sa_nas_mobilenetv2.py 11.3 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11
import sys
sys.path.append('..')
import numpy as np
import argparse
import ast
import time
import argparse
import ast
import logging
import paddle
import paddle.fluid as fluid
C
ceci3 已提交
12
from paddle.fluid.param_attr import ParamAttr
C
ceci3 已提交
13 14 15 16 17 18 19 20 21 22
from paddleslim.analysis import flops
from paddleslim.nas import SANAS
from paddleslim.common import get_logger
from optimizer import create_optimizer
import imagenet_reader

_logger = get_logger(__name__, level=logging.INFO)


def create_data_loader(image_shape):
C
update  
ceci3 已提交
23
    data_shape = [None] + image_shape
C
ceci3 已提交
24
    data = fluid.data(name='data', shape=data_shape, dtype='float32')
C
update  
ceci3 已提交
25
    label = fluid.data(name='label', shape=[None, 1], dtype='int64')
C
ceci3 已提交
26 27 28 29 30 31 32 33
    data_loader = fluid.io.DataLoader.from_generator(
        feed_list=[data, label],
        capacity=1024,
        use_double_buffer=True,
        iterable=True)
    return data_loader, data, label


C
ceci3 已提交
34 35 36 37 38 39 40 41 42
def build_program(main_program,
                  startup_program,
                  image_shape,
                  archs,
                  args,
                  is_test=False):
    with fluid.program_guard(main_program, startup_program):
        data_loader, data, label = create_data_loader(image_shape)
        output = archs(data)
C
update  
ceci3 已提交
43
        output = fluid.layers.fc(input=output, size=args.class_dim)
C
ceci3 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56

        softmax_out = fluid.layers.softmax(input=output, use_cudnn=False)
        cost = fluid.layers.cross_entropy(input=softmax_out, label=label)
        avg_cost = fluid.layers.mean(cost)
        acc_top1 = fluid.layers.accuracy(input=softmax_out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=softmax_out, label=label, k=5)

        if is_test == False:
            optimizer = create_optimizer(args)
            optimizer.minimize(avg_cost)
    return data_loader, avg_cost, acc_top1, acc_top5


C
ceci3 已提交
57 58 59 60 61
def search_mobilenetv2(config, args, image_size, is_server=True):
    if is_server:
        ### start a server and a client
        sa_nas = SANAS(
            config,
C
ceci3 已提交
62
            server_addr=(args.server_address, args.port),
C
ceci3 已提交
63 64 65 66 67 68
            search_steps=args.search_steps,
            is_server=True)
    else:
        ### start a client
        sa_nas = SANAS(
            config,
C
ceci3 已提交
69
            server_addr=(args.server_address, args.port),
C
ceci3 已提交
70 71
            search_steps=args.search_steps,
            is_server=False)
C
ceci3 已提交
72 73 74 75 76 77 78 79

    image_shape = [3, image_size, image_size]
    for step in range(args.search_steps):
        archs = sa_nas.next_archs()[0]

        train_program = fluid.Program()
        test_program = fluid.Program()
        startup_program = fluid.Program()
C
ceci3 已提交
80 81 82 83 84
        train_loader, avg_cost, acc_top1, acc_top5 = build_program(
            train_program, startup_program, image_shape, archs, args)

        current_flops = flops(train_program)
        print('step: {}, current_flops: {}'.format(step, current_flops))
C
ceci3 已提交
85
        if current_flops > int(321208544):
C
ceci3 已提交
86 87 88 89 90 91 92 93 94 95
            continue

        test_loader, test_avg_cost, test_acc_top1, test_acc_top5 = build_program(
            test_program,
            startup_program,
            image_shape,
            archs,
            args,
            is_test=True)
        test_program = test_program.clone(for_test=True)
C
ceci3 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

        place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_program)

        if args.data == 'cifar10':
            train_reader = paddle.batch(
                paddle.reader.shuffle(
                    paddle.dataset.cifar.train10(cycle=False), buf_size=1024),
                batch_size=args.batch_size,
                drop_last=True)

            test_reader = paddle.batch(
                paddle.dataset.cifar.test10(cycle=False),
                batch_size=args.batch_size,
                drop_last=False)
        elif args.data == 'imagenet':
            train_reader = paddle.batch(
                imagenet_reader.train(),
                batch_size=args.batch_size,
                drop_last=True)
            test_reader = paddle.batch(
                imagenet_reader.val(),
                batch_size=args.batch_size,
                drop_last=False)

        train_loader.set_sample_list_generator(
            train_reader,
            places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
C
ceci3 已提交
125 126
        test_loader.set_sample_list_generator(test_reader, places=place)

C
ceci3 已提交
127 128 129 130
        build_strategy = fluid.BuildStrategy()
        train_compiled_program = fluid.CompiledProgram(
            train_program).with_data_parallel(
                loss_name=avg_cost.name, build_strategy=build_strategy)
C
ceci3 已提交
131
        for epoch_id in range(args.retain_epoch):
C
ceci3 已提交
132 133 134 135 136 137 138 139 140 141 142
            for batch_id, data in enumerate(train_loader()):
                fetches = [avg_cost.name]
                s_time = time.time()
                outs = exe.run(train_compiled_program,
                               feed=data,
                               fetch_list=fetches)[0]
                batch_time = time.time() - s_time
                if batch_id % 10 == 0:
                    _logger.info(
                        'TRAIN: steps: {}, epoch: {}, batch: {}, cost: {}, batch_time: {}ms'.
                        format(step, epoch_id, batch_id, outs[0], batch_time))
C
ceci3 已提交
143

C
ceci3 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156
        reward = []
        for batch_id, data in enumerate(test_loader()):
            test_fetches = [
                test_avg_cost.name, test_acc_top1.name, test_acc_top5.name
            ]
            batch_reward = exe.run(test_program,
                                   feed=data,
                                   fetch_list=test_fetches)
            reward_avg = np.mean(np.array(batch_reward), axis=1)
            reward.append(reward_avg)

            _logger.info(
                'TEST: step: {}, batch: {}, avg_cost: {}, acc_top1: {}, acc_top5: {}'.
C
ceci3 已提交
157 158
                format(step, batch_id, batch_reward[0], batch_reward[1],
                       batch_reward[2]))
C
ceci3 已提交
159 160

        finally_reward = np.mean(np.array(reward), axis=0)
C
ceci3 已提交
161
        _logger.info(
C
ceci3 已提交
162
            'FINAL TEST: avg_cost: {}, acc_top1: {}, acc_top5: {}'.format(
C
ceci3 已提交
163
                finally_reward[0], finally_reward[1], finally_reward[2]))
C
ceci3 已提交
164

C
ceci3 已提交
165
        sa_nas.reward(float(finally_reward[1]))
C
ceci3 已提交
166 167


C
update  
ceci3 已提交
168 169 170
def test_search_result(tokens, image_size, args, config):
    sa_nas = SANAS(
        config,
C
ceci3 已提交
171
        server_addr=(args.server_address, args.port),
C
update  
ceci3 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        init_temperature=args.init_temperature,
        reduce_rate=args.reduce_rate,
        search_steps=args.search_steps,
        is_server=True)

    image_shape = [3, image_size, image_size]

    archs = sa_nas.tokens2arch(tokens)

    train_program = fluid.Program()
    test_program = fluid.Program()
    startup_program = fluid.Program()
    train_loader, avg_cost, acc_top1, acc_top5 = build_program(
        train_program, startup_program, image_shape, archs, args)

    current_flops = flops(train_program)
    print('current_flops: {}'.format(current_flops))
    test_loader, test_avg_cost, test_acc_top1, test_acc_top5 = build_program(
        test_program, startup_program, image_shape, archs, args, is_test=True)

    test_program = test_program.clone(for_test=True)

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(startup_program)

    if args.data == 'cifar10':
        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.cifar.train10(cycle=False), buf_size=1024),
            batch_size=args.batch_size,
            drop_last=True)

        test_reader = paddle.batch(
            paddle.dataset.cifar.test10(cycle=False),
            batch_size=args.batch_size,
            drop_last=False)
    elif args.data == 'imagenet':
        train_reader = paddle.batch(
            imagenet_reader.train(),
            batch_size=args.batch_size,
            drop_last=True)
        test_reader = paddle.batch(
            imagenet_reader.val(), batch_size=args.batch_size, drop_last=False)

    train_loader.set_sample_list_generator(
        train_reader,
        places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
    test_loader.set_sample_list_generator(test_reader, places=place)

    build_strategy = fluid.BuildStrategy()
    train_compiled_program = fluid.CompiledProgram(
        train_program).with_data_parallel(
            loss_name=avg_cost.name, build_strategy=build_strategy)
C
ceci3 已提交
226
    for epoch_id in range(args.retain_epoch):
C
update  
ceci3 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        for batch_id, data in enumerate(train_loader()):
            fetches = [avg_cost.name]
            s_time = time.time()
            outs = exe.run(train_compiled_program,
                           feed=data,
                           fetch_list=fetches)[0]
            batch_time = time.time() - s_time
            if batch_id % 10 == 0:
                _logger.info(
                    'TRAIN: epoch: {}, batch: {}, cost: {}, batch_time: {}ms'.
                    format(epoch_id, batch_id, outs[0], batch_time))

        reward = []
        for batch_id, data in enumerate(test_loader()):
            test_fetches = [
                test_avg_cost.name, test_acc_top1.name, test_acc_top5.name
            ]
            batch_reward = exe.run(test_program,
                                   feed=data,
                                   fetch_list=test_fetches)
            reward_avg = np.mean(np.array(batch_reward), axis=1)
            reward.append(reward_avg)

            _logger.info(
                'TEST: batch: {}, avg_cost: {}, acc_top1: {}, acc_top5: {}'.
                format(batch_id, batch_reward[0], batch_reward[1],
                       batch_reward[2]))

        finally_reward = np.mean(np.array(reward), axis=0)
        _logger.info(
            'FINAL TEST: avg_cost: {}, acc_top1: {}, acc_top5: {}'.format(
                finally_reward[0], finally_reward[1], finally_reward[2]))


C
ceci3 已提交
261 262 263 264 265 266 267 268 269 270 271
if __name__ == '__main__':

    parser = argparse.ArgumentParser(
        description='SA NAS MobileNetV2 cifar10 argparase')
    parser.add_argument(
        '--use_gpu',
        type=ast.literal_eval,
        default=True,
        help='Whether to use GPU in train/test model.')
    parser.add_argument(
        '--batch_size', type=int, default=256, help='batch size.')
C
update  
ceci3 已提交
272 273
    parser.add_argument(
        '--class_dim', type=int, default=1000, help='classify number.')
C
ceci3 已提交
274 275 276 277 278 279
    parser.add_argument(
        '--data',
        type=str,
        default='cifar10',
        choices=['cifar10', 'imagenet'],
        help='server address.')
C
ceci3 已提交
280 281 282 283 284
    parser.add_argument(
        '--is_server',
        type=ast.literal_eval,
        default=True,
        help='Whether to start a server.')
C
ceci3 已提交
285 286 287 288 289
    parser.add_argument(
        '--search_steps',
        type=int,
        default=100,
        help='controller server number.')
C
ceci3 已提交
290 291 292 293 294
    parser.add_argument(
        '--server_address', type=str, default="", help='server ip.')
    parser.add_argument('--port', type=int, default=8881, help='server port')
    parser.add_argument(
        '--retain_epoch', type=int, default=5, help='epoch for each token.')
C
ceci3 已提交
295 296 297 298 299 300 301 302 303 304 305
    parser.add_argument('--lr', type=float, default=0.1, help='learning rate.')
    args = parser.parse_args()
    print(args)

    if args.data == 'cifar10':
        image_size = 32
        block_num = 3
    elif args.data == 'imagenet':
        image_size = 224
        block_num = 6
    else:
C
update  
ceci3 已提交
306
        raise NotImplementedError(
C
ceci3 已提交
307 308 309
            'data must in [cifar10, imagenet], but received: {}'.format(
                args.data))

C
ceci3 已提交
310
    config = [('MobileNetV2Space')]
C
ceci3 已提交
311

C
ceci3 已提交
312
    search_mobilenetv2(config, args, image_size, is_server=args.is_server)