mobilenetv2.py 10.2 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
C
ceci3 已提交
20 21
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
22
from .search_space_base import SearchSpaceBase
C
ceci3 已提交
23
from .base_layer import conv_bn_layer
24
from .search_space_registry import SEARCHSPACE
C
ceci3 已提交
25

26 27
__all__ = ["MobileNetV2Space"]

28 29

@SEARCHSPACE.register
C
ceci3 已提交
30
class MobileNetV2Space(SearchSpaceBase):
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    def __init__(self,
                 input_size,
                 output_size,
                 block_num,
                 scale=1.0,
                 class_dim=1000):
        super(MobileNetV2Space, self).__init__(input_size, output_size,
                                               block_num)
        self.head_num = np.array([3, 4, 8, 12, 16, 24, 32])  #7
        self.filter_num1 = np.array([3, 4, 8, 12, 16, 24, 32, 48])  #8
        self.filter_num2 = np.array([8, 12, 16, 24, 32, 48, 64, 80])  #8
        self.filter_num3 = np.array([16, 24, 32, 48, 64, 80, 96, 128])  #8
        self.filter_num4 = np.array(
            [24, 32, 48, 64, 80, 96, 128, 144, 160, 192])  #10
        self.filter_num5 = np.array(
            [32, 48, 64, 80, 96, 128, 144, 160, 192, 224])  #10
        self.filter_num6 = np.array(
            [64, 80, 96, 128, 144, 160, 192, 224, 256, 320, 384, 512])  #12
        self.k_size = np.array([3, 5])  #2
        self.multiply = np.array([1, 2, 3, 4, 6])  #5
        self.repeat = np.array([1, 2, 3, 4, 5, 6])  #6
        self.scale = scale
        self.class_dim = class_dim
C
ceci3 已提交
54 55 56

    def init_tokens(self):
        """
C
ceci3 已提交
57
        The initial token send to controller.
C
ceci3 已提交
58 59
        The first one is the index of the first layers' channel in self.head_num,
        each line in the following represent the index of the [expansion_factor, filter_num, repeat_num, kernel_size]
C
ceci3 已提交
60 61
        """
        # original MobileNetV2
W
wanghaoshuang 已提交
62 63 64 65 66 67 68 69 70 71
        # yapf: disable
        return [4,          # 1, 16, 1
                4, 5, 1, 0, # 6, 24, 1
                4, 5, 1, 0, # 6, 24, 2
                4, 4, 2, 0, # 6, 32, 3
                4, 4, 3, 0, # 6, 64, 4
                4, 5, 2, 0, # 6, 96, 3
                4, 7, 2, 0, # 6, 160, 3
                4, 9, 0, 0] # 6, 320, 1
        # yapf: enable
C
ceci3 已提交
72 73 74 75 76 77

    def range_table(self):
        """
        get range table of current search space 
        """
        # head_num + 7 * [multiple(expansion_factor), filter_num, repeat, kernel_size]
W
wanghaoshuang 已提交
78 79 80 81 82 83 84 85 86 87
        # yapf: disable
        return [7,
                5, 8, 6, 2,
                5, 8, 6, 2,
                5, 8, 6, 2,
                5, 8, 6, 2,
                5, 10, 6, 2,
                5, 10, 6, 2,
                5, 12, 6, 2]
        # yapf: enable
C
ceci3 已提交
88 89 90

    def token2arch(self, tokens=None):
        """
C
ceci3 已提交
91
        return net_arch function
C
ceci3 已提交
92 93 94 95
        """
        if tokens is None:
            tokens = self.init_tokens()

C
ceci3 已提交
96
        base_bottleneck_params_list = [
C
ceci3 已提交
97
            (1, self.head_num[tokens[0]], 1, 1, 3),
98 99 100 101 102 103 104 105 106 107 108 109 110 111
            (self.multiply[tokens[1]], self.filter_num1[tokens[2]],
             self.repeat[tokens[3]], 2, self.k_size[tokens[4]]),
            (self.multiply[tokens[5]], self.filter_num1[tokens[6]],
             self.repeat[tokens[7]], 2, self.k_size[tokens[8]]),
            (self.multiply[tokens[9]], self.filter_num2[tokens[10]],
             self.repeat[tokens[11]], 2, self.k_size[tokens[12]]),
            (self.multiply[tokens[13]], self.filter_num3[tokens[14]],
             self.repeat[tokens[15]], 2, self.k_size[tokens[16]]),
            (self.multiply[tokens[17]], self.filter_num3[tokens[18]],
             self.repeat[tokens[19]], 1, self.k_size[tokens[20]]),
            (self.multiply[tokens[21]], self.filter_num5[tokens[22]],
             self.repeat[tokens[23]], 2, self.k_size[tokens[24]]),
            (self.multiply[tokens[25]], self.filter_num6[tokens[26]],
             self.repeat[tokens[27]], 1, self.k_size[tokens[28]]),
C
ceci3 已提交
112
        ]
C
ceci3 已提交
113

114 115
        assert self.block_num < 7, 'block number must less than 7, but receive block number is {}'.format(
            self.block_num)
C
ceci3 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128

        # the stride = 2 means downsample feature map in the convolution, so only when stride=2, block_num minus 1,
        # otherwise, add layers to params_list directly.
        bottleneck_params_list = []
        for param_list in base_bottleneck_params_list:
            if param_list[3] == 1:
                bottleneck_params_list.append(param_list)
            else:
                if self.block_num > 1:
                    bottleneck_params_list.append(param_list)
                    self.block_num -= 1
                else:
                    break
C
ceci3 已提交
129

C
ceci3 已提交
130
        def net_arch(input):
C
ceci3 已提交
131
            #conv1
C
ceci3 已提交
132
            # all padding is 'SAME' in the conv2d, can compute the actual padding automatic. 
C
ceci3 已提交
133
            input = conv_bn_layer(
C
ceci3 已提交
134 135 136 137
                input,
                num_filters=int(32 * self.scale),
                filter_size=3,
                stride=2,
C
ceci3 已提交
138 139
                padding='SAME',
                act='relu6',
C
ceci3 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
                name='conv1_1')

            # bottleneck sequences
            i = 1
            in_c = int(32 * self.scale)
            for layer_setting in bottleneck_params_list:
                t, c, n, s, k = layer_setting
                i += 1
                input = self.invresi_blocks(
                    input=input,
                    in_c=in_c,
                    t=t,
                    c=int(c * self.scale),
                    n=n,
                    s=s,
                    k=k,
                    name='conv' + str(i))
                in_c = int(c * self.scale)
C
ceci3 已提交
158 159 160

            # if output_size is 1, add fc layer in the end
            if self.output_size == 1:
161 162 163 164 165
                input = fluid.layers.fc(
                    input=input,
                    size=self.class_dim,
                    param_attr=ParamAttr(name='fc10_weights'),
                    bias_attr=ParamAttr(name='fc10_offset'))
C
ceci3 已提交
166 167 168 169 170
            else:
                assert self.output_size == input.shape[2], \
                          ("output_size must EQUAL to input_size / (2^block_num)."
                          "But receive input_size={}, output_size={}, block_num={}".format(
                          self.input_size, self.output_size, self.block_num))
C
ceci3 已提交
171

C
ceci3 已提交
172 173
            return input

C
ceci3 已提交
174
        return net_arch
C
ceci3 已提交
175 176 177 178

    def shortcut(self, input, data_residual):
        """Build shortcut layer.
        Args:
C
ceci3 已提交
179 180
            input(Variable): input.
            data_residual(Variable): residual layer.
C
ceci3 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        Returns:
            Variable, layer output.
        """
        return fluid.layers.elementwise_add(input, data_residual)

    def inverted_residual_unit(self,
                               input,
                               num_in_filter,
                               num_filters,
                               ifshortcut,
                               stride,
                               filter_size,
                               expansion_factor,
                               reduction_ratio=4,
                               name=None):
        """Build inverted residual unit.
        Args:
C
ceci3 已提交
198 199 200 201 202 203
            input(Variable), input.
            num_in_filter(int), number of in filters.
            num_filters(int), number of filters.
            ifshortcut(bool), whether using shortcut.
            stride(int), stride.
            filter_size(int), filter size.
C
ceci3 已提交
204
            padding(str|int|list), padding.
C
ceci3 已提交
205 206
            expansion_factor(float), expansion factor.
            name(str), name.
C
ceci3 已提交
207 208 209 210
        Returns:
            Variable, layers output.
        """
        num_expfilter = int(round(num_in_filter * expansion_factor))
C
ceci3 已提交
211
        channel_expand = conv_bn_layer(
C
ceci3 已提交
212 213 214 215
            input=input,
            num_filters=num_expfilter,
            filter_size=1,
            stride=1,
C
ceci3 已提交
216
            padding='SAME',
C
ceci3 已提交
217
            num_groups=1,
C
ceci3 已提交
218
            act='relu6',
C
ceci3 已提交
219 220
            name=name + '_expand')

C
ceci3 已提交
221
        bottleneck_conv = conv_bn_layer(
C
ceci3 已提交
222 223 224 225
            input=channel_expand,
            num_filters=num_expfilter,
            filter_size=filter_size,
            stride=stride,
C
ceci3 已提交
226
            padding='SAME',
C
ceci3 已提交
227
            num_groups=num_expfilter,
C
ceci3 已提交
228
            act='relu6',
C
ceci3 已提交
229 230 231
            name=name + '_dwise',
            use_cudnn=False)

C
ceci3 已提交
232
        linear_out = conv_bn_layer(
C
ceci3 已提交
233 234 235 236
            input=bottleneck_conv,
            num_filters=num_filters,
            filter_size=1,
            stride=1,
C
ceci3 已提交
237
            padding='SAME',
C
ceci3 已提交
238
            num_groups=1,
C
ceci3 已提交
239
            act=None,
C
ceci3 已提交
240 241 242 243 244 245
            name=name + '_linear')
        out = linear_out
        if ifshortcut:
            out = self.shortcut(input=input, data_residual=out)
        return out

246
    def invresi_blocks(self, input, in_c, t, c, n, s, k, name=None):
C
ceci3 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        """Build inverted residual blocks.
        Args:
            input: Variable, input.
            in_c: int, number of in filters.
            t: float, expansion factor.
            c: int, number of filters.
            n: int, number of layers.
            s: int, stride.
            k: int, filter size.
            name: str, name.
        Returns:
            Variable, layers output.
        """
        first_block = self.inverted_residual_unit(
            input=input,
            num_in_filter=in_c,
            num_filters=c,
            ifshortcut=False,
            stride=s,
            filter_size=k,
            expansion_factor=t,
            name=name + '_1')

        last_residual_block = first_block
        last_c = c

        for i in range(1, n):
            last_residual_block = self.inverted_residual_unit(
                input=last_residual_block,
                num_in_filter=last_c,
                num_filters=c,
                ifshortcut=True,
                stride=1,
                filter_size=k,
                expansion_factor=t,
                name=name + '_' + str(i + 1))
        return last_residual_block