train.py 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9
import os
import sys
import logging
import paddle
import argparse
import functools
import math
import time
import numpy as np
10 11
from collections import defaultdict

B
Bai Yifan 已提交
12 13 14
sys.path.append(os.path.dirname("__file__"))
sys.path.append(
    os.path.join(os.path.dirname("__file__"), os.path.pardir, os.path.pardir))
15
from paddleslim.common import get_logger, VarCollector
16 17 18 19
from paddleslim.analysis import flops
from paddleslim.quant import quant_aware, quant_post, convert
import models
from utility import add_arguments, print_arguments
20
from paddle.fluid.layer_helper import LayerHelper
21 22 23 24 25 26 27
quantization_model_save_dir = './quantization_models/'

_logger = get_logger(__name__, level=logging.INFO)

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
28
add_arg('batch_size',       int,  128,
29 30 31
        "Minibatch size.")
add_arg('use_gpu',          bool, True,
        "Whether to use GPU or not.")
32
add_arg('model',            str,  "MobileNetV3_large_x1_0",
33
        "The target model.")
34
add_arg('pretrained_model', str,  "./pretrain/MobileNetV3_large_x1_0_ssld_pretrained",
35
        "Whether to use pretrained model.")
36
add_arg('lr',               float,  0.001,
37 38 39
        "The learning rate used to fine-tune pruned model.")
add_arg('lr_strategy',      str,  "piecewise_decay",
        "The learning rate decay strategy.")
40
add_arg('l2_decay',         float,  1e-5,
41 42 43
        "The l2_decay parameter.")
add_arg('momentum_rate',    float,  0.9,
        "The value of momentum_rate.")
44
add_arg('num_epochs',       int,  30,
45 46 47 48
        "The number of total epochs.")
add_arg('total_images',     int,  1281167,
        "The number of total training images.")
parser.add_argument('--step_epochs', nargs='+', type=int,
49
        default=[20],
50 51 52 53 54 55 56
        help="piecewise decay step")
add_arg('config_file',      str, None,
        "The config file for compression with yaml format.")
add_arg('data',             str, "imagenet",
        "Which data to use. 'mnist' or 'imagenet'")
add_arg('log_period',       int, 10,
        "Log period in batches.")
57 58 59 60 61 62
add_arg('checkpoint_dir',         str, None,
        "checkpoint dir")
add_arg('checkpoint_epoch',         int, None,
        "checkpoint epoch")
add_arg('output_dir',         str, "output/MobileNetV3_large_x1_0",
        "model save dir")
63 64
add_arg('use_pact',          bool, True,
        "Whether to use PACT or not.")
65 66
add_arg('analysis',          bool, False,
        "Whether analysis variables distribution.")
67 68 69 70 71 72 73

# yapf: enable

model_list = [m for m in dir(models) if "__" not in m]


def piecewise_decay(args):
B
Bai Yifan 已提交
74 75
    places = paddle.static.cuda_places(
    ) if args.use_gpu else paddle.static.cpu_places()
76 77
    step = int(
        math.ceil(float(args.total_images) / (args.batch_size * len(places))))
78 79
    bd = [step * e for e in args.step_epochs]
    lr = [args.lr * (0.1**i) for i in range(len(bd) + 1)]
B
Bai Yifan 已提交
80 81 82
    learning_rate = paddle.optimizer.lr.PiecewiseDecay(
        boundaries=bd, values=lr, verbose=False)
    optimizer = paddle.optimizer.Momentum(
83 84
        learning_rate=learning_rate,
        momentum=args.momentum_rate,
B
Bai Yifan 已提交
85
        weight_decay=paddle.regularizer.L2Decay(args.l2_decay))
86
    return learning_rate, optimizer
87 88 89


def cosine_decay(args):
B
Bai Yifan 已提交
90 91
    places = paddle.static.cuda_places(
    ) if args.use_gpu else paddle.static.cpu_places()
92 93
    step = int(
        math.ceil(float(args.total_images) / (args.batch_size * len(places))))
B
Bai Yifan 已提交
94 95 96
    learning_rate = paddle.optimizer.lr.CosineAnnealingDecay(
        learning_rate=args.lr, T_max=step * args.num_epochs, verbose=False)
    optimizer = paddle.optimizer.Momentum(
97 98
        learning_rate=learning_rate,
        momentum=args.momentum_rate,
B
Bai Yifan 已提交
99
        weight_decay=paddle.regularizer.L2Decay(args.l2_decay))
100
    return learning_rate, optimizer
101 102 103 104 105 106 107 108 109 110 111 112


def create_optimizer(args):
    if args.lr_strategy == "piecewise_decay":
        return piecewise_decay(args)
    elif args.lr_strategy == "cosine_decay":
        return cosine_decay(args)


def compress(args):

    if args.data == "mnist":
B
Bai Yifan 已提交
113 114
        train_dataset = paddle.vision.datasets.MNIST(mode='train')
        val_dataset = paddle.vision.datasets.MNIST(mode='test')
115 116 117 118
        class_dim = 10
        image_shape = "1,28,28"
    elif args.data == "imagenet":
        import imagenet_reader as reader
B
Bai Yifan 已提交
119 120
        train_dataset = reader.ImageNetDataset(mode='train')
        val_dataset = reader.ImageNetDataset(mode='val')
121 122 123 124 125 126
        class_dim = 1000
        image_shape = "3,224,224"
    else:
        raise ValueError("{} is not supported.".format(args.data))

    image_shape = [int(m) for m in image_shape.split(",")]
B
Bai Yifan 已提交
127 128
    assert args.model in model_list, "{} is not in lists: {}".format(args.model,
                                                                     model_list)
B
Bai Yifan 已提交
129 130
    image = paddle.static.data(
        name='image', shape=[None] + image_shape, dtype='float32')
131 132
    if args.use_pact:
        image.stop_gradient = False
B
Bai Yifan 已提交
133
    label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
134 135 136
    # model definition
    model = models.__dict__[args.model]()
    out = model.net(input=image, class_dim=class_dim)
B
Bai Yifan 已提交
137 138 139 140
    cost = paddle.nn.functional.loss.cross_entropy(input=out, label=label)
    avg_cost = paddle.mean(x=cost)
    acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
    acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5)
141

B
Bai Yifan 已提交
142 143
    train_prog = paddle.static.default_main_program()
    val_program = paddle.static.default_main_program().clone(for_test=True)
144

145 146 147
    if not args.analysis:
        learning_rate, opt = create_optimizer(args)
        opt.minimize(avg_cost)
148

B
Bai Yifan 已提交
149
    place = paddle.CUDAPlace(0) if args.use_gpu else paddle.CPUPlace()
B
Bai Yifan 已提交
150 151
    places = paddle.static.cuda_places(
    ) if args.use_gpu else paddle.static.cpu_places()
B
Bai Yifan 已提交
152 153
    exe = paddle.static.Executor(place)
    exe.run(paddle.static.default_startup_program())
154

B
Bai Yifan 已提交
155 156 157
    train_loader = paddle.io.DataLoader(
        train_dataset,
        places=places,
158
        feed_list=[image, label],
B
Bai Yifan 已提交
159
        drop_last=True,
B
Bai Yifan 已提交
160
        return_list=False,
B
Bai Yifan 已提交
161
        batch_size=args.batch_size,
B
Bai Yifan 已提交
162
        use_shared_memory=False,
B
Bai Yifan 已提交
163 164 165 166 167 168
        shuffle=True,
        num_workers=1)

    valid_loader = paddle.io.DataLoader(
        val_dataset,
        places=place,
169
        feed_list=[image, label],
B
Bai Yifan 已提交
170
        drop_last=False,
B
Bai Yifan 已提交
171
        return_list=False,
B
Bai Yifan 已提交
172
        batch_size=args.batch_size,
B
Bai Yifan 已提交
173
        use_shared_memory=False,
B
Bai Yifan 已提交
174
        shuffle=False)
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

    if args.analysis:
        # get all activations names
        activates = [
            'pool2d_1.tmp_0', 'tmp_35', 'batch_norm_21.tmp_2', 'tmp_26',
            'elementwise_mul_5.tmp_0', 'pool2d_5.tmp_0',
            'elementwise_add_5.tmp_0', 'relu_2.tmp_0', 'pool2d_3.tmp_0',
            'conv2d_40.tmp_2', 'elementwise_mul_0.tmp_0', 'tmp_62',
            'elementwise_add_8.tmp_0', 'batch_norm_39.tmp_2', 'conv2d_32.tmp_2',
            'tmp_17', 'tmp_5', 'elementwise_add_9.tmp_0', 'pool2d_4.tmp_0',
            'relu_0.tmp_0', 'tmp_53', 'relu_3.tmp_0', 'elementwise_add_4.tmp_0',
            'elementwise_add_6.tmp_0', 'tmp_11', 'conv2d_36.tmp_2',
            'relu_8.tmp_0', 'relu_5.tmp_0', 'pool2d_7.tmp_0',
            'elementwise_add_2.tmp_0', 'elementwise_add_7.tmp_0',
            'pool2d_2.tmp_0', 'tmp_47', 'batch_norm_12.tmp_2',
            'elementwise_mul_6.tmp_0', 'elementwise_mul_7.tmp_0',
            'pool2d_6.tmp_0', 'relu_6.tmp_0', 'elementwise_add_0.tmp_0',
            'elementwise_mul_3.tmp_0', 'conv2d_12.tmp_2',
            'elementwise_mul_2.tmp_0', 'tmp_8', 'tmp_2', 'conv2d_8.tmp_2',
            'elementwise_add_3.tmp_0', 'elementwise_mul_1.tmp_0',
            'pool2d_8.tmp_0', 'conv2d_28.tmp_2', 'image', 'conv2d_16.tmp_2',
            'batch_norm_33.tmp_2', 'relu_1.tmp_0', 'pool2d_0.tmp_0', 'tmp_20',
            'conv2d_44.tmp_2', 'relu_10.tmp_0', 'tmp_41', 'relu_4.tmp_0',
            'elementwise_add_1.tmp_0', 'tmp_23', 'batch_norm_6.tmp_2', 'tmp_29',
            'elementwise_mul_4.tmp_0', 'tmp_14'
        ]
        var_collector = VarCollector(train_prog, activates, use_ema=True)
        values = var_collector.abs_max_run(
            train_loader, exe, step=None, loss_name=avg_cost.name)
        np.save('pact_thres.npy', values)
        _logger.info(values)
        _logger.info("PACT threshold have been saved as pact_thres.npy")

        # Draw Histogram in 'dist_pdf/result.pdf'
        # var_collector.pdf(values)

        return

    values = defaultdict(lambda: 20)
    try:
        values = np.load("pact_thres.npy", allow_pickle=True).item()
        values.update(tmp)
        _logger.info("pact_thres.npy info loaded.")
    except:
        _logger.info(
            "cannot find pact_thres.npy. Set init PACT threshold as 20.")
    _logger.info(values)

    # 1. quantization configs
    quant_config = {
        # weight quantize type, default is 'channel_wise_abs_max'
        'weight_quantize_type': 'channel_wise_abs_max',
        # activation quantize type, default is 'moving_average_abs_max'
        'activation_quantize_type': 'moving_average_abs_max',
        # weight quantize bit num, default is 8
        'weight_bits': 8,
        # activation quantize bit num, default is 8
        'activation_bits': 8,
        # ops of name_scope in not_quant_pattern list, will not be quantized
        'not_quant_pattern': ['skip_quant'],
        # ops of type in quantize_op_types, will be quantized
        'quantize_op_types': ['conv2d', 'depthwise_conv2d', 'mul'],
        # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
        'dtype': 'int8',
        # window size for 'range_abs_max' quantization. defaulf is 10000
        'window_size': 10000,
        # The decay coefficient of moving average, default is 0.9
        'moving_rate': 0.9,
    }

245 246 247 248 249
    # 2. quantization transform programs (training aware)
    #    Make some quantization transforms in the graph before training and testing.
    #    According to the weight and activation quantization type, the graph will be added
    #    some fake quantize operators and fake dequantize operators.

250 251 252 253
    def pact(x):
        helper = LayerHelper("pact", **locals())
        dtype = 'float32'
        init_thres = values[x.name.split('_tmp_input')[0]]
B
Bai Yifan 已提交
254
        u_param_attr = paddle.ParamAttr(
255
            name=x.name + '_pact',
B
Bai Yifan 已提交
256 257
            initializer=paddle.nn.initializer.Constant(value=init_thres),
            regularizer=paddle.regularizer.L2Decay(0.0001),
258 259 260 261
            learning_rate=1)
        u_param = helper.create_parameter(
            attr=u_param_attr, shape=[1], dtype=dtype)

B
Bai Yifan 已提交
262 263
        part_a = paddle.nn.functional.relu(x - u_param)
        part_b = paddle.nn.functional.relu(-u_param - x)
264 265 266 267
        x = x - part_a + part_b
        return x

    def get_optimizer():
B
Bai Yifan 已提交
268
        return paddle.optimizer.Momentum(args.lr, 0.9)
269

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    if args.use_pact:
        act_preprocess_func = pact
        optimizer_func = get_optimizer
        executor = exe
    else:
        act_preprocess_func = None
        optimizer_func = None
        executor = None

    val_program = quant_aware(
        val_program,
        place,
        quant_config,
        scope=None,
        act_preprocess_func=act_preprocess_func,
        optimizer_func=optimizer_func,
        executor=executor,
        for_test=True)
    compiled_train_prog = quant_aware(
        train_prog,
        place,
        quant_config,
        scope=None,
        act_preprocess_func=act_preprocess_func,
        optimizer_func=optimizer_func,
        executor=executor,
        for_test=False)

    assert os.path.exists(
        args.pretrained_model), "pretrained_model doesn't exist"

    if args.pretrained_model:
B
Bai Yifan 已提交
302
        paddle.static.load(train_prog, args.pretrained_model, exe)
303 304 305 306 307

    def test(epoch, program):
        batch_id = 0
        acc_top1_ns = []
        acc_top5_ns = []
308
        for data in valid_loader():
309 310
            start_time = time.time()
            acc_top1_n, acc_top5_n = exe.run(
311
                program, feed=data, fetch_list=[acc_top1.name, acc_top5.name])
312 313 314
            end_time = time.time()
            if batch_id % args.log_period == 0:
                _logger.info(
315
                    "Eval epoch[{}] batch[{}] - acc_top1: {:.6f}; acc_top5: {:.6f}; time: {:.3f}".
316 317 318 319 320 321 322
                    format(epoch, batch_id,
                           np.mean(acc_top1_n),
                           np.mean(acc_top5_n), end_time - start_time))
            acc_top1_ns.append(np.mean(acc_top1_n))
            acc_top5_ns.append(np.mean(acc_top5_n))
            batch_id += 1

323 324 325 326
        _logger.info(
            "Final eval epoch[{}] - acc_top1: {:.6f}; acc_top5: {:.6f}".format(
                epoch,
                np.mean(np.array(acc_top1_ns)), np.mean(np.array(acc_top5_ns))))
327 328
        return np.mean(np.array(acc_top1_ns))

B
Bai Yifan 已提交
329
    def train(epoch, compiled_train_prog, lr):
330 331

        batch_id = 0
332
        for data in train_loader():
333
            start_time = time.time()
B
Bai Yifan 已提交
334
            loss_n, acc_top1_n, acc_top5_n = exe.run(
335
                compiled_train_prog,
336
                feed=data,
B
Bai Yifan 已提交
337
                fetch_list=[avg_cost.name, acc_top1.name, acc_top5.name])
338

339 340 341 342 343 344
            end_time = time.time()
            loss_n = np.mean(loss_n)
            acc_top1_n = np.mean(acc_top1_n)
            acc_top5_n = np.mean(acc_top5_n)
            if batch_id % args.log_period == 0:
                _logger.info(
345
                    "epoch[{}]-batch[{}] lr: {:.6f} - loss: {:.6f}; acc_top1: {:.6f}; acc_top5: {:.6f}; time: {:.3f}".
B
Bai Yifan 已提交
346 347
                    format(epoch, batch_id,
                           learning_rate.get_lr(), loss_n, acc_top1_n,
348
                           acc_top5_n, end_time - start_time))
349 350 351 352 353

            if args.use_pact and batch_id % 1000 == 0:
                threshold = {}
                for var in val_program.list_vars():
                    if 'pact' in var.name:
B
Bai Yifan 已提交
354 355
                        array = np.array(paddle.static.global_scope().find_var(
                            var.name).get_tensor())
356
                        threshold[var.name] = array[0]
357
                _logger.info(threshold)
358
            batch_id += 1
B
Bai Yifan 已提交
359
            lr.step()
360

B
Bai Yifan 已提交
361
    build_strategy = paddle.static.BuildStrategy()
362 363
    build_strategy.enable_inplace = False
    build_strategy.fuse_all_reduce_ops = False
B
Bai Yifan 已提交
364
    exec_strategy = paddle.static.ExecutionStrategy()
365 366 367 368 369 370 371 372
    compiled_train_prog = compiled_train_prog.with_data_parallel(
        loss_name=avg_cost.name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    # train loop
    best_acc1 = 0.0
    best_epoch = 0
373 374 375 376 377 378

    start_epoch = 0
    if args.checkpoint_dir is not None:
        ckpt_path = args.checkpoint_dir
        assert args.checkpoint_epoch is not None, "checkpoint_epoch must be set"
        start_epoch = args.checkpoint_epoch
B
Bai Yifan 已提交
379 380
        paddle.static.load(
            executor=exe, model_path=args.checkpoint_dir, program=val_program)
381

382 383
    best_eval_acc1 = 0
    best_acc1_epoch = 0
384
    for i in range(start_epoch, args.num_epochs):
B
Bai Yifan 已提交
385
        train(i, compiled_train_prog, learning_rate)
386
        acc1 = test(i, val_program)
387 388 389 390 391
        if acc1 > best_eval_acc1:
            best_eval_acc1 = acc1
            best_acc1_epoch = i
        _logger.info("Best Validation Acc1: {:.6f}, at epoch {}".format(
            best_eval_acc1, best_acc1_epoch))
B
Bai Yifan 已提交
392
        paddle.static.save(
B
Bai Yifan 已提交
393 394
            model_path=os.path.join(args.output_dir, str(i)),
            program=val_program)
395 396 397
        if acc1 > best_acc1:
            best_acc1 = acc1
            best_epoch = i
B
Bai Yifan 已提交
398
            paddle.static.save(
B
Bai Yifan 已提交
399 400
                model_path=os.path.join(args.output_dir, 'best_model'),
                program=val_program)
401

B
Bai Yifan 已提交
402
    if os.path.exists(os.path.join(args.output_dir, 'best_model.pdparams')):
B
Bai Yifan 已提交
403
        paddle.static.load(
B
Bai Yifan 已提交
404 405 406
            executor=exe,
            model_path=os.path.join(args.output_dir, 'best_model'),
            program=val_program)
407

408 409 410 411 412 413
    # 3. Freeze the graph after training by adjusting the quantize
    #    operators' order for the inference.
    #    The dtype of float_program's weights is float32, but in int8 range.
    float_program, int8_program = convert(val_program, place, quant_config, \
                                                        scope=None, \
                                                        save_int8=True)
414
    _logger.info("eval best_model after convert")
415
    final_acc1 = test(best_epoch, float_program)
416 417
    _logger.info("final acc:{}".format(final_acc1))

418 419 420 421 422 423 424 425
    # 4. Save inference model
    model_path = os.path.join(quantization_model_save_dir, args.model,
                              'act_' + quant_config['activation_quantize_type']
                              + '_w_' + quant_config['weight_quantize_type'])
    float_path = os.path.join(model_path, 'float')
    if not os.path.isdir(model_path):
        os.makedirs(model_path)

426
    paddle.fluid.io.save_inference_model(
427 428 429 430 431 432 433 434 435 436
        dirname=float_path,
        feeded_var_names=[image.name],
        target_vars=[out],
        executor=exe,
        main_program=float_program,
        model_filename=float_path + '/model',
        params_filename=float_path + '/params')


def main():
437
    paddle.enable_static()
438 439 440 441 442 443 444
    args = parser.parse_args()
    print_arguments(args)
    compress(args)


if __name__ == '__main__':
    main()