提交 7d3cdda1 编写于 作者: C ceci3

add MobilenetV2

上级 3082ddab
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from SearchSpace import SearchSpace
from paddle.fluid.param_attr import ParamAttr
import paddle.fluid as fluid
import numpy as np
class MobileNetV2Space(SearchSpace):
def __init__(self, input_size, output_size, block_num, scale=1.0, class_dim=1000):
super(MobileNetV2Space, self).__init__(input_size, output_size, block_num)
self.scale=scale
self.head_num = np.array([3,4,8,12,16,24,32]) #7
self.filter_num1 = np.array([3,4,8,12,16,24,32,48]) #8
self.filter_num2 = np.array([8,12,16,24,32,48,64,80]) #8
self.filter_num3 = np.array([16,24,32,48,64,80,96,128]) #8
self.filter_num4 = np.array([24,32,48,64,80,96,128,144,160,192]) #10
self.filter_num5 = np.array([32,48,64,80,96,128,144,160,192,224]) #10
self.filter_num6 = np.array([64,80,96,128,144,160,192,224,256,320,384,512]) #12
self.k_size = np.array([3,5]) #2
self.multiply = np.array([1,2,3,4,6]) #5
self.repeat = np.array([1,2,3,4,5,6]) #6
self.class_dim=class_dim
def init_tokens(self):
"""
initial tokens
"""
# original MobileNetV2
return [4, # 1, 16, 1
4, 5, 1, 0, # 6, 24, 1
4, 5, 1, 0, # 6, 24, 2
4, 4, 2, 0, # 6, 32, 3
4, 4, 3, 0, # 6, 64, 4
4, 5, 2, 0, # 6, 96, 3
4, 7, 2, 0, # 6, 160, 3
4, 9, 0, 0] # 6, 320, 1
def range_table(self):
"""
get range table of current search space
"""
# head_num + 7 * [multiple(expansion_factor), filter_num, repeat, kernel_size]
return [7,
5, 8, 6, 2,
5, 8, 6, 2,
5, 8, 6, 2,
5, 8, 6, 2,
5, 10, 6, 2,
5, 10, 6, 2,
5, 12, 6, 2]
def token2arch(self, tokens=None):
"""
return netArch function
"""
if tokens is None:
tokens = self.init_tokens()
bottleneck_params_list = [
(1, self.head_num[tokens[0]], 1, 1, 3),
(self.multiply[tokens[1]], self.filter_num1[tokens[2]], self.repeat[tokens[3]], 2, self.k_size[tokens[4]]),
(self.multiply[tokens[5]], self.filter_num1[tokens[6]], self.repeat[tokens[7]], 2, self.k_size[tokens[8]]),
(self.multiply[tokens[9]], self.filter_num2[tokens[10]], self.repeat[tokens[11]], 2, self.k_size[tokens[12]]),
(self.multiply[tokens[13]], self.filter_num3[tokens[14]], self.repeat[tokens[15]], 2, self.k_size[tokens[16]]),
(self.multiply[tokens[17]], self.filter_num3[tokens[18]], self.repeat[tokens[19]], 1, self.k_size[tokens[20]]),
(self.multiply[tokens[21]], self.filter_num5[tokens[22]], self.repeat[tokens[23]], 2, self.k_size[tokens[24]]),
(self.multiply[tokens[25]], self.filter_num6[tokens[26]], self.repeat[tokens[27]], 1, self.k_size[tokens[28]]),
]
bottleneck_params_list = bottleneck_params_list[:self.block_num]
def netArch(input):
#conv1
input = self.conv_bn_layer(
input,
num_filters=int(32 * self.scale),
filter_size=3,
stride=2,
padding=1,
if_act=True,
name='conv1_1')
# bottleneck sequences
i = 1
in_c = int(32 * self.scale)
for layer_setting in bottleneck_params_list:
t, c, n, s, k = layer_setting
i += 1
input = self.invresi_blocks(
input=input,
in_c=in_c,
t=t,
c=int(c * self.scale),
n=n,
s=s,
k=k,
name='conv' + str(i))
in_c = int(c * self.scale)
#last_conv
input = self.conv_bn_layer(
input=input,
num_filters=int(1280 * self.scale) if self.scale > 1.0 else 1280,
filter_size=1,
stride=1,
padding=0,
if_act=True,
name='conv9')
#input = fluid.layers.pool2d(
# input=input,
# pool_size=7,
# pool_stride=1,
# pool_type='avg',
# global_pooling=True)
#output = fluid.layers.fc(input=input,
# size=self.class_dim,
# param_attr=ParamAttr(name='fc10_weights'),
# bias_attr=ParamAttr(name='fc10_offset'))
return input
return netArch
def conv_bn_layer(self, input, filter_size, num_filters, stride, padding, num_groups=1, if_act=True, name=None, use_cudnn=True):
"""Build convolution and batch normalization layers.
Args:
input: Variable, input.
filter_size: int, filter size.
num_filters: int, number of filters.
stride: int, stride.
padding: int, padding.
num_groups: int, number of groups.
if_act: bool, whether using activation.
name: str, name.
use_cudnn: bool, whether use cudnn.
Returns:
Variable, layers output.
"""
conv = fluid.layers.conv2d(input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=padding,
groups=num_groups, act=None, use_cudnn=use_cudnn, param_attr=ParamAttr(name=name+'_weights'), bias_attr=False)
bn_name = name + '_bn'
bn = fluid.layers.batch_norm(input=conv, param_attr=ParamAttr(name=bn_name+'_scale'), bias_attr=ParamAttr(name=bn_name+'_offset'),
moving_mean_name=bn_name+'_mean', moving_variance_name=bn_name+'_variance')
if if_act:
return fluid.layers.relu6(bn)
else:
return bn
def shortcut(self, input, data_residual):
"""Build shortcut layer.
Args:
input: Variable, input.
data_residual: Variable, residual layer.
Returns:
Variable, layer output.
"""
return fluid.layers.elementwise_add(input, data_residual)
def inverted_residual_unit(self,
input,
num_in_filter,
num_filters,
ifshortcut,
stride,
filter_size,
expansion_factor,
reduction_ratio=4,
name=None):
"""Build inverted residual unit.
Args:
input: Variable, input.
num_in_filter: int, number of in filters.
num_filters: int, number of filters.
ifshortcut: bool, whether using shortcut.
stride: int, stride.
filter_size: int, filter size.
padding: int, padding.
expansion_factor: float, expansion factor.
name: str, name.
Returns:
Variable, layers output.
"""
num_expfilter = int(round(num_in_filter * expansion_factor))
channel_expand = self.conv_bn_layer(
input=input,
num_filters=num_expfilter,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=True,
name=name + '_expand')
bottleneck_conv = self.conv_bn_layer(
input=channel_expand,
num_filters=num_expfilter,
filter_size=filter_size,
stride=stride,
padding=int((filter_size - 1) / 2),
num_groups=num_expfilter,
if_act=True,
name=name + '_dwise',
use_cudnn=False)
linear_out = self.conv_bn_layer(
input=bottleneck_conv,
num_filters=num_filters,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=False,
name=name + '_linear')
out = linear_out
if ifshortcut:
out = self.shortcut(input=input, data_residual=out)
return out
def invresi_blocks(self,
input,
in_c,
t,
c,
n,
s,
k,
name=None):
"""Build inverted residual blocks.
Args:
input: Variable, input.
in_c: int, number of in filters.
t: float, expansion factor.
c: int, number of filters.
n: int, number of layers.
s: int, stride.
k: int, filter size.
name: str, name.
Returns:
Variable, layers output.
"""
first_block = self.inverted_residual_unit(
input=input,
num_in_filter=in_c,
num_filters=c,
ifshortcut=False,
stride=s,
filter_size=k,
expansion_factor=t,
name=name + '_1')
last_residual_block = first_block
last_c = c
for i in range(1, n):
last_residual_block = self.inverted_residual_unit(
input=last_residual_block,
num_in_filter=last_c,
num_filters=c,
ifshortcut=True,
stride=1,
filter_size=k,
expansion_factor=t,
name=name + '_' + str(i + 1))
return last_residual_block
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ['SearchSpace']
class SearchSpace(object):
"""Controller for Neural Architecture Search.
"""
def __init__(self, input_size, output_size, block_num, *argss):
self.input_size = input_size
self.output_size = output_size
self.block_num = block_num
def init_tokens(self):
"""Get init tokens in search space.
"""
raise NotImplementedError('Abstract method.')
def range_table(self):
"""Get range table of current search space.
"""
raise NotImplementedError('Abstract method.')
def token2arch(self, tokens):
"""Create networks for training and evaluation according to tokens.
Args:
tokens(list<int>): The tokens which represent a network.
Return:
list<layers>
"""
raise NotImplementedError('Abstract method.')
from MobileNetV2Space import MobileNetV2Space
class SearchSpaceFactory(object):
def __init__(self, key, config):
self.key = key
self.input_size = config['input_size']
self.output_size = config['output_size']
self.block_num = config['block_num']
def get_search_space(self):
if self.key == 'MobileNetV2':
space = MobileNetV2Space(self.input_size, self.output_size, self.block_num)
return space
import paddle.fluid as fluid
if __name__ == '__main__':
config = {'input_size': 224, 'output_size': 7, 'block_num': 5}
space = SearchSpaceFactory('MobileNetV2', config=config)
my_space = space.get_search_space()
model_arch = my_space.token2arch()
train_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(train_prog, startup_prog):
model_input = fluid.layers.data(name='model_in', shape=[1, 3, 224, 224], dtype='float32', append_batch_size=False)
predict = model_arch(model_input)
print('output shape', predict.shape)
#for op in train_prog.global_block().ops:
# print(op.type)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册