:
                t, c, n, s, k = layer_setting
                i += 1
C
ceci3 已提交
146
                input = self._invresi_blocks(
C
ceci3 已提交
147 148 149 150 151 152 153
                    input=input,
                    in_c=in_c,
                    t=t,
                    c=int(c * self.scale),
                    n=n,
                    s=s,
                    k=k,
C
ceci3 已提交
154
                    name='mobilenetv2_conv' + str(i))
C
ceci3 已提交
155
                in_c = int(c * self.scale)
C
ceci3 已提交
156 157 158

            # if output_size is 1, add fc layer in the end
            if self.output_size == 1:
159 160 161
                input = fluid.layers.fc(
                    input=input,
                    size=self.class_dim,
C
ceci3 已提交
162 163
                    param_attr=ParamAttr(name='mobilenetv2_fc_weights'),
                    bias_attr=ParamAttr(name='mobilenetv2_fc_offset'))
C
ceci3 已提交
164 165 166 167 168
            else:
                assert self.output_size == input.shape[2], \
                          ("output_size must EQUAL to input_size / (2^block_num)."
                          "But receive input_size={}, output_size={}, block_num={}".format(
                          self.input_size, self.output_size, self.block_num))
C
ceci3 已提交
169

C
ceci3 已提交
170 171
            return input

C
ceci3 已提交
172
        return net_arch
C
ceci3 已提交
173

C
ceci3 已提交
174
    def _shortcut(self, input, data_residual):
C
ceci3 已提交
175 176
        """Build shortcut layer.
        Args:
C
ceci3 已提交
177 178
            input(Variable): input.
            data_residual(Variable): residual layer.
C
ceci3 已提交
179 180 181 182 183
        Returns:
            Variable, layer output.
        """
        return fluid.layers.elementwise_add(input, data_residual)

C
ceci3 已提交
184
    def _inverted_residual_unit(self,
C
ceci3 已提交
185 186 187 188 189 190 191 192 193 194 195
                               input,
                               num_in_filter,
                               num_filters,
                               ifshortcut,
                               stride,
                               filter_size,
                               expansion_factor,
                               reduction_ratio=4,
                               name=None):
        """Build inverted residual unit.
        Args:
C
ceci3 已提交
196 197 198 199 200 201
            input(Variable), input.
            num_in_filter(int), number of in filters.
            num_filters(int), number of filters.
            ifshortcut(bool), whether using shortcut.
            stride(int), stride.
            filter_size(int), filter size.
C
ceci3 已提交
202
            padding(str|int|list), padding.
C
ceci3 已提交
203 204
            expansion_factor(float), expansion factor.
            name(str), name.
C
ceci3 已提交
205 206 207 208
        Returns:
            Variable, layers output.
        """
        num_expfilter = int(round(num_in_filter * expansion_factor))
C
ceci3 已提交
209
        channel_expand = conv_bn_layer(
C
ceci3 已提交
210 211 212 213
            input=input,
            num_filters=num_expfilter,
            filter_size=1,
            stride=1,
C
ceci3 已提交
214
            padding='SAME',
C
ceci3 已提交
215
            num_groups=1,
C
ceci3 已提交
216
            act='relu6',
C
ceci3 已提交
217 218
            name=name + '_expand')

C
ceci3 已提交
219
        bottleneck_conv = conv_bn_layer(
C
ceci3 已提交
220 221 222 223
            input=channel_expand,
            num_filters=num_expfilter,
            filter_size=filter_size,
            stride=stride,
C
ceci3 已提交
224
            padding='SAME',
C
ceci3 已提交
225
            num_groups=num_expfilter,
C
ceci3 已提交
226
            act='relu6',
C
ceci3 已提交
227 228 229
            name=name + '_dwise',
            use_cudnn=False)

C
ceci3 已提交
230
        linear_out = conv_bn_layer(
C
ceci3 已提交
231 232 233 234
            input=bottleneck_conv,
            num_filters=num_filters,
            filter_size=1,
            stride=1,
C
ceci3 已提交
235
            padding='SAME',
C
ceci3 已提交
236
            num_groups=1,
C
ceci3 已提交
237
            act=None,
C
ceci3 已提交
238 239 240
            name=name + '_linear')
        out = linear_out
        if ifshortcut:
C
ceci3 已提交
241
            out = self._shortcut(input=input, data_residual=out)
C
ceci3 已提交
242 243
        return out

C
ceci3 已提交
244
    def _invresi_blocks(self, input, in_c, t, c, n, s, k, name=None):
C
ceci3 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257
        """Build inverted residual blocks.
        Args:
            input: Variable, input.
            in_c: int, number of in filters.
            t: float, expansion factor.
            c: int, number of filters.
            n: int, number of layers.
            s: int, stride.
            k: int, filter size.
            name: str, name.
        Returns:
            Variable, layers output.
        """
C
ceci3 已提交
258
        first_block = self._inverted_residual_unit(
C
ceci3 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271
            input=input,
            num_in_filter=in_c,
            num_filters=c,
            ifshortcut=False,
            stride=s,
            filter_size=k,
            expansion_factor=t,
            name=name + '_1')

        last_residual_block = first_block
        last_c = c

        for i in range(1, n):
C
ceci3 已提交
272
            last_residual_block = self._inverted_residual_unit(
C
ceci3 已提交
273 274 275 276 277 278 279 280 281
                input=last_residual_block,
                num_in_filter=last_c,
                num_filters=c,
                ifshortcut=True,
                stride=1,
                filter_size=k,
                expansion_factor=t,
                name=name + '_' + str(i + 1))
        return last_residual_block